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Inductively,	we	k		obtain	subsequences	(n1k	)	⊃	(n2k	)	⊃	(n3k	)	⊃	.	Thus	X	is	not	mixing.	Clearly,	no	subsequence	of	subsequence	(fnk	)k∈N	with	d(f	(fnk	)k∈N	converges	to	f	in	measure;	hence	neither	converges	almost	everywhere.	16.2.	The	distributions	μα,r	are	the	so-called	α-stable	distributions	(see	Definition	16.20):	If	X1	,	X2	,	.	By	translation
invariance,	this	implies	that	B	is	nowhere	Hölder-γ	-continuous	a.s.	in	any	of	the	countably	many	intervals	[n/2,	(n/2)	+	1),	n	∈	N0	,	which	implies	the	claim	of	the	theorem.	Furthermore,	we	have	shown	the	claim	in	the	case	where	X	and	Y	are	nonnegative.	,	xk	∈	E	with	xk	=	y	and	xi	=	x	for	all	i	=	1,	.	Clearly,	q	is	irreducible.	Then		E[f	(X)|F	](ω)	=	f	(x)
κX,F	(ω,	dx)	for	P-almost	all	ω.	Hence,	there	exists	a	y	∈	A	such	that	(pA	)n0	(x0	,	y)	>	0,	i.e.,	y	∈	SA	(x0	).	♣	23.3	Sanov’s	Theorem	This	section	is	close	to	the	exposition	in	[31].	The	element	f	∈	V	in	(ii)	is	uniquely	determined.	1	Rn	=	P[A|I]	almost	surely.	Let	Ω	=	N,	and	for	fixed	s	>	1	define	P	on	2Ω	by	P[{n}]	=	ζ	(s)−1	n−s	for	n	∈	N.	Now	let	A1	,	A2	,
.	St	:=	sup	n	∈	N	:	T1s	+	.	Takeaways	A	reversible	Markov	chain	escapes	from	a	point	x	to	infinity	(that	is,	it	never	returns	to	x)	with	positive	probability	if	and	only	if	in	the	corresponding	electrical	network,	the	effective	resistance	between	x	and	infinity	is	finite.	Hence	L2	(μ)	is	canonically	isomorphic	to	its	topological	dual	space	(L2	(μ))	.	,	6}2
endowed	with	the	σ	-algebra	A	=	2Ω	and	the	uniform	distribution	P	=	UΩ	(see	Example	1.30(ii)).	(21.15)	√	To	check	this,	define	As	:=	inf{t	>	0	:	Bt	≥	K	t	}	≤	s	and	A	:=				√	inf	t	>	0	:	Bt	≥	K	t	=	0	=	As	∈	F0+	.	.+	Zn	,	where	(Zn	)n∈N	are	i.i.d.	with	P	[Zn	=	x]	=	p(0,	x).	,	XN	of	E-valued	random	variables.	For	A	:=	×j	∈L	Aj	,	and	abbreviate	A	=	×k=0	Ajk
and	P		=	δx	⊗	k=0	i	=	0,	.	Corollary	2.22	In	addition	to	the	assumptions	of	Theorem	2.21,	we	assume	that	any	FJ	has	a	continuous	density	fJ	=	f(Xj	)j∈J	(the	joint	density	of	(Xj	)j	∈J	).	♣	Exercise	7.2.2	Show	Minkowski’s	inequality	by	applying	Jensen’s	inequality	to	the	function	of	Example	7.14.	By	linearity	of	the	integral,	3	3	g	dμ1	=	g	dμ2	for	all	g	∈	C		.
For	l	∈	{kn	,	.	∈	A	with	An	∈	A.	The	geometric	interpretation	is	that	the	Riemann	integral	respects	the	geometry	of	the	integration	domain	by	being	defined	via	slimmer	and	slimmer	vertical	rectangles	(Fig.	As	a	consequence,	we	get	almost	sure	convergence	of	nonnegative	(super-)	martingales.	Since	f	is	F	-measurable,	E[X	|F	]		=	g	◦	f	is	also	F	-
measurable.	13.4	Application:	A	Fresh	Look	at	de	Finetti’s	Theorem..	,	Xn	,	we	have	0	Xn+1	=	1	−	p	+	pXn	with	probability	Xn	,	pXn	with	probability	1	−	Xn	.	i=1	By	the	definition	of	a	semiring,	any	Ak	\	(Ak	∩	Ai	)	is	a	finite	disjoint	union	of	sets	ck	in	A.	♦	Example	17.21	(Wright’s	evolution	model)	In	population	genetics,	Wright’s	evolution	model	[172]
describes	the	hereditary	transmission	of	a	genetic	trait	with	two	possible	specifications	(say	A	and	B);	for	example,	resistance/no	resistance	to	a	specific	antibiotic.	,	Xm	,	we	have	Var	m		Cov[Xi	,	Xj	].	(i)	For	every	t	∈	R,	the	limit	ϕ(t)	=	lim	ϕnn	(t)	exists	and	ϕ	is	continuous	at	0.	Then	d(f,	meas	“	⇒	”	Assume	fn	−→	f	.	(P5)	lim	supε↓0	ε−1	P[Nε	≥	2]	=	0.
Let	μ	=	μ◦X−1	be	the	image	measure	of	μ	under	the	map	X.	Furthermore,	there	is	a	binary	prefix	code	C	with	Lp	(C)	≤	H2	(p)	+	1.	(20.3)	By	(20.2)	and	(20.3),	and	since	τ	is	measure-preserving,	we	conclude	that	)	*	)	*	E	X0	1{Mn	>0}	≥	E	(max{S1	,	.	We	extend	the	model	a	little	by	allowing	for	more	than	one	wire	to	connect	0	and	1.	(i)	The
probability	measure	PX	:=	P	◦	X−1	is	called	the	distribution	of	X.	In	this	case,	the	sets	A	∈	A	are	called	events.	Proof	Evidently,	for	all	x	∈	E,		y∈E	G(x,	y)	=	∞			n=0	y∈E	pn	(x,	y)	=	∞		n=0	1	=	∞.	,	Xn	are	independent	and	μα,a	-distributed,	then	ϕX1	+...+Xn	(t)	=	ϕX	(t)n	=	ϕX	(n1/α	t);	D	hence	X1	+	.	♦	The	preceding	example	shows	that,	for	every	t	≥	0,
almost	surely	B	is	not	Hölder-	12	-continuous	at	t.	As	g	≤	ϕ	is	linear,	we	get	)	*		E	ϕ(X1	,	.	Corollary	7.28	The	map	F	:	L2	(μ)3	→	R	is	continuous	and	linear	if	and	only	if	there	is	an	f	∈	L2	(μ)	with	F	(g)	=	gf	dμ	for	all	g	∈	L2	(μ).	Similarly	0	define	NL	where	we	consider	all	edges	in	EL	as	closed.	Backwards	martingales	are	uniformly	integrable	and
converge	almost	surely	and	in	L1	.	The	Morse	alphabet	is	constructed	similarly	(the	letters	“e”	and	“t”,	which	are	the	most	frequent	letters	in	English,	have	the	shortest	codes	(“dot”	and	“dash”),	and	the	rare	letter	“q”	has	the	code	“dash-dash-dot-dash”).	Now	assume	that	(2.8)	holds	for	every	J	with	#J	=	n	and	for	every	finite	J		⊃	J	.	♦	522	21
Brownian	Motion	Takeaways	The	distribution	of	a	stochastic	process	determines	only	properties	that	can	be	described	by	the	values	at	countably	many	time	points.	The	whole	n-stage	by	the			experiment	is	then	described	n−1	n−1	n−1	/	/	coordinate	maps	on	the	probability	space	×	Ωi	,	Ai	,	P0	⊗	κi	.	Xi	=	m		Var[Xi	]	+	i=1	For	uncorrelated	X1	,	.	The
aim	of	this	chapter	is	to	establish	a	connection	between	certain	Markov	chains	and	electrical	networks.	Let	θk	=	e2πi	k/N	,	k	=	0,	.	πx	2	Summing	up,	we	have	μ({x})	=	4	,	π	2x2	0,	if	x	is	odd,	else.		i−1		i−1	/	Ak	to	For	i	=	1,	.	(ii)	Use	the	explicit	formula	for	the	Laplace	transform	M	:=	max{X1	,	.	(Recall	from	Definition	1.68	the	jargon	words	“almost
surely	on	A”.)	Note	that	X	=	E[X	|F	]	on	the	event	{E[X	|F	]	is	a	boundary	point	of	I	};	hence	here	the	claim	is	trivial.	Hence	#E	r	=	Pp	[y	∈	T	]	≥	Pp	[Fx	1	,x	2	,x	3	]	·	p	∧	(1	−	p)	L	>	0.	15.6	Multidimensional	Central	Limit	Theorem	..	Letting	A	=	B	∈	I,	we	obtain	the	0-1	law	for	invariant	events:	P[A]	∈	{0,	1}.	For	n	∈	N,	define	a	probability	Proof	Let	X	
measure		P{−n,−n+1,...}	∈	M1	E	{−n,−n+1,...}	by	)	*		−n	∈	A−n	,	X	−n+1	∈	A−n+1	,	.	The	random	variable	X1	is	a	proposal	for	the	value	of	Y	.	Denote	by	wn	=	1	+	nk=1	rk	the	total	number	of	balls	of	a	given	color	after	n	balls	of	that	color	have	been	drawn	already	(n	∈	N0	).	=	P	|B	If	X	and	Y	are	independent	and	N0,1	-distributed,	then	√			D	√	1−t
=	Bt	,	B	t	X,	1	−	t	Y	.	Rather,	we	consider	empirical	distributions	of	independent	random	variables	with	values	in	a	finite	set	Σ,	which	often	is	called	an	alphabet.	To	this	end,	fill	in	the	details	in	the	following	sketch.	The	derivative	is	f		(x)	=	−xe−x	,	whence	lim	ε−1	P[Nε	≥	2]	=	−αf		(0)	=	0.	(20.8)	Remark	20.25	Sometimes	the	mixing	property	of	(20.8)
is	called	strongly	mixing,	in	contrast	with	a	weakly	mixing	system	(Ω,	A,	P,	τ	),	for	which	we	require	only	(		1			'	P	A	∩	τ	−i	(B)	−	P[A]	P[B]	=	0	n→∞	n	n−1	lim	for	all	A,	B	∈	A.	At	this	point,	we	could,	for	example,	assume	that	Ye	∼	U[0,1]	is	uniformly	distributed	on	[0,	1].	In	order	for	the	notion	of	σ	-additivity	to	make	sense,	the	underlying	class	of	sets
must	be	closed	under	countable	set	operations;	that	is,	it	must	be	a	σ	-algebra.	Theorem	21.18	(Strong	Markov	property)	Brownian	motion	B	with	distributions	(Px	)x∈R	has	the	strong	Markov	property.	♦	Example	17.27	(Yule	process)	We	consider	an	example	that	resembles	the	preceding	one	at	first	glance.	,	UN	}	⊂	1		UD1	of	B1	and	define	C1	:=	N
i=1	U	i	∩	Kn	.	As	a	first	step,	we	define	conditional	independence	formally	(see	[25,	Chapter	7.3]).	i=0	Then	)	*	Px	Xt0	∈	A0	,	.	98	4	The	Integral	Since	fn	↑	f	≥	g,	we	have	Bnε	↑	Ω	for	any	ε	>	0.	,	Xn	defines	a	backwards	martingale.	We	now	want	to	interpret	X	as	the	market	price	of	a	stock	and	VT	as	the	payment	of	a	financial	derivative	on	X,	a	so-
called	contingent	claim	or,	briefly,	claim.	Hence	we	have	N(x,	y)	+	N(y,	z)	:=	m	+	n	:	m	∈	N(x,	y),	n	∈	N(y,	z)	⊂	N(x,	z).	We	call	ψ(p)	:=	P[there	exists	an	infinite	open	cluster]	(	'		{#C	p	(x)	=	∞}	=P	x∈Zd	the	probability	of	percolation.	For	n	∈	N,	define	kn	=	α	n	!.	If	(ii)	holds,	then	the	distributions	of	the	limiting	random	variables	Xλ	are	uniquely
determined	and	by	what	we	have	shown	already,	Xλ	=	)λ,	X*	is	one	D	possible	choice.	3	Proof	Take	Pμ	=	μ(dx)	κ(x,	·	).	Then	XY	also	takes	only	finitely	many	values	and	thus	XY	∈	L1	(P).	Show	that	the	probability	measure	μ	has	a	continuous	distribution	function	and		that	μ	is	singular	to	the	Lebesgue	measure	λ	.♣	(0,1]	Exercise	7.4.2	Let	n	∈	N	and	p,	q
∈	[0,	1].	,	Xn	]	=	PXn	[X	∈	A]	=	Pπ	[X	∈	A].	Proof	This	is	left	as	an	exercise.	We	refer	to	analysis	books	like	[37]	where	Vitali	sets	are	used	in	order	to	show	that	the	Lebesgue	measure	cannot	be	defined	on	2R	.	♦	17.2	Discrete	Markov	Chains:	Examples	403	Example	17.22	(Discrete	Moran	model)	In	contrast	to	Wright’s	model,	the	Moran	model	also
allows	overlapping	generations.	Then	lim	ϕ(t)	=	∞	=	t	→∞	lim	ϕ(t).	Hence,	by	the	superposition	principle,	f	(x)	=		˜	G(x,	y)	g(y)	(19.3)	y∈A	is	harmonic	on	E	\	A.	∪	An	).	Clearly,	(ν	−	n1	μ)(M)	≤	0;	hence	ν(M)	≤	n1	μ(M)	for	all			n	∈	N	and	thus	ν(M)	=	0.	γ0,∞,t	zr−1	exp(−z)	dz	=	Γ	(r).	(1.2)	With	this	notation,	1A∗	=	lim	inf	1An	n→∞	and	1A∗	=	lim	sup
1An	.	The	set	of	polynomials	with	rational	coefficients	is	countable	and	by	the	Weierstraß	theorem,	it	is	dense	in	any	(C([0,	n]),		·	∞	);	hence	it	is	dense	in	(Ω,	d).	In	order	to	model	this,	we	randomly	destroy	a	certain	fraction	1	−	p	of	the	tubes	(with	p	∈	[0,	1]	a	parameter)	and	keep	the	others.	,	X(An	))	and	let	ϕl	be	the	characteristic	function	of	X(Al	)	for
l	=	1,	.	Similarly,	we	get	J	(x)	≥	I	(x).	Reflection	Why	have	we	restricted	ourselves	to	aperiodic	Markov	chains?	Then	ν	has	a	density	w.r.t.	μ	⇐⇒	dν	In	this	case,	dμ	is	A-measurable	and	finite	μ-a.e.	derivative	of	ν	with	respect	to	μ.	Klenke,	Probability	Theory,	Universitext,	213	214	9	Martingales	Example	9.4	Let	I	=	N0	and	let	(Yn	,	n	∈	N)	be	a	family	of
i.i.d.	Rad1/2	-random	variables	on	a	probability	space	(Ω,	F	,	P);	that	is,	random	variables	with	P[Yn	=	1]	=	P[Yn	=	−1]	=	1	.	If	(i)	and	(ii)	hold,	then	ϕ	=	eψ	is	a	CFP.	Hence	we	have	to	develop	a	calculus	to	determine	the	distributions	of,	for	example,	sums	of	random	variables.	Choose	a	ti	with	d(s,	ti	)	<	δ.	i=n	Then,	we	have	tn−1	=	u	and	tm	=	t.
Definition	Let	(Xn	)n∈N	be	a	sequence	of	real	random	variables	in	L1	(P)	and	5.12	n		let	Sn	=	i=1	(Xi	−	E[Xi	]).	That	Then	E1	[τ	n	]	=	n−1	k=1	k	2	.	Definition	17.37	A	discrete	Markov	chain	is	called	•	irreducible	if	F	(x,	y)	>	0	for	all	x,	y	∈	E,	or	equivalently	G(x,	y)	>	0,	and	•	weakly	irreducible	if	F	(x,	y)	+	F	(y,	x)	>	0	for	all	x,	y	∈	E.	dt	Note	that	f0	(t)	=
1	for	all	t	≥	0	and	hence	f1	(t)	=	1	−	f1	(t).	,	2n	−	2.	19.3	and	19.4	for	illustrations.)	That	is,	we	replace	C(x,	y)	by	∞,		C	(x,	y)	=	C(x,	y),		(B	↔	B	c	)	=	Then	Reff	n	n	c	Bn	with	Bn	),	and	thus	1	4(2n+1)	if	x,	y	∈	∂Bn	for	some	n	∈	N,	else.	Now,	consider	the	case	where	λ	:=	3d	min	p(0,	x)	:	x	∈	{−1,	0,	1}d	>	0.	Then,	by	Chebyshev’s	inequality	(Theorem	5.11),
	,		∞	+	∞	'	(			Sk		P		n	−	E[X1	]	≥	(1	+	ε)−n/4	≤	(1	+	ε)n/2	Var	kn−1	Skn	kn	n=1	n=1	=	∞		(1	+	ε)n/2	kn−1	Var[X1	]	n=1	≤	2	Var[X1	]	∞		(1	+	ε)−n/2	<	∞.	♦	Definition	1.68	(Null	set)	Let	(Ω,	A,	μ)	be	a	measure	space.	Then,	for	n	∈	N	with	n	≥	n0	:=	"(k	+	1)/δ#,	i	=	tn!	+	1	and	l	∈	{0,	.	(iii)	Let	I	be	a	bounded	interval	of	length	T	>	0.	,	d,	with	merging
times	τ	(i)	.	Hence	the	definition	in	(iv)	makes	sense	and	we	have	Cov[X,	Y	]	=	E[XY	]	−	E[X]	E[Y	].	Let	(Xn	)n∈I	be	a	square	integrable	F-martingale	(that	is,	E[Xn2	]	<	∞	for	all	n	∈	I	).	Theorem	1.41	(Carathéodory)	Let	A	⊂	2Ω	be	a	ring	and	let	μ	be	a	σ	-finite	premeasure	on	A.	n→∞	The	cases	of	the	limes	superior	and	the	Cesàro	limits	are	similar.	.)	∈	B
x,y∈E	=		)	*	Eπ	1Aε	1{XN	=x}	pn−N	(x,	y)Py	[B]	.	♣	Exercise	8.2.8	Let	X1	and	X2	be	independent	and	exponentially	distributed	with	parameter	θ	>	0.	Proof	Let	f	:	E	→	R	be	bounded	and	harmonic;	hence	pf	=	f	.	3.3.5]	for	d	≥	2).	Since	each	ω	is	continuous,	Yn	is	a	countable	supremum	Yn	=	and	is	hence	A-measurable.	For	simplicity,	assume	that	for	all
l	=	1,	.	(ii)	Assume	that	A1	,	A2	,	.	,	X(1)	=	Yn	,	Yn−1	+	Yn	,	.	We	have	F	(1)	=	x0α	F	(x0	)	>	0	and	F	(x)	=	x	−α	F	(1)	for	all	x	>	0.	∈	A	with	AN	↑	Ω	and	μ(AN	)	<	meas	∞	for	any	N	∈	N.	A	map	κ	:	Ω1	×	A2	→	[0,	∞]	is	called	a	(σ	-)finite	transition	kernel	(from	Ω1	to	Ω2	)	if:	(i)	ω1	→	κ(ω1	,	A2	)	is	A1	-measurable	for	any	A2	∈	A2	.	1	−	2αγ	−β	For	ω	∈	Bn	,	we
conclude	that	(21.10)	holds.	♣	5.4	Speed	of	Convergence	in	the	Strong	LLN	In	the	weak	law	of	large	numbers,	we	had	a	statement	on	the	speed	of	convergence	(Theorem	5.14).	Theorem	24.2	Let	τv	be	the	vague	topology	on	M(E).	Example	23.20	We	consider	the	Weiss	ferromagnet.	m=1	(In	the	third	step,	we	could	change	the	order	of	summation
since	all	summands	are	nonnegative.)	Letting	δ	↓	0,	we	infer	by	the	Borel–Cantelli	lemma	)	*	Tkn	−	E	Tkn	=	0	lim	n→∞	kn	almost	surely.	(ii)	(Closedness	under	complements)	By	definition,	A	∈	M(μ∗	)	⇐⇒	Ac	∈	M(μ∗	).	(25.3)	First	assume	that	H	is	continuous	and	bounded.	pε	describes	the	random	walk	on	E	that	with	probability	ε	does	not	move	and
with	probability	1	−	ε	makes	a	jump	according	to	p.	If	W	⊂	V	,	then	the	orthogonal	complement	of	W	is	the	following	linear	subspace	of	V	:	W	⊥	:=	v	∈	V	:	)v,	w*	=	0	for	all	w	∈	W	.	,	ωn	]	as	the	event	where	the	outcome	of	the	first	experiment	is	ω1	,	the	outcome	of	the	second	experiment	is	ω2	and	finally	the	outcome	of	the	nth	experiment	is	ωn	.	C(x1	)
C(x1	)	Reff	(x1	↔	A0	)	(19.10)	Definition	19.23	We	denote	the	escape	probability	of	x1	by	)	*	pF	(x1	)	=	Px1	τx1	=	∞	=	1	−	F	(x1	,	x1	).	Then	(Berp	)⊗N	⊥	(Berq	)⊗N	if	p	=	q.	Dividing	both	sides	by	P[A]	yields	(17.1).	496	20	Ergodic	Theory	Let	f	:	[0,	1)	→	R	be	an	I-measurable	function.	Let	ρ	∈	Cc	(E)	with	ρ	≥	1L	.	For	example,	consider	on	E	=	{0,	.	n=1
(ii)	(iii)	∞		n=1	∞		E[Yn	]	converges.	(7.12)	First	consider	the	case	q	=	1	and	f	∈	L1	(μ).	Show	that	the	topology	of	weak	convergence	is	not	metrizable	in	general.	(v)	For	t	≤	T	,	let	Yt	:=	E[XT		Ft	].	In	particular,	consider	a	graph	(E,	K)	and	a	subgraph	(E		,	K		).	n→∞	n→∞	Letting	ε	→	0,	we	get	(v).	Corollary	6.14	Let	(Ω,	A,	μ)	be	a	measure	space	in	which
almost	everywhere	convergence	and	convergence	in	measure	do	not	coincide.	;	;	n→∞	(iv)	For	every	μ	∈	M1	(E),	we	have	;μpn	−	π	;T	V	−→	0.	Then	#A1	=	#A2	=	#A3	=	36;	hence	P[A1	]	=	P[A2	]	=	P[A3	]	=	16	.	,	ωi−1	)	and	is	given	by	a	stochastic	kernel	κi	from	Ω0	×	·	·	·	×	Ωi−1	to	Ωi	.	♦	Combining	the	last	example	with	Theorem	1.53,	we	have	shown
the	following	theorem.	Letting	x	→	∞,	we	obtain	αm	≥	αn	.	It	is	intuitively	clear	that	τK	should	be	a	stopping	time	since	we	can	determine	by	observation	up	to	time	t	whether	{τK	≤	t}	occurs.	Further,	let	λ	∈	M1	(Σ)	be	a	distribution	that	is	understood	as	the	a	priori	distribution	of	this	particle	if	the	influence	of	energy	could	be	neglected.	,	xn	]	=	P	Xj
({xj	})	j	=1	=	n	n		)	*		P	Xj−1	({xj	})	=	P[Xj	=	xj	],	j	=1	j	=1	and	P[Xj	=	xj	]	=	pxj	.	be	uncorrelated	random	variables	in	L2	(P)	with	V	:=	supn∈N	Var[Xn	]	<	∞.	241	241	243	254	12	Backwards	Martingales	and	Exchangeability	..	Without	loss	of	generality,	assume	T	=	1.	21.1	Continuous	Versions	517	Proof		(i)	This	is	obvious	since	|t	−	s|γ	≤	|t	−	s|γ	for	all
s,	t	∈	I	with	|t	−	s|	≤	1.	Delete	the	loop	at	the	right-hand	side	(left	in	Fig.	If	μ	is	finite,	then	we	also	have	(iv)	⇒	(iii).	The	left-hand	side	in	(7.2)	does	not	decrease	if	we	replace	f	and	g	by	|f	|	and	|g|.	In	the	first	eight	chapters,	we	lay	the	foundations	that	will	be	needed	in	all	the	subsequent	chapters.	,	AN	∈	A.	By	Theorem	15.15	and	Lemma	15.12(ii),	we
infer	that	ψ	is	the	characteristic	function	of	the	measure	ν	with	ν(A)	=	12	δ0	(A)	+	12	μ(A/2)	15.2	Characteristic	Functions:	Examples	343	for	A	⊂	R.	By	Jensen’s	inequality,	for	every	ν	∈	M1	(Σ),		Λ(t)	=	log	e)t,y*	μ(dy)				)t,y*	μ({y})	=	log	e	ν(dy)	ν({y})				μ({y})	≥	log	e)t,y*	ν(dy)	ν({y})	=	)t,	m(ν)*	−	H	(ν	|μ)	with	equality	if	and	only	if	ν	=	νt	,	where	νt
({y})	=	μ({y})e)t,y*−Λ(t	).	Hence	(Xn2	)n∈N0	is	a	submartingale.	,	Xn	be	integrable	real	random	variables	with	P[(X1	,	.	Compute	the	invariant	distribution	and	the	exponential	rate	of	convergence.	(i)	The	map	(ω,	t)	→	Xt	(ω)	is	measurable	with	respect	to	F	⊗B([0,	∞))	–	B(E).	17.6	Invariant	Distributions	Case	1:	x	=	z.	Then	we	deduce	basic	statements
such	as	Fatou’s	lemma.	The	detailed	version	of	this	concise	statement	is:	Let	X1	,	.	Let	B	=	(Bt	,	t	≥	0)	be	a	Brownian	motion.	,	d	−	1,	then	A0	,	.	Here	we	need	that	E	is	Polish	since	clearly	every	singleton	is	weakly	compact	but	is	tight	only	under	additional	assumptions;	for	example,	if	E	is	Polish	(see	Lemma	13.5).	2	l=1	Proof	For	every	x	∈	R,	we	have
|eit	x	−	1	−	itx|	≤	t	2x	2	2	.	Theorem	6.27	(Continuity	lemma)	Let	(E,	d)	be	a	metric	space,	x0	∈	E	and	let	f	:	Ω	×	E	→	R	be	a	map	with	the	following	properties.	Define	An	=	Bi	for	all	n	∈	N.	♣	21.5	Construction	via	L2	-Approximation	We	give	an	alternative	construction	of	Brownian	motion	by	functional	analytic	means	as	an	L2	-approximation.	As	we
have	μ(Ω)	<	∞,	by	Theorem	6.17,	there	exists	a	sequence	an	↑	∞	with		sup	f	∈F	(|f	|	−	an	)+	dμ	<	2−n	.	Since	μ	is	monotone	and	σ	-additive,	we	infer	μ(A)	=	∞		n=1	μ(A	∩	Bn	)	≤	∞		n=1	μ(An	).	For	example,	this	is	the	case	if	F	is	the	Borel	σ	-algebra	on	a	Polish	space.	Define	P	=	gμ	and	Q	=	hν.	,	IAn	)	can	be	computed	from	that	of	(IB1	,	.	+	Xn	=	k}.	It
can	be	shown	that	the	random	variable	Z	:=	X/	Y	is	infinitely	divisible	(see	[65]	or	[131]).	Let	A	=	Zn+1	>	Zn	for	all	n	∈	N0	denote	the	event	where	Z	flees	directly	to	∞	and	let	τz	=	inf{n	∈	N0	:	Zn	≥	z}.	In	this	case,	the	value	of	the	limit	does	not	depend	on	the	choice	of	t,	and	the	Riemann	integral	of	f	108	4	The	Integral	is	defined	as	(see,	e.g.,	[149])	
b	f	(x)	dx	:=	lim	Ltn	(f	)	=	lim	Unt	(f	).	(1.16)	1.4	Measurable	Maps	39	The	maps	R	→	Z,	x	→	x!	and	x	→	"x#	are	B(R)	–	2Z	-measurable	since	for	all	k	∈	Z	the	preimages	{x	∈	R	:	x!	=	k}	=	[k,	k	+	1)	and	{x	∈	R	:	"x#	=	k}	=	(k	−	1,	k]	are	in	B(R).	To	show	this	assume	there	was	a	self-avoiding	path	(h0	,	h1	,	.	Furthermore,	the	existence	of	a	continuous
version	can	be	obtained	as	for	Brownian	motion	by	employing	the	fourth	moments	of	the	increments,	which	for	normal	random	variables	can	be	computed	from	the	variances	(compare	Theorem	21.9).	(iii)	There	is	a	map	h	∈	L1	(μ),	h	≥	0,	such	that	|f	(	·	,	x)|	≤	h	μ-a.e.	for	all	x	∈	E.	Let	d˜	be	a	metric	that	induces	convergence	in	measure	(see	Theorem
6.7).	Furthermore,	Z	is	irreducible.	Further,	consider	sequences	t	=	(t	n	)n∈N	of	partitions	t	n	=	(tin	)i=0,...,n	of	I	(i.e.,	a	=	t0n	<	t1n	<	.	3b	(vi)	ϕ	is	almost	everywhere	differentiable	and	ϕ(b)	−	ϕ(a)	=	a	D	+	ϕ(x)	dx	for	a,	b	∈	I	◦	.	(viii)	Let	Ω	be	an	arbitrary	nonempty	set.	48	1	Basic	Measure	Theory	is	A	–	B(R)-measurable.	Hence,	it	is	enough	to	show
that	lim	infn→∞	Sn	/n	>	0	almost	surely.	Successively,	we	get	the	nth	derivative	F	(n)	(λ)	=	E[(−X)n	e−λX	].	Reflection	Find	an	example	of	two	stochastic	processes	that	are	modifications	of	each	other	but	that	are	not	indistinguishable.	Use	Exercise	15.4.5	to	infer	the	statement	of	the	central	limit	theorem	(compare	Theorem	15.38)	n→∞	PSn∗	−→	N0,1
weakly.	δ	2	(log	2)1+2ε	n=1	)	*	The	Borel–Cantelli	lemma	then	gives	P	lim	supn→∞	Aδn	=	0	and	hence	(5.14).	♣	Kε		Exercise	13.1.4	Let	U	be	a	family	of	intervals	in	R	such	that	W	:=	U	∈U	U	has	finite	Lebesgue	measure	λ(W	).	For	a,	b	∈	Rn	,	we	write	if	ai	<	bi	a	0	:	Br	(x)	⊂	A}).	are	i.i.d.	with	E[X1	]	=	0	and	P[X1	=	0]	<	1,	then	lim	infn→∞	Sn	=	−∞	and
lim	supn→∞	Sn	=	∞	almost	surely.	Let	Ft	:=	σ	(Y1	,	.	Define		)	it	X	*		it	x	0	ψ0	(t)	=	log	E	e	=	e	−	1	ν(dx).	∈	M(E).	(iii)	Let	A	be	an	algebra.	t	→∞	Define	the	map	h	:	(0,	∞)	→	(0,	1)	by	h(x)	=	1	−	1	−	e−x	.	∈	A	with	An	↓	A	and	μ(A1	)	<	∞.		(i)	If	I	is	countable,	then	N	:=	N¯	is	measurable	and	P[N]	≤	t	∈I	P[Nt	]	=	0.	We	conclude	that	Poiλ	∗	Poiμ	=	Poiλ+μ	.	,
Yn	)	for	n	∈	N.	(17.7)	This	follows	just	as	in	Corollary	17.10.	By	making	εx	smaller	(if	necessary),	one	can	assume	that	the	closure	of	this	ball	is	contained	in	U	.	,	d	−	1,	and	each	A	∈	I	is	a	union	of	certain	Ai	’s.	21.	Note	that	P[pN]	=	p−s	and	that	(pN,	p	∈	P)is	independent.	Takeaways	Properly	rescaled	sums	of	i.i.d.	centred	random	variables	with
second	moments	converge	to	a	normally	distributed	random	variable.	Furthermore,	pt	(x,	y)	=	e−λt	eλtp	(x,	y)	=	eλt	(p−I	)(x,	y)	=	et	q	(x,	y).	Show	that	Cov[X1	,	X2	]	≥	−	1	Var[X1	].	♦	Example	2.18	Let	E	be	a	finite	set	and	let	p	=	(pe	)e∈E	be	a	probability	vector.	Let	P	be	the	Lebesgue	measure	on	Ω.	Any	Kn	possesses	a	finite	covering	with	sets	from
U;	hence	Kn	∈	C.	Hint:	First	show	that	for	any	ε	>	0	and	δ	>	0	the	set	Ufδ,ε	:=	x	∈	Ω1	:	there	are	y,	z	∈	Bε	(x)	with	d2	(f	(y),	f	(z))	>	δ	is	open	(where	Bε	(x)	=	{y	∈	Ω1	:	d1	(x,	y)	<	ε}).			By	Theorem	8.14(ii)	and	(viii),	we	get	E[|X|	∧	N		F	]	↑	E[|X|		F	]	for	N	→	∞.	(v)	The	class	of	finite	unions	of	arbitrary	(also	unbounded)	intervals	is	an	algebra	on	Ω	=	R
(but	is	not	a	σ	-algebra).	This	implies	that	τw	is	the	trace	of	the	weak∗	-topology	on	Mf	(E).	23.4	Varadhan’s	Lemma	and	Free	Energy	Assume	that	(με	)ε>0	is	a	family	of	probability	measures	that	satisfies	an	LDP	with	rate	function	I	.	16.2	Stable	Distributions	387	Definition	16.26	(Domain	of	attraction)	Let	μ	∈	M1	(R)	be	nontrivial.	Proof	“(i)	⇒	(ii)”	This
is	evident.	Therefore,	dx	(m	+	n	+				kdy	)	for	every	k	≥	ny	;	hence	dx	dy	.	Let	Ef	:=	g	:	g	is	a	simple	function	with	μ(g	=	0)	<	∞	and	let	E+	f	:=	g	∈	Ef	:	g	≥	0	.	Also	check	that	the	families	{[−∞,	a],	a	∈	Q},	{[−∞,	a),	a	∈	Q},	{[b,	∞],	b	∈	Q}	and	{(b,	∞],	b	∈	Q}	are	generators	of	B(R).	Obviously,	A	∈	σ(	∞	m=n+1	Am	);	hence	A	is	independent	of	F	.	Klenke,
Probability	Theory,	Universitext,	85	86	3	Generating	Functions	Theorem	3.2	(i)	ψX	is	continuous	on	[0,	1]	and	infinitely	often	continuously	differentiable	on	(n)	(0,	1).	Then,	for	t	∈	[0,	T	],	2		*	)	2	arc	sin	t/T	.	If	E	is	locally	compact,	then	(M(E),	τv	)	is	a	Hausdorff	space.	In	other	words,	the	net	flow	is	I	(x0	)	+	I	(x1	)	=	0.	(Dominatedconvergence)	Assume
Y	∈	L1	(P),	Y	≥	0	and	(Xn	)n∈N	is	a	sequence	of	random	variables	with	|Xn	|	≤	Y	for	n	∈	N	and	such	that	n→∞	Xn	−→	X	a.s.	Then	lim	E[Xn	|F	]	=	E[X	|F	]	a.s.	and	in	L1	(P).	Hence	A2L	⊂	A2L,0.	Show	that	Xσ	≥	E[Xτ	|Fσ	].	8.1	Elementary	Conditional	Probabilities	Example	8.1	We	throw	a	die	and	consider	the	events	A	:=	{the	face	shows	an	odd	number},
B	:=	{the	face	shows	three	or	smaller}.	∩-stable	λ-system	8	1	Basic	Measure	Theory	Reflection	Where	does	the	proof	of	Theorem	1.19	fail	if	E	is	not	∩-stable?	We	compute	the	covariance	function	Γ	of	X,	Γ	(s,	t)	=	Cov[Xs	,	Xt	]	=	Cov[Bs	−	sB1	,	Bt	−	tB1	]	=	Cov[Bs	,	Bt	]	−	s	Cov[B1	,	Bt	]	−	t	Cov[Bs	,	B1	]	+	st	Cov[B1	,	B1	]	=	min(s,	t)	−	st	−	st	+	st	=
min(s,	t)	−	st.	Then	PX	=:	Nμ,σ	2	is	called	the	Gaussian	normal	distribution	with	parameters	μ	and	σ	2	.	Clearly,	Q±	0	P;	hence	the	Radon–	Nikodym	theorem	(Corollary	7.34)	yields	the	existence	of	F	-measurable	densities	Y	±	such	that		Y	±	dP	=	E[Y	±	1A	].	Then	show	that	μ∗N0,ε	is	absolutely	continuous	with	density	fε	,	which	converges	pointwise	to
f	(as	ε	→	0).	Then	A	:=	{A	⊂	Ω	:	A	or	Ac	is	finite}	is	an	algebra.	♣	Exercise	15.3.3	Let	(μn	)n∈N	be	a	sequence	of	probability	measures	on	R	and	denote	by	(ϕn	)n∈N	the	corresponding	characteristic	functions.	Hence	we	expect	an	average	gain	of		n	Sn	dP	=	(1	−	p)n	(1	−	2n	)	+	(1	−	(1	−	p)n	)	=	1	−	2	(1	−	p)	≤	0	since	p	≤	1	2	(in	the	profitable	casinos).
Example	5.15	(Weierstraß’s	approximation	theorem)	Let	f	:	[0,	1]	→	R	be	a	continuous	map.	On	the	other	hand,	we	have	(Xn+1	,	Yn+1	)	=	R˜	n	((Xn	,	Yn	)).	For	a	formal	description	of	this	model,	let	(In	)n∈N	and	(Nn	)n∈N	be	independent	random	variables.	♣	Exercise	17.7.2	For	the	Poisson	distribution,	show	that	Poiλ1	≤st	Poiλ2	⇐⇒	λ1	≤	λ2	.	24	−1
−1	19.5	Network	Reduction	485	Using	(19.15)	we	can	use	the	values	to	compute	u(x):	P	=	u(x)	=	29	24	+	17	5	24	−	6	2	·	29	24	=	13	.	s∈I	s≤t	For	uncountable	I	and	for	fixed	ω,	in	general,	the	map	I	→	E,	t	→	Xt	(ω)	is	not	measurable;	hence	neither	is	the	composition	Xτ	always	measurable.	(18.6)	This	decomposition	is	unique	up	to	cyclic	permutations.
y,	we	also	get	F	By	the	strong	Markov	property	(Theorem	17.14),	we	have	⎡	τx1	−1	Ey	⎣		⎡	⎤		⎢	⎥	1{Xn	=y}	⎦	=	1	+	Ey	⎣	1{Xn	=y}	;	τx1	>	τy1	⎦	⎤	τx1	−1	n=τy1	n=0		⎡	:(y,	x)	Ey	⎣	=1+	1−F	τx1	−1		⎤	1{Xn	=y}	⎦	.	⊗N		:=	μ.	By	monotonicity	of	I	,	on	(−∞,	0]	and	[0,	∞),	we	get	inf	I	(C)	=	I	(x−	)	∧	I	(x+	)	(with	the	convention	I	(−∞)	=	I	(∞)	=	∞).	In	the
following,	let	Kn	=	n1/4	.	fdd	The	converse	statement	in	the	preceding	theorem	does	not	hold.	Example	2.6	(Euler’s	prime	number	formula)	defined	by	the	Dirichlet	series	ζ	(s)	:=	∞		n−s	The	Riemann	zeta	function	is	for	s	∈	(1,	∞).	This,	however,	is	true	if	and	only	if	∞	n=0	(1	−	pn	)	=	∞.	However,	by	a	clever	choice	of	the	ONB	(bn	)n∈N	,	we	can
construct	X	directly	as	a	continuous	process.	+	Xn,n	.	This	implies	X	∼	PPPμ	.	Clearly,	Hγ	⊂	A.	Thus,	if	the	number	of	individuals	of	type	A	in	the	current	generation	is	k	∈	{0,	.	n=1	Then	h	>	0	almost	everywhere	and	3	∞		h	dμ	=	n=1	μ(An	)	2−n	1+μ(A	≤	1.	By	assumption,	q	=	p−1	;	hence	x0	=	y	q	and	thus			1	1	+	f	(x0	)	=	y	q	−	y	1/(p−1)y	=	0.	N	and
Hence			1	1	+	lim	sup	Rn	=	.	The	preimage	X−1	(A	)	:=	{X−1	(A	)	:	A	∈	A	}	(1.15)	is	the	smallest	σ	-algebra	with	respect	to	which	X	is	measurable.	The	bold	font	symbol	P	will	then	denote	the	universal	object	of	a	probability	measure,	and	the	probabilities	P[	·	]	with	respect	to	it	will	always	be	written	in	square	brackets.	Theorem	17.57	(Skorohod
coupling)	Let	μ,	μ1	,	μ2	,	.	Then	Z	is	adapted	to	F.	The	main	point	of	this	proof	consists	in	finding	a	candidate	for	a	weak	limit	point	for	the	family	F	.	Since	f	and	hz	are	continuous,	for	any	z	∈	E,	there	exists	an	open	neighborhood	Uz		z	with	hz	(y)	≤	f	(y)	+	ε	for	all	y	∈	Uz	.	Let	∞	∞	∞	r	=	r	s	s	r	T∞	n=1	Tn	and	T∞	=	n=1	Tn	.	As	(H	·	X)	is	a	martingale,
the	representation	problem	for	martingales	is	thus	reduced	to	the	problem	of	representing	an	integrable	random	variable	V	:=	YT	as	v0	+	(H	·X)T	,	where	v0	=	E[YT	].	Thus	(X,	˜	Y˜	)	is	positive	recurrent	(hence,	then	the)	invariant	distribution	of	(X,	in	particular,	recurrent)	by	Theorem	17.52.	By	Lemma	7.15,	we	have		fg1	=	|f	|	·	|g|	dμ	≤	=	1	p		|f	|p	dμ
+	1	q		|g|q	dμ	1	1	+	=	1	=	f	p	·	gq	.	In	fact,	we	can	even	take	a	different	set	of	summands	for	every	n.	For	the	other	inclusion,	consider	the	class	of	sets	A0	:=	A	∈	σ	(E		)	:	X−1	(A	)	∈	σ	(X−1	(E		))	.	Proof	Let	ν	be	a	(possibly	different)	σ	-finite	measure	on	(Ω,	A)	such	that	μ(E)	=	ν(E)	for	every	E	∈	E.	See	[93].	For	practical	purposes,	however,	this	is	often
the	most	interesting	question.	In	the	first	section,	we	start	with	products	of	measurable	spaces.	(iii)	Let	(Xn	)n∈Z	be	real-valued	and	stationary	and	let	k	∈	N	and	c0	,	.	To	this	end,	we	need	two	lemmas	that	ensure	that	the	distance	function	associated	with	two	measurable	maps	is	again	measurable.	The	process	X	is	called	a	random	walk	on	Rd	with
initial	value	x.	Theorem	5.27	(Source	coding	theorem)	Let	p	=	(pe	)e∈E	be	a	probability	distribution	on	the	finite	alphabet	E.	Then	the	following	statements	are	equivalent:	Lp	(i)	There	is	an	f	∈	Lp	(μ)	with	fn	−→	f	.	(iii)	(Linearity)	If	α,	β	∈	R,	then	αf	+	βg	∈	L1	(μ)	and			(αf	+	βg)	dμ	=	α		f	dμ	+	β	g	dμ.	(13.6)	Indeed,	if	f	is	continuous	at	x	∈	E,	then	for	any
δ	>	0,	there	is	an	ε(δ)	>	0	with	f	(Bε(δ)	(x))	⊂	Bδ	(f	(x)).	As	we	will	see,	we	can	define	probabilities	on	σ	-algebras	in	a	consistent	way.	Indeed,	μλ	is	infinitely	divisible	with	μλ	=	μ∗n	λ/n	.	be	independent,	square	integrable,	centered	random	variables.Then	Xn	:=	Y1	+	.	2.2	Independent	Random	Variables	61	(iv)	This	is	trivial,	as	(2.7)	has	to	be	checked
only	for	J	⊂	I	with	#(J	∩	Ik	)	≤	1	for	any	k	∈	K.	Theorem	13.16	(Portemanteau)	Let	E	be	a	metric	space	and	let	μ,	μ1	,	μ2	,	.	L1	(P),	then	we	define	Theorem	8.14	(Properties	of	the	conditional	expectation)	Let	(Ω,	A,	P)	and	let	X	be	as	above.	By	the	maximal-ergodic	lemma	(applied	to	Xε	),	we	have	E	X0ε	1Fn	≥	0;	hence	)	*	0	≤	E	X0ε	=	E	[(X0	−	ε)	1F	]	=
E	[E	[X0	|I]	1F	]	−	εP[F	]	=	−εP[F	].	In	Rockafellar’s	book	[146],	continuity	follows	from	Theorem	10.1,	and	the	statements	of	Corollary	7.8	follow	from	Theorem	12.1	and	Theorem	18.8.	The	claim	about	the	Hessian	matrix	can	be	found	in	Theorem	4.5.	Theorem	7.11	(Jensen’s	inequality	in	Rn	)	Let	G	⊂	Rn	be	a	convex	set	and	let	X1	,	.	2	x,y∈E	Note	that
this	is	a	discrete	version	of	Gauß’s	integral	theorem	for	(wI	).	Klenke,	Probability	Theory,	Universitext,	191	192	8	Conditional	Expectations	By	assigning	the	points	in	Ω	\	B	probability	zero	(since	they	are	impossible	if	B	has	occurred),	we	can	extend	PB	to	a	measure	on	Ω:	P[C	|B]	:=	PB	[C	∩	B]	=	In	this	way,	we	get	P[A|B]	=	#(C	∩	B)	#B	for	C	⊂	Ω.	For
n	≥	(2	#Σ)/ε,	n→∞	we	have	En	∩	Bε	(ν)	=	∅	and	hence	there	exists	a	sequence	νn	−→	ν	with	νn	∈	23.3	Sanov’s	Theorem	601	En	∩	A	for	large	n	∈	N.	Define	Wn	=	m−n	Zn	.	♠♠♠	The	proof	of	Theorem	11.19	was	simple	due	to	the	assumption	of	finite	variance	of	the	offspring	distribution.	Define	tl	=	u	+	l		bi	(t	−	u)	2−i	for	l	=	n	−	1,	.	In	particular,	if	|f	|
dμ	<	∞,	then	also	f	dμ	<	∞	and	f	+	dμ	<	∞.	A	discrete	Markov	chain	X	with	D	transition	matrix	p	is	a	random	walk	on	Z.	(17.3)	Ex	f	((Xt	+s	)t	∈I	)		Fs	=	EXs	[f	(X)]	:=	EI	17.1	Definitions	and	Construction	395	Proof	“	⇐	”	The	time-homogeneous	Markov	property	follows	by	(17.3)	with	the	function	f	(y)	=	1A	(y(t))	since	PXs	[Xt	∈	A]	=	Px	[Xt	+s	∈	A|Fs	]	=
κt	(Xs	,	A).	If	A	is	only	a	semiring,	then	thereexists	an	n	∈	N	and	mutually	disjoint		sets	C1	,	.	'	(	∞	∞		Xn	=	E[Xn	].	Hence,	E[Xt		Fs	]	=	Xs	and	X	is	a	martingale.	Apart	from	the	fact	that	we	still	have	to	show	©	The	Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	A.	,	xd	)	if,	for	any	i	=	1,	.	,	yd	)*
∈	E	:	x1	=	0,	y1	≥	0	be	the	set	of	all	edges	in	Zd	that	either	connect	two	points	from	{0}	×	Zd−1	or	one	point	of	{0}	×	Zd−1	with	onepoint	of	{1}	×	Zd−1	.	♦	Theorem	17.61	Let	n1	,	n2	∈	N	and	p1	,	p2	∈	(0,	1).	Let	E	:=	M1	(Σ).	Then,	for	every	n	∈	N0	and	a	>	0,	,	+	P	sup	Xm	≥	a	≤	2	P[Xn	≥	a]	−	P[Xn	=	a].	,	tn	∈	I	,	(Xt1	,	.	Then	there	exists	a	B	∈	En
such	that	A	=	X−1	(B).	♣	0	Exercise	21.2.2	Let	B	be	a	Brownian	motion.	Proof	Apply	the	triangle	inequality	in	order	to	check	(i)	and	(ii)	in	the	preceding	theorem.	Although	it	is	rather	a	matter	of	taste,	I	hope	that	this	setup	helps	to	motivate	the	reader	throughout	the	measure-theoretical	chapters.	Choose	(kl	)l∈N	such	that	∞	l=1	P[A		Akl	]	<	∞,	hence
l→∞	1Akl	−→	1A	almost	surely.	Compute	E[X1	∧	X2	|X1	].	(ii)	Let	R	:=	X2	+	Y	2	and	Θ	=	arctan(Y/X).	Lemma	14.13	Let	A	∈	A1	⊗	A2	and	let	f	:	Ω1	×	Ω2	→	R	be	an	A1	⊗	A2	measurable	map.	For	ε	>	0,	choose	gε	∈	L1	(μ)	such	that		sup	f	∈F	(|f	|	−	gε	)+	dμ	≤	ε.	Definition	2.41	We	say	that	percolation	occurs	if	there	exists	an	infinitely	large	open	cluster.
Consider	the	stochastic	kernel	κt	(x,	dy)	:=	CPoi(x/t	)	exp1/t	(dy).	Compute	the	distribution	of	the	almost	sure	limit	limn→∞	Xn	.	,	tn	)	for	all	x	∈	RJ	(where	J	=	{j1	,	.	Then	also	μ	:=	∞	n=1	αn	μn	is	a	measure	(premeasure,	content).	Therefore,	λ(A	\	C)	<	ε.	Consider	the	event				A	:=	{UNa,b	<	∞}	∩	sup{|Xt	|	:	t	∈	Q+	∩	[0,	N]}	<	∞	.	,	kn	,	n	∈	N)	be	an
independent	null	array	of	real	random	variables.	The	main	goal	of	this	chapter	is	to	show	that	an	arbitrary	σ	-finite	measure	ν	on	a	measurable	space	(Ω,	A)	can	be	decomposed	into	a	part	that	is	singular	to	the	σ	-finite	measure	μ	and	a	part	that	has	a	density	with	respect	to	μ	(Lebesgue’s	decomposition	theorem,	Theorem	7.33).	72	2	Independence
Corollary	2.39	Let	(Xn	)n∈N	be	an	independent	family	of	R-valued	random	variables.	Fix	differences	T¯tK	+s	−	Ts	n	∈	N.	The	statement	for	D	−	ϕ	follows	similarly.	(21.23)	m=1	holds	and	for	f,	g	∈	H	)f,	g*	=	∞		m=1	Now	consider	an	i.i.d.	sequence	(ξn	)n∈N	of	N0,1	-random	variables	on	some	probability	space	(Ω,	A,	P).	(4.5)	♣	Exercise	4.1.3	Let	1	≤	p
<	p	≤	∞	and	let	μ	be	σ	-finite	but	not	finite.	Thus	we	can	compute	α	as	α	=	lim	u(t)/t.	(iii)	By	assumption,			n−1				|h|n		(ih)k	)	it	X	k	*		Ee	X		=	E[Yn	(t,	h,	X)]	ϕ(t	+	h)	−			k!	n!	k=0	≤	|h|n	E[|X|n	]	n→∞	−→	0.	Then	the	identity	map	X	:	Ω1	→	[0,	1]	is	a	random	variable	on	(Ω1	,	A1	,	μ)	that	is	uniformly	distributed	on	[0,	1].	Hence	we	have	μ({d(fn	,	f	)	>	ε})
−→	0;	that	is,	fn	−→	f	.	This	candidate	will	be	constructed	first	as	a	content	on	a	countable	class	of	sets.	19.1	Harmonic	Functions	.	Then	we	get	(compare	Exercise	13.1.8)	M(E)	=		Q	μ	∈	M(E)	:	μ(U	)	<	∞	.	,	Ifn	)−1	(A)	:	n	∈	N;	f1	,	.	are	i.i.d.	with	E[Y1	]	=	0,	could	be	considered	a	fair	game	consisting	of	consecutive	rounds.	Example	2.24	Let	X1	,	.
Clearly,	A3L	↑	{N	≥	3}	for	L	→	∞.	p	q	7.2	Inequalities	and	the	Fischer–Riesz	Theorem	171	Theorem	7.17	(Minkowski’s	inequality)	For	p	∈	[1,	∞]	and	f,	g	∈	Lp	(μ),	f	+	gp	≤	f	p	+	gp	.	Remark	12.12	A	backwards	martingale	is	always	uniformly		integrable.	Then	there	exists	a	regular	conditional	distribution	κY,F	of	Y	given	F	.	Corollary	6.21	Let	μ(Ω)	<	∞
and	p	>	1.	♠	Let	(pn,k	)n,k∈N	be	numbers	with	pn,k	∈	[0,	1]	such	that	the	limit	λ	:=	lim	∞		n→∞	exists	and	such	that	lim	n→∞	∞	2	k=1	pn,k	pn,k	∈	(0,	∞)	(3.11)	k=1	=	0	(e.g.,	pn,k	=	λ/n	for	k	≤	n	and	pn,k	=	0	for	k	>	n).	Hence	θ	(p)	=	P[Ac	]	=	0.	+	X(n−1)	=	Yn	.	By	Dirichlet’s	pigeonhole	principle	(recall	that	E	is	finite),	we	can	choose	ω1	∈	E	such	that
[ω1	]	∩	Bn	=	∅	for	infinitely	many	n	∈	N.	The	inequality	holds	for	all	y	>	x	if	and	only	if	t	≤	D	+	ϕ(x).	Further,	let	E[|X|]	<	∞	and	let	F	⊂	A	be	a	σ	-algebra.	be	independent	N0	-valued	random	variables.	,	n	−	1},	we	get	u(k)	=	Reff	(0	↔	k)	.	Let	u	:=	max(Dn	∩	[0,	s]).	21.3	Strong	Markov	Property	529	Conclude	that	P[τ	<	∞]	=	1	∧	e−2ba	.	Then	ϕ1	+	ϕ2	T
V	=	ϕ1	(Ω	+	)	−	ϕ1	(Ω	−	)	+	ϕ2	(Ω	+	)	−	ϕ2	(Ω	−	)	≤	ϕ1	(Ω1+	)	−	ϕ1	(Ω1−	)	+	ϕ2	(Ω2+	)	−	ϕ2	(Ω2−	)	=	ϕ1	T	V	+	ϕ2	T	V	.	For	g	∈	C,	we	have	g(x)	=	g(x	+	2Kn)	for	all	x	∈	Rd	and	n	∈	Zd	.	,	Wd	)T	,	where	W1	,	.	Show	that	Cov[X1	,	X2	]	≥	0.	k=1	Proof	(i)	We	have	ψ(1)	=	1;	hence	1	∈	F	.	2	2	The	partial	order	defined	by	the	comparison	of	the	distribution
functions	is	called	(lower)	orthant	order.	hence,	in	particular,	P[T∞	∞	410	17	Markov	Chains	r	and	T	s	are	independent	and	have	densities	(since	T	r	and	T	s	have	Note	that	T∞	∞	1	1	r	=	T	s	]	=	0.	If	in	(5.10)	the	left-hand	side	is	finite,	then	we	can	subtract	the	5.3	Strong	Law	of	Large	Numbers	133	right-hand	side	from	the	left-hand	side	and	obtain	H
(p)	+			pe	log(qe	)	=	e∈E	pe	log(qe	/pe	)	e:	pe	>0		=	e:	pe	>0	≤				qe	−	pe	pe	log	1	+	pe	pe	e:	pe	>0			qe	−	pe	qe	−	pe	≤	0.	Hence	fn	−	f	∞	−→	0.	Then	H	n	is	continuous,	adapted	and	bounded	by	H	∞	.	♠	Example	1.43	Let	Ω	=	Z	and	E	=	En	:	n	∈	Z	where	En	=	(−∞,	n]	∩	Z.	More	precisely,	let	T	∼	Poiλ	and	let	X1	,	X2	,	.	Let	(Xn	,	Yn	)n∈N0	be	a	successful
coupling.	Here	mass	can	emigrate	but	not	immigrate.	If	p	is	reversible	(Equation	(18.8)),	then	f	→	pf	defines	a	symmetric	linear	operator	on	L2	(E,	π)	(exercise!).	,	ωn	∈	E,	n	∈	N}	by	μ([ω1	,	.	19.6	Random	Walk	in	a	Random	Environment	489	In	order	to	describe	X	in	terms	of	conductances	of	an	electrical	network,	we	define	i	:=	wi−	/wi+	for	i	∈	Z.
Together	with	(15.9),	we	conclude	(ii).	♦	For	infinitely	divisible	distributions	on	R,	we	would	like	to	obtain	a	description	similar	to	that	in	the	preceding	theorem.	Part	(i)	applied	to	the	bounded	stopping	times	τ	∧	m	≥	σ	∧	n	yields		Xσ	∧n	≥	E[Xτ	∧m		Fσ	∧n	].	Comparing	this	to	Theorem	13.16(vi),	we	see	that	the	functional	analysis	notion	of	weak
convergence	is	stronger	than	ours	in	Definition	13.12.	2π	a	21.3	Strong	Markov	Property	531	As	an	application	of	the	reflection	principle	we	derive	Paul	Lévy’s	arcsine	law	[107,	page	216]	for	the	last	time	a	Brownian	motion	visits	zero.	0	Then	μF	is	the	extension	of	the	premeasure	with	density	f	that	was	defined	in	Example	1.30(ix).	Then	hz	(x)	=	f	(x)
and	hz	(z)	=	f	(z)	for	all	z	∈	E.	We	assume	Bn	=	∅	for	all	n	∈	N	in	order	to	get	a	contradiction.	n2	n=1	3∞	)	*	)	*	√	Proof	By	Theorem	4.26,	E	Yn2	=	0	P	Yn2	>	t	dt.	Fix	ε	>	0.	For	n	∈	N,	let	F−n	=	En	and	1	Xi	.	Show	that	X	has	the	Markov	property	if	and	only	if,	for	every	t	∈	I	,	the	σ	-algebras	F≤t	and	F≥t	are	independent	given	σ	(Xt	)	(compare
Definition	12.20).	Let	s,	t	∈	D	with	|s	−	t|	≤	2−n0	.	For	any	B	∈	δ(E)	define	DB	:=	{A	∈	δ(E)	:	A	∩	B	∈	δ(E)}.	Clearly,	we	have	X1	≤	X2	almost	surely;	that	is,	P[(X1	,	X2	)	∈	L]	=	1.	Then	there	exists	a	probability	space	(Ω,	A,	P)	and	an	independent	family	of	random	variables	(Xi	)i=1,...,n	on	(Ω,	A,	P)	with	PXi	=	μi	for	each	i	=	1,	.	As	F	If	F	is	continuous	at
x,	then	for	every	ε	>	0,	there	exist	numbers	q	−	,	q	+	∈	(q	−	)	≥	F	(x)−ε	and	F	(q	+	)	≤	F	(x)+ε.	If	E	is	countable,	then	X	is	called	a	discrete	Markov	process.	However,	N	is	not	measurable	with	respect	to	the	tail	σ	-algebra.	Hence	A	\	B	∈	DE	.	Definition	9.9	(Filtration)	Let	F	=	(Ft	,	t	∈	I	)	be	a	family	of	σ	-algebras	with	Ft	⊂	F	for	all	t	∈	I	.	We	conclude
{τ	+σ	≤	t}	=	{τ		+σ		≤	t}	∈	Ft	.	Then	for	any	ε	>	0	with	f	(ε)	>	0,	the	Markov	inequality	holds,	)	*	E[f	(|X|)]	.	,	An	∈	Bb	(E)	.	We	use	this	to	conclude	a	central	limit	theorem	for	multi-dimensional	independent	and	identically	distributed	random	variables.	.)]	=	1{X∈A}	.	This	is	a	stopping	time	since	)X*	is	predictable.	Therefore,	we	almost	surely	have	B	∈
Hγ	.	P[A|F	]	dP	If	F	is	generated	by	pairwise	disjoint	sets	B1	,	B2	,	.	For	example,	is	sup{Xt	,	t	∈	[0,	1]}	measurable?	=	Poiμ(A)	.	Then	(E,	E)	is	a	Borel	space.	♣	300	13	Convergence	of	Measures	Exercise	13.3.2	Let	L	⊂	R	×	(0,	∞)	and	let	F	=	{Nμ,σ	2	:	(μ,	σ	2	)	∈	L}	be	a	family	of	normal	distributions	with	parameters	in	L.	Hence	F	and	A	are	independent
and	thus	F	is	independent	of	any	sub-σ	-algebra	of	A.	In	this	case,	we	write	PPPμ	:=	PX	∈	M1	(M(E))	and	say	that	X	is	a	PPPμ	.	If	r	is	irrational,	then	τr	is	ergodic	(Example	20.9).	17.5	Application:	Recurrence	and	Transience	of	Random	Walks	.	If	κ	is	a	stochastic3	kernel	from	E	to	E	and	if	f	is	measurable	and	bounded,	then	we	define	κf	(x)	=	κ(x,	dy)	f
(y).	♦	Theorem	6.12	(Fast	convergence)	Let	(E,	d)	be	a	separable	metric	space.	Let	f,	f1	,	f2	,	.	∈	E	such	that	∞	n=1	Ωn	=	Ω	and	μ(Ωn	)	<	∞	for	all	n	∈	N.	Now	A	∈	I	⊂	σ	(X1	,	X2	,	.	Proof	By	Lemma	1.50,	M(μ∗	)	is	an	algebra	and	hence	a	π-system.	Now	we	want	to	show	that	there	is	exactly	one.	♠	We	now	come	to	the	concept	of	stochastic	order.
Definition	1.35	(Continuity	of	contents)	Let	μ	be	a	content	on	the	ring	A.	∈	A	∞	with	A	⊂	i=1	Ai	and	λn	∞			Ai	\	A	<	ε/2.	For	all	ε	>	0,	by	assumption,	ν(A)	<	ε;	hence	ν(A)	=	0	and	thus	ν	0	μ.	Now	E[M∞	]	=	M0	;	hence	we	have	*	M0	)	P	M∞	=	Ld	=	d	L	and	)	*	M0	P	M∞	=	0	=	1	−	d	.	By	Bienaymé’s	formula	(Theorem	5.7),	we	obtain	+	,	n		1	V	Var	Sn	=
n−2	Var	[Xi	]	≤	.	We	thus	deal	with	balls	of	k	different	colors	and	with	Ni	balls	of	the	ith	color.	♦	14.2	Finite	Products	and	Transition	Kernels	309	Remark	14.18	Assume	that	f	is	almost	everywhere	defined	and	measurable	(with	null	set	N)	and	takes	values	in	R.	In	the	strong	law	of	large	numbers,	however,	we	did	not.	Proof	First	note	that	the
statement	holds	for	indicator	functions.	In	particular,	μ∗	is	a	measure	on	M(μ∗	).	19.11).	Hence	the	total	number	of	infinite	open	clusters	decreases	by	at	least	one.	We	change	the	Markov	chain	by	adjoining	a	cemetery	state	Δ.	Now	every	Markov	process	with	countable	time	set	(here	all	positive	rational	linear	combinations	of	1,	t1	,	.	,	λN	(listed
according	to	the	corresponding	multiplicity)	are	real	and	have	modulus	at	most	1	since	p	is	stochastic.	In	particular,	E[Zn	]	=	mn	for	all	n	∈	N.	3	3	n→∞	Then	Sn	−→	S	a.s.	but	limn→∞	Sn	dP	<	S	dP	=	1	since	S	=	1	a.s.	By	Fatou’s	lemma,	this	is	possible	only	if	there	is	no	integrable	minorant	for	the	sequence	(Sn	)n∈N	.	For		example,	this	is	a	relevant
problem	if	E	is	a	very	large	set	and	if	sums	of	the	type	x∈E	f	(x)π(x)	have	to	be	approximated	numerically	by	the	estimator		n−1	ni=1	f	(Yi	)	(see	Example	5.21).	635	635	644	648	657	659	26	Stochastic	Differential	Equations	.	Then	under	(Berr	)⊗N	the	family	(Xn	)n∈N	is	independent	and	Bernoulli-distributed	with	parameter	r	(see	Example	2.18).	15.2
Characteristic	Functions:	Examples	341	Example	15.16	Let	n	∈	N,	and	assume	that	the	points	0	=	a0	<	a1	<	.	Reff	(1	↔	0)	+	Reff	(1	↔	2)	The	total	current	flow	is	I	({2})	=	u(1)	C(0,	1)	=	1	=	R(0,	1)	+	R(1,	2)	1	1	C(0,1)	+	1	C(1,2)	.	5.1).	For	the	case	d	=	1,	conclude	the	fundamental	theorem	of	calculus:		d	f	dλ	=	f	(x)	for	λ	-almost	all	x	∈	R.	1	−	λ	φ(t)		1
Re	D	1	−	λ	φ(t)	[−π,π)		dt.	In	particular	(n	=	1),	exchangeable	random	variables	are	identically	distributed.	Clearly,	μ˜	F	(∅)	=	0	and	μ˜	F	is	additive.	Theorem	15.22	If	F	⊂	M1	(Rd	)	is	a	tight	family,	then	{ϕμ	:	μ	∈	F	}	is	uniformly	equicontinuous.	Let	Cb	(E;	C)	denote	the	Banach	space	of	continuous,	bounded,	complex-valued	functions	on	E	equipped
with	the	supremum	norm	f	∞	=	sup{|f	(x)|	:	x	∈	E}.	,	in	∈	I	are	pairwise	distinct	and	j1	,	.	More	generally,	for	a	to	[0,	1]	is	a	probability	measure	on	([0,	1],	B(R)		[0,1]	measurable	A	∈	B(R),	we	call	the	restriction	λ	the	Lebesgue	measure	on	A.	,	An	∈	A	with	i=1	∞		∞			Ai	=	μ(Ai	)	for	any	choice	of	countably	many	(iii)	σ	-additive	if	μ	i=1	i=1	mutually
disjoint	sets	A1	,	A2	,	.	While	solving	the	linear	equations	is	a	simple	job	for	a	computer,	network	reduction	can	give	insights	into	the	structure	of	the	problem	and	can	lead	to	general	formulas	also	for	similar	networks.	Proof	We	only	have	to	show	uniqueness	of	the	decomposition.	Then	N		Xn	has	the	characteristic	function	ϕY	(t)	=	fN	(ϕX	(t)).	∈	A	of	A
such	that	μ(A)	≥	∞		μ(Bi	)	−	ε/2.	Before	we	formulate	it,	we	state	one	more	lemma.	k=1	(iii)	For	any	A	∈	M(μ∗	),	there	are	sets	A−	,	A+	∈	σ	(A)	with	A−	⊂	A	⊂	A+	and	μ(A+	\	A−	)	=	0.	The	Poisson	point	process	is	a	specific	random	measure	taking	only	integer	values	and	whose	values	on	disjoint	sets	are	independent	and	Poisson	distributed.	In	order	to



show	linearity,	it	is	enough	to	check	the	following	three	properties.	The	class		A	:=	{A	∩	B	:	B	∈	A}	⊂	2A	A	(1.6)	is	called	the	trace	of	A	on	A	or	the	restriction	of	A	to	A.	)	*	In	particular,	this	holds	if	E	e|hX|	<	∞.	Since	for	the	implication	“(i)	⇒	(ii)”	we	did	not	need	that	I	is	open,	we	get	the	supplementary	statement.	Those	readers	with	a	solid	measure-
theoretical	education	can	skip	in	particular	the	first	and	fourth	chapters	and	might	wish	only	to	look	up	this	or	that.	Proof	Without	loss	of	generality,	we	may	assume	μ(Ω)	<	∞.	Since		gε/3	≥	αh	↓	∅	for	α	→	∞,	for	sufficiently	large	α	=	α(ε),	we	have		{	gε/3	≥αh}	Letting	δ(ε)	:=	ε	3α(ε)	,	we	get	for	any	A	∈	A	with			|f	|	dμ	≤	≤	|f	|	dμ	+	ε	+	α	3	3	A	h	dμ	<
δ(ε)	and	any	f	∈	F	,			gε/3	dμ	{|f	|>	gε/3	}	A	ε	.	♠♠	Takeaways	Moments	are	important	characteristics	of	probability	distributions.	We	show	that	D	is	a	λ-system:	(i)	Evidently,	Ω1	×	Ω2	∈	D.	Hence	(2.2)	holds.	For	r	≤	s,	clearly	1{Y	∈(−∞,r]}	≤	1{Y	∈(−∞,s]}	.	To	this	end,	change	the	walk	so	that	whenever	it	attempts	to	make	a	step	from	0	to	−1,	it	simply
stays	in	0.	Hence	a	representation	of	disjoint	union	of	sets	in	A	is	∞		n=1	∞		(A1	\	An	)	∈	A.	In	particular,	there	are	more	exercises	and	a	lot	more	illustrations.	Kolmogorov’s	inequality	yields	∞	∞			)	*	P	Aδn	≤	δ	−2	(l(kn	))−2	V	kn	=	n=1	n=1	∞		V	n−1−2ε	<	∞.	This,	however,	is	exactly	(P5).	,	Xn	.	∈	A	such	that	E⊂	∞		En	and	n=1	∞		μ(En	)	≤	μ∗	(E)	+	ε.
(iii)	By	(ii)	and	Lemma	14.11,	Z	E	,R	is	a	π-system	that	generates	A.	As	d	is	complete,	there	is	an	x	∈Q	with	{x}	=		∞	∞	i=1	Bεi	(ri	).	Thus	A	:=	∞	n=1	An	∈	Ai	for	every	i	∈	I	.	You	can	supplement	this	book	with	'Measure,	Integral	and	Martingales'	by	Rene.	If	(fn	)n∈N	is	uniformly	equicontinuous,	then	f	is	uniformly	continuous	and	(fn	)n∈N	converges	to
f	uniformly	on	compact	sets;	that	n→∞	is,	for	every	compact	set	K	⊂	E,	we	have	sups∈K	|fn	(s)	−	f	(s)|	−→	0.	The	chapters	on	measure	theory	do	not	come	as	a	block	at	the	beginning	(although	they	are	written	such	that	this	would	be	possible;	that	is,	independent	of	the	probabilistic	chapters)	but	are	rather	interlaced	with	probabilistic	chapters	that
are	designed	to	display	the	power	of	the	abstract	concepts	in	the	more	intuitive	world	of	probability	theory.	ε→0	Example	23.10	Let	X1	,	X2	,	.	H	can	be	chosen	to	be	monotone	increasing	and	convex.	Finally,	let	Xn	:=	n		ξk	Bk	;	k=0	that	is,	Xn	(t)	=	ξ0	t	+	n		Ak	sin(kπ	t).	♣	544	21	Brownian	Motion	21.6	The	Space	C([0,	∞))	Are	functionals	that	depend
on	the	whole	path	of	a	Brownian	motion	measurable?	If	(Ei	)i∈I	is	independent,	then	E	i∈Ik	i	k∈K	is	also	independent.	,	n	=	P	[x1	,	.	k→∞	|f	−	fnk	|	−	g	+		dμ	+	lim	sup	gk	dμ	≤	ε,	k→∞	Corollary	6.26	(Lebesgue’s	convergence	theorem,	dominated	convergence)	Let	n→∞	f	be	measurable	and	let	(fn	)n∈N	be	a	sequence	in	L1	(μ)	with	fn	−→	f	in	measure.
20.4	Application:	Recurrence	of	Random	Walks	505	n→∞	(i)	Sn'	−→	∞	almost	surely.	Other	classes	of	functions	that	are	often	considered	are	convex	functions	or	indicator	functions	on	lower	or	upper	orthants.	If	p	is	irreducible	on	G	and	f	is	not	constant,	then	f	does	not	assume	its	maximum	in	G.	12.1	Exchangeable	Families	of	Random	Variables	259
Clearly,	gk	(0)	=	N	−	M	−	l,	where	l	=	#{i	≤	k	:	xi	=	0}.	If	A	∈	A	and	if	there	exists	a	null	set	N	such	that	E(ω)	holds	for	every	ω	∈	A	\	N,	then	we	say	that	E	holds	almost	everywhere	on	A.	Let	V	=	F	:	R	→	R	is	right	continuous,	monotone	increasing	and	bounded	be	the	set	of	distribution	functions	of	finite	measures	on	R.	k	Therefore,		lim	n→∞	Now	Rn	≤
1	+	1	max	Sk	n	k=1,...,n				max	Sk	k=1,...,n		=	lim	n→∞	−	Theorem	20.19,	this	implies	P[A]	=	0.	,	BtN	)	(21.17)	)	*	−→	EBτ	f	(Bt1	,	.	Then	f		is	measurable	(and	everywhere	defined).	A	further	tool	will	be	the	convergence	theorem	for	backwards	martingales	that	will	be	formulated	in	Sect.	Let	P	be	an	arbitrary	finite	measurable	partition	of	Ω.	Exercise
2.2.1	Let	X	and	Y	be	independent	random	variables	with	X	∼	expθ	and	Y	∼	expρ	for	certain	θ,	ρ	>	0.	♣	Exercise	8.3.4	Let	A	⊂	Rn	be	a	Borel	measurable	set	of	finite	Lebesgue	measure	λ(A)	∈	(0,	∞)	and	let	X	be	uniformly	distributed	on	A	(see	Example	1.75).	106	4	The	Integral	The	probability	of	no	win	until	the	nth	game	is	(1	−p)n	;	hence	P[Sn	=	1
−2n]	=	(1	−	p)n	and	P[Sn	=	1]	=	1	−	(1	−	p)n	.	Since	F	(y,	x)	>	0,	there	exists	an	l	∈	N	with	pl	(y,	x)	>	0.	We	come	to	an	extension	theorem	for	measures	that	makes	slightly	weaker	assumptions	than	Carathéodory’s	theorem	(Theorem	1.41).	MORE	FROM	QUESTIONSANSWERED.NET	Showing	1-38	Start	your	review	of	Probability	Theory:	A
Comprehensive	Course	It	is	a	tough	book	so	if	you	are	studying	probability	theory	(and	measure	theory)	for	the	first	time	don't	read	this	book	alone.	for	all	z	∈	[0,	1].	t	=	0	for	every	t	∈	[0,	1].	Then	PX	=:	Nμ,Σ	is	the	d-dimensional	normal	distribution	with	parameters	μ	and	Σ.	Hence					E[X	|F	]	dP	=	P[Bi	]	E[X	|Bi	]	=	E[1Bi	X]	=	X	dP.	,	An	⊂	E,	we	have
P[Xi	∈	Ai	|A]	=	Ξ∞	(Ai	)	for	all	i	=	1,	.	92	3	Generating	Functions	Let	T	,	X1	,	X2	,	.	7.3	investigate	the	case	p	=	2	in	more	detail.	Without	loss	of	generality,	we	assume	that	f	is	bounded	and	thus	square	integrable.	The	map	ϕ	:	C([0,	∞))	→	Rk	,	ω	→	(ω(t1	),	.	Remark	17.51	(i)	One	could	in	fact	show	that	if	X	is	irreducible	and	recurrent,	then	an	invariant
measure	of	X	is	unique	up	to	a	multiplicative	factor.	Takeaways	For	vector-valued	random	variables	to	converge,	it	is	enough	that	the	projections	to	one-dimensional	subspaces	converge	(Cramér-Wold).	n=1	∞		μ(An	)	≤	μ(A).	Theorem	21.9	There	exists	a	probability	space	(Ω,	A,	P)	and	a	Brownian	motion	B	on	(Ω,	A,	P).	k=1	Let	c	≥	0.	2	(iii)	Let	X	be	log-
normally	distributed	(see	Example	15.5).	≤	εt	+	2	ε−2	E	Xn,l	Hence,	for	all	ε	>	0,		lim	sup	mn	≤	lim	sup	εt	+	2	ε−2	Ln	(ε)	=	εt,	n→∞	n→∞	360	15	Characteristic	Functions	and	the	Central	Limit	Theorem	and	thus	lim	mn	=	0.	♦	Recall	the	definition	of	a	distribution	function	of	a	probability	measure	from	Definition	1.59.	♣	Chapter	19	Markov	Chains	and
Electrical	Networks	We	consider	symmetric	simple	random	walk	on	Z2	.	We	have	used	this	inequality	in	order	to	give	an	(almost	sharp)	upper	bound	on	the	speed	of	convergence	in	the	strong	law	of	large	numbers	(Theorem	5.29).	Then	E	is	a	π-system	and	σ	(E)	=	2Ω	.	For	each	i	∈	I	,	let	(Ωi	,	Ai	)	be	a	measurable	space	and	let	Xi	:	(Ω,	A)	→	(Ωi	,	Ai	)	be
a	random	variable	with	generated	σ	algebra	σ	(Xi	)	=	Xi−1	(Ai	).	Furthermore,	Xe	≤	Xe	for	any	e	∈	E.	+	xN	=	M,	we	have	)	*	1	P	X1	=	x1	,	.	Thus	formally	we	can	build	the	factor	space.	19.17,	determine	the	probability	Pa	[τz	<	τa	].	De	Finetti’s	structural	theorem	says	that	an	infinite	family	of	E-valued	exchangeable	random	variables	can	be	described
by	a	two-stage	experiment.	In	order	also	to	obtain	these	results	for	submartingales	and	supermartingales,	in	the	first	section,	we	start	with	a	decomposition	theorem	for	adapted	processes.	+	Xn	.	Furthermore,	for	simplicity,	the	individuals	are	assumed	to	be	haploid;	that	is,	cells	bear	only	one	copy	of	each	chromosome	(like	certain	protozoans	do)	and
not	two	copies	(as	in	mammals).	+	km	,	then	*	)	P	Mn,1	=	k1	,	.	The	eigenvalues	are	λε,k	=	(1	−	ε)λk	+	ε,	k	=	0,	.	Manifestly,	no	state	x	with	x	≡	0	and	x	≡	1	is	stable.	♦	©	The	Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	A.	Remark	14.10	Every	ZJ	is	a	σ	-algebra,	and	Z	and	Z∗R	are
algebras.	In	contrast	to	Chap.	1	−	P[Zi	=	0]	=	2	2	i2	For	i,	n	∈	N,	define	Xi	:=	Yi	+	Zi	and	Sn	=	X1	+	.	Furthermore,	the	statement	analogous	to	(21.10)	holds	not	only	for	s,	t	∈	D:				s	(ω)	≤	K	|t	−	s|γ	Xt	(ω)	−	X	for	all	s,	t	∈	[0,	1].	+	Tns	,	n	∈	N}	be	the	jump	times	of	(Rt	)	and	(St	).	(21.20)	k=−∞	Use	(21.19)	and	(21.20)	(compare	also	(21.38))	to	conclude
that	Px	[τ	>	T	]	=	4	π	∞		k=0	1	2k+1					2π	2	T	(2k+1)πx	exp	−	(2k+1)	sin	.	n		In	the	special	case,	f	=	αi	1(ti−1	,ti	]	for	some	n	∈	N	and	0	=	t0	<	t1	<	.	,	c(ek	)	(el	)	Thus	C	=	(c(e),	e	∈	E)	is	a	prefix	code.	..-.	We	present	a	large	deviations	principle	that,	unlike	Cramér’s	theorem,	is	not	based	on	a	linear	space.	A	code	that	fulfills	this	condition	is	called	a
binary	prefix	code.	(ii)	Give	an	example	of	two	distribution	functions	F	and	G	on	R2	such	that	(x,	y)	→	F	(x)	∧	G(y)	is	not	a	distribution	function	on	R4	.	21.3	for	a	computer	simulation	of	Xn	,	n	=	0,	1,	4,	64,	8192.	Define	B1	=	A1	n−1		and	Bn	=	An	\	i=1	Ai	∈	A	for	n	=	2,	3,	.	We	construct	a	finite	covering	Vx1	,	.	However,	if	we	change	the	time	set,	then
the	assumptions	have	to	be	strengthened:	If	(Xt	)t	∈Rd	is	a	process	with	values	in	E,	and	if,	for	certain	α,	β	>	0,	all	T	>	0	and	some	C	<	∞,	we	have	d+β	E[(Xt	,	Xs	)α	]	≤	C	t	−	s2	for	all	s,	t	∈	[−T	,	T	]d	,	(21.13)	then	for	every	γ	∈	(0,	β/α),	there	is	a	locally	Hölder-γ	-continuous	version	of	X.	Here	the	best	prediction	for	X	is	its	mean;	hence	E[X]	=	E[X	|F	],
as	shown	in	(vi).	Hence	f	can	be	expanded	in	a	Fourier	series	f	(x)	=	∞		cn	e2πin	x	for	P-a.a.	x.	,	n}	:	|Sk	|	≥	t	.	k=l+1	Hence	ϕμ	=	ϕ.	,	else.	A	similar	statement	holds	for	the	case	where	r	=	r1	=	r2	=	.	To	do	this,	open	your	device	and	run	a	search	for	either	a	specific	online	directory,	such	as	Telkom	or	WhitePages.	and	that	are	uniformly	distributed	on
[0,	1].	All	of	these	properties	are	direct	consequences	of	the	corresponding	properties	of	the	integral.	,	ω(tk	))	is	continuous.	Hint:	Show	(iv)	first	for	step	functions	(see	Exercise	4.2.6).	50	1	Basic	Measure	Theory	(iii)	Let	a	>	0	and	let	Caua	be	the	distribution	on	R	with	density	x	→	1	1	.	and	thus	P[N]	≤	P[R	c	]	+	P[N]	We	come	to	the	main	theorem	of
this	section.	Then	there	exists	a	successful	coupling	(X,	Y	).	N	i=1	(17.12)	i=0	Takeaways	A	Markov	process	indexed	by	the	natural	numbers	is	called	a	Markov	chain.	Definition	1.21	(Borel	σ	-algebra)	Let	(Ω,	τ	)	be	a	topological	space.	Consider	the	random	variables	Yn	:=	X(An	)	and	Y	=	X(A).	(8.15)	Therefore,	by	(8.14),	F˜	(	·	,	ω)	is	a	distribution
function	for	any	ω	∈	Ω	\	N.	1.2	Set	Functions	..	A	stochastic	process	X	=	(Xt	)t	∈I	is	called	stationary	if	L	[(Xt	+s	)t	∈I	]	=	L	[(Xt	)t	∈I	]	for	all	s	∈	I.	Let	Bn	(ε)	=	{d(f,	fn	)	>	ε}	and	B(ε)	=	lim	sup	Bn	(ε).	Then	Yn	:=	En	p	(Xe	:	e	∈	En	)	:	Ω	→	{0,	1}En	is	measurable	(with	respect	to	2({0,1}	)	)	by	Theorem	1.90.	For	sufficiently	large	n0	∈	N,	we	have	N				μn
({k})	−	μ({k})	<	ε	4	k=0	for	all	n	≥	n0	.	,	An	∈	B(E)	be	pairwise	disjoint.	P[Ns	=	k,	Nt	−	Ns	=	l]	=	e	k!	l!	(5.21)	This	implies	that	Ns	and	(Nt	−	Ns	)	are	independent.	(i)	E[|X|]	≤	lim	infn→∞	E[|Xn	|].	Manifestly,	β(A)	=	μ∗	(A)	for	any	open	A.	17.1	(page	412).	In	fact,	in	order	that	μ	be	a	measure	(not	only	a	signed	measure),	we	still	have	to	show	that	all	of
the	masses	μ({x})	are	nonnegative.	At	the	stock	exchanges,	not	only	are	stocks	traded	but	also	derivatives	on	stocks.	2	2	0=x→0	x	2	n→∞	Lemma	15.49	If	(i)	of	Theorem	15.44	holds,	then	νn	−→	δ0	weakly.	(iii)	If	F	is	uniformly	integrable	and	if,	for	any	g	∈	G,	there	exists	an	f	∈	F	with	|g|	≤	|f	|,	then	G	is	also	uniformly	integrable.	(iii)	If	Ω0	=	R	and	I	=
N,	then	RN	is	the	space	of	sequences	(ω(n),	n	∈	N)	in	R.	Now	define	f	:=	u/u2	.	By	the	principle	of	conservation	of	energy,	the	last	term	equals	2			u(x)	−	u(y)	D(x,	y)	=	4D(A1	)(u1	−	u0	)	=	0.	However,	since	the	chain	is	irreducible,	for	every	y	∈	E,	there	exist	numbers	i(y)	.	The	Kolmogorov–Sinai	theorem	shows	that	the	entropy	that	was	introduced	in
Definition	20.30	for	simple	shifts	coincides	with	the	entropy	of	Definition	20.34;	simply	take	P	=	{e}	×	E	N	,	e	∈	E}	which	generates	the	product	σ	-algebra	on	Ω	=	E	N0	.	17.1	Definitions	and	Construction	In	the	following,	E	is	always	a	Polish	space	with	Borel	σ	-algebra	B(E),	I	⊂	R	and	(Xt	)t	∈I	is	an	E-valued	stochastic	process.	Theorem	2.5	Let	I	be
an	arbitrary	index	set	and	let	(Ai	)i∈I	be	a	family	of	events.	Theorem	15.9	(Characteristic	function)	A	finite	measure	μ	∈	Mf	(Rd	)	is	characterized	by	its	characteristic	function.	The	events	Fx	1	,x	2	,x	3	and	Gy,x	1	,x	2	,x	3	are	independent,	and	if	both	of	them	occur,	then	y	is	a	trifurcation	point.	Show	that	lim	r↓0	μ(x	+	rC)	=	f	(x)	r	d	λd	(C)	for	λd	-
almost	all	x	∈	Rd	.	−r		−	k	r	(vii)	The	negative	binomial	distribution	br,p	({k})	=	k	(−1)	p	(1−p)k	,	k	∈	N0	,	−	=	with	parameters	r	>	0	and	p	∈	(0,	1),	is	infinitely	divisible	with	br,p	−	)∗n	.	n=1	Proof	(i)	Note	that	A	∪	B	=	A	(B	\	A)	and	B	=	(A	∩	B)	(B	\	A).	Then	we	have	L[(Xi1	,	.	∪	C	.	+	Xm	+	E[Xm+1	]	+	.	Since	F	(y,	x)	>	0,	there	exists	a	k	∈	N	with	pk
(y,	x)	>	0.	l=1	Theorem	3.7	(Poisson	approximation)	Under	the	above	assumptions,	the	distributions	(PS	n	)n∈N	converge	weakly	to	the	Poisson	distribution	Poiλ	.	1.1	Classes	of	Sets	.	i=1	Hence	μ	is	σ	-additive	and	therefore	a	premeasure.	That	is,	it	is	measurable	with	respect	to	σ	(D1	,	.	Let	Sn	=	ni=1	Hi	Di	=	(H	·X)n	be	the	gain	after	n	rounds.	i=0
“Strongly	mixing”	implies	“weakly	mixing”	(see	Exercise	20.5.1).	Example	19.31	Symmetric	simple	random	walk	on	Z3	is	transient.	There	an	example	of	[164]	(see	also	[165,	166])	for	orthogonal	series	is	developed	further.	Let	σ	and	τ	be	bounded	stopping	times	with	σ	≤	τ	.	an	If	μ	is	stable	(in	the	broader	sense)	with	index	α	∈	(0,	2],	then	PX	is	said	to
be	in	the	domain	of	normal	attraction	if	we	can	choose	an	=	n1/α	.	be	independent	ZD	-valued	random	variables	with	P[Yi	=	x]	=	p2	(0,	x).	Let	n	∈	N	and	A1	,	.	Then	there	is	a	measurable	space	(Ω,	A)	and	a	Markov	process	((Xt	)t	∈I	,	(Px	)x∈E	)	on	(Ω,	A)	with	transition	probabilities	Px	[Xt	∈	A]	=	κt	(x,	A)	for	all	x	∈	E,	A	∈	B(E),	t	∈	I.	♦	(Xt	−	x,	t	∈	[0,	∞))
is	a	Brownian	motion	(with	X	Takeaways	A	continuous	stochastic	process	can	be	considered	as	a	random	variable	with	values	in	the	space	C([0,	∞))	of	continuous	functions.	(12.2)	12.1	Exchangeable	Families	of	Random	Variables	261	In	particular,		1		ϕ(X	).	By	the	continuous	mapping	theorem	(Theorem	13.25	on	page	287),	n→∞	n→∞	we	have	Pn	◦	ϕ
−1	−→	P	◦	ϕ	−1	;	hence	Pn	−→	P	.	In	fact,	the	entropy	of	a	delta	distribution	is	zero	and	for	a	distribution	on	n	points,	the	maximal	entropy	is	achieved	by	the	uniform	distribution	and	equals	log(n)	(see	Exercise	5.3.3).	Use	the	reflection	principle	to	show	that,	for	every	x	∈	(0,	a),	∞		Px	[τ	>	T	]	=	)	*	(−1)n	Px	BT	∈	[na,	(n	+	1)a]	.	t	Henceforth	we	assume
that	the	limit	q(x,	y)	exists	for	all	y	=	x	and	that		q(x,	y)	<	∞	for	all	x	∈	E.	If	A2L,0	occurs	and	if	we	open	all	edges	in	BL	,	then	at	least	two	of	the	infinite	open	clusters	get	connected	by	edges	in	BL	.	Check	that	there	exists	a	continuous	modification	of	X.	Case	1:	N	odd.	In	the	case	sn!	=	k	−	1,	we	get	a	similar	estimate.	3	Now	assume	(i).	In	the	fifth
section,	we	prove	a	multidimensional	version	of	the	CLT.	l=1	By	Theorem	5.35,	the	random	variables	Mn,T	,1	,	.	Furthermore,	ϕ	(k)	exists	in	(−ε,	ε)	and	is	continuous	on	(−ε,	ε)	for	15.4	Characteristic	Functions	and	Moments	353	any	k	=	0,	.	Lemma	3.10	ψn	=	ψZn	for	all	n	∈	N.	Reflection	In	Etemadi’s	theorem,	we	assumed	that	the	random	variables
X1	,	X2	,	.	This	beautiful	theorem	could	be	shown	using	the	tools	that	we	developed	in	the	previous	sections	for	other	purposes.	We	abbreviate	LipK	(E)	:=	LipK	(E;	R)	and	Lip(E)	:=	Lip(E;	R).	For	the	time	being,	however,	this	theorem	gives	us	enough	examples	of	interesting	families	of	independent	random	variables.	Clearly,	it	is	the	smallest	σ	-algebra
that	contains	E.	Remark	12.7	If	A	∈	σ	(Xn	,	n	∈	N)	is	an	event,	then	there	is	a	measurable	B	⊂	E	N	with	A	=	{X	∈	B}.	r≥t,	r∈	I	Hence	N¯	⊂	R	c	∪			=:	N,	Nt	⊂	R	c	∪	N	t	∈I		=	0.	316	14	Probability	Measures	on	Product	Spaces	If	we	let	Ω	=	Ω1	×	Ω2	,	A	=	A1	⊗	A2	and	P	=	μ	⊗	κ,	then	X	and	Y1	,	.	In	particular,	(L[U¯	Kn	,n	],	n	∈	N)	is	tight.	Theorem	18.12
Let	X	be	a	Markov	chain	with	transition	matrix	p	such	that	there	;	;	n→∞	exists	a	successful	coupling.	By	the	upcrossing	inequality	(Lemma	11.3),	for	every	N	>	0	and	every	finite	set	I	⊂	[0,	N],	we	have	E[UIa,b	]	≤	(E[|XN	|]	+	|a|)/(b	−	a).	In	the	following,	let	(E,	τ	)	be	a	topological	space	with	Borel	σ	-algebra	E	=	B(E)	:=	σ	(τ	)	and	with	complete	metric
d.	There	exists	a	finite	subcovering	U	=	{Ut1	,	.	,	Xn	for	some	n.	Define	σn	:=	inf{m	∈	N	:	Sm+n	=	Sn	},	Bn	:=	{σn	<	∞}	for	n	∈	N0	and	∞		B	:=	Bn	.	Takeaways	In	this	section,	we	have	encountered	the	most	prominent	integral	inequalities:	Jensen’s	inequality	for	convex	functions,	Hölder’s	inequality	and	Minkowski’s	inequality.	(For	the	measurability
of	the	integral	see	Exercise	21.1.2.)		(ii)	Show	that	almost	surely	λ	{t	:	Bt	=	0}	=	0.	As	for	sums	of	independent	random	variables,	we	first	show	convergence	for	a	fixed	time	point	to	the	distribution	of	a	certain	limiting	process.	Theorem	17.40	(Pólya	[134])	Symmetric	simple	random	walk	on	ZD	is	recurrent	if	and	only	if	D	≤	2.	On	the	other	hand,	for
|x|	≥	1,	we	have	|ft	(x)|	≤	|eit	x	|	+	1	+	|t/x|	≤	2	+	|t|.	Takeaways	We	have	got	acquainted	to	the	notions	stochastic	process,	filtration,	adapted,	stopping	time,	and	σ	-algebra	of	τ	-past.	(4.2)	n∈N	Assume	that	the	simple	function	g	has	the	normal	representation	g	=	N	α	1	i=1	i	Ai	for	some	α1	,	.	Exercise	19.1.1	Let	p	be	the	substochastic	E	×E	matrix	that
is	given	by	p(x,	y)	=	p(x,	˜	y),	x,	y	∈	E	(with	p˜	as	in	(19.2)).	Therefore,		E[|Xi	|		Fi−1	]	=	|Xi−1	|,	if	|Xi−1	|	=	0,	1,	if	|Xi−1	|	=	0.	Assume	that	A	is	chosen	so	that	Px	[τA	<	∞]	=	1	for	every	x	∈	E.	3.2	Poisson	Approximation	89	For	k	∈	N0	,	the	kth	derivative	is	f	(k)	(0)	=	α(α	−	1)	·	·	·	(α	−	k	+	1).	Define	the	map	h	:	R	→	[0,	∞)	by	h(x)	=	1	−	sin(x)/x	for	x	=	0
and	h(0)	=	0.	Fix	such	a	J	and	let	j	∈	I	\	J	.	<	i=1	tn	and	α1	,	.	Then		∞	∞			μ({f	≥	n})	≤	f	dμ	≤	μ({f	>	n})	(4.7)	n=1	n=0	and			∞	f	dμ	=	μ({f	≥	t})	dt.	,	n,	define	the	measurable	bijection	ϕk	:	(Rd	)k	→	(Rd	)k	by	ϕk	(x1	,	.	Assume	that	for	any	A	∈	A	there	exists	the	limit	μ(A)	:=	lim	μn	(A).	Let	G1	,	G2	,	.	Finally,	the	set	of	σ	-finite	measures	on	(Ω,	A)	is
denoted	by	Mσ	(Ω,	A).	♣	Exercise	21.4.2	(Martingale	convergence	theorems)	Let	X	be	a	stochastic	process	with	RCLL	paths.	3	f	dμ	=	γ	).	be	independent,	square	integrable	random	vari	Let	1	ables	with	∞	Var[X	n	]	<	∞.	Assume	that	we	have	a	sequence	of	events	A1	,	A2	,	.	That	is,	we	have	to	show	that	x	→	κ(x,	A)	is	measurable	with	respect	to	B(E)	–
B(E)⊗I	.	Theorem	11.19	Let	Var[X1,1	]	∈	(0,	∞).	Theorem	24.7	The	distribution	PX	of	a	random	measure	X	is	characterized	by	its	Laplace	transform	LX	(f	),	f	∈	Cc+	(E),	as	well	as	by	its	characteristic	function	ϕX	(f	),	f	∈	Cc	(E).	“	⇒	”	We	check	(i)–(iii)	of	Definition	1.2.	(i)	Clearly,	Ω	∈	D.	Check	that	Xn	:=	X−n	,	n	∈	Z,	is	also	a	Markov	chain	with	transition
matrix	p.	Theorem	1.4	Assume	that	A	is	\-closed.	Hence,	we	ˆ	y)	=	3−d	assume	that	λ	∈	(0,	1).	.)	:=	∞	n=1	xn	2	the	dyadic	expansion	(with	lim	supn→∞	xn	=	1	for	definiteness).	(16.4)	n	ϕn,l	(t)	exists	and	that	Assume	that,	for	every	t	∈	R,	the	limit	ϕ(t)	:=	limn→∞	kl=1	ϕ	is	continuous	at	0.	Proof	This	follows	by	Theorem	15.13	and	by	ϕμ∗ν	=	ϕμ	ϕν
(Lemma	15.12).	Let	Bn	=	{−n,	.	As	the	new	and	the	old	types	of	the	replaced	individual	are	independent,	as	a	model	for	the	gene	frequencies,	we	obtain	a	Markov	chain	X	on	E	=	{0,	N1	,	.	n→∞	If	E	is	locally	compact	and	Polish,	then	in	addition	each	of	the	following	is	equivalent	to	the	previous	statements.	♣	E[X2	]	Exercise	5.1.2	Let	X	be	an
integrable	real	random	variable	whose	distribution	PX	has	a	density	f	(with	respect	to	the	Lebesgue	measure	λ).	We	say	that	the	sequence	(fn	)n∈N	converges	in	mean	to	f	,	symbolically	L1	fn	−→	f,	n→∞	if	fn	−	f	1	−→	0.	Recall	that	de	Finetti’s	theorem	states	that	there	exists	a	random	probability	measure	Ξ	on	E	such	that,	given	Ξ	,	the	random
variables	X1	,	X2	,	.	♦	Remark	13.14	(i)	In	functional	analysis	the	notion	of	weak	convergence	is	somewhat	different.	However,	this	is	not	the	case!	If	we	thicken	the	great	circle	slightly	such	that	its	longitudes	range	from	Θ	to	Θ	+	ε	(for	a	small	ε),	on	the	equator	it	is	thicker	(measured	in	meters)	than	at	the	poles.	,	6}	×	B.	19.6	Random	Walk	in	a
Random	Environment	491	We	are	now	in	the	position	to	prove	a	theorem	of	Solomon	[158].	♦	Takeaways	The	measure	extension	theorem	shows	how	to	extend	contents	from	semirings	to	σ	-algebras	but	usually	does	not	give	a	concrete	construction.	Here	α,	β	<	−1	and		∈	[0,	1].	Then	there	is	a	sequence	E1	,	E2	,	.	i=1	Then	ST	∈	L2	(P)	and	Var[ST	]	=
E[X1	]2	Var[T	]	+	E[T	]	Var[X1	].	Hence	there	exists	a	δ	>	0	such	that	|f	(x)	−	f	(y)|	<	ε	for	all	x,	y	∈	[0,	1]	with	|x	−	y|	<	δ.	E	is	called	a	generator	of	σ	(E).	Let	d(x)	:=	y∈E	(y	−	x)	p(x,	y)	for	x	∈	E.	In	the	following,	let	(E,	τ	)	be	a	topological	space	with	the	Borel	σ	-algebra	E	=	B(E)	(compare	Definitions	1.20	and	1.21).	y∈E	y∈E	)	*	Thus	(since	Px	τx1	=	0
=	0)	μx	p({x})	=	∞		'	(	Px	τx1	=	n	+	1	=	1	=	μx	({x}).	This	example	was	a	bit	extreme.	Let	A	=	{Y	>	Y		}	∈	F	.	Now,	is	the	code	constructed	above	optimal,	or	are	there	codes	with	smaller	mean	length?	+	kD	=	n.	,	αn	∈	R,	we	obtain		1	f	(s)	dWs	=	0	n			αi	Wti	−	Wti−1	.	,	fk	∈	Cb	(E)	and	F	(x1	,	.	(iii)	Compute	the	expectation	and	variance	of	1			0	2	1	Bt	−
Bs	ds	dt.	Let	ϕ1	,	ϕ2	∈	M±	.	Since	A	is	a	semiring,	for	every	n	∈	N	there	is	an	m	n	k	mn	∈	N	and	sets	Cn1	,	.	I0	For	k	∈	N,	let	*	)	ψk	(t)	=	log	E	eit	(Xk	−αk	)	=		it	x		e	−	1	−	itx	ν(dx).	The	following	theorem	shows	that	properties	(P1)–(P5)	characterize	the	random	variables	(NI	,	I	∈	I)	uniquely	and	that	they	form	a	Poisson	process.	Then	(fn	)n∈N
converges	in	measure.	However,	by	the	definition	of	the	trifurcation	point	x,	this	is	impossible.	22.1	Iterated	Logarithm	for	the	Brownian	Motion	...	This	game	can	also	be	the	price	of	a	stock	that	is	traded	at	discrete	times	on	a	stock	exchange.	Since	σ	≤	τ	,	we	thus	get		A	∩	{τ	≤	t}	=	A	∩	{σ	≤	t}	∩	{τ	≤	t}	∈	Ft	.	It	is	easy	to	see	that	the	set		D=	x∈	×	D
:	x	=	y	only	finitely	often		i	i	i	i∈N	is	a	countable	dense	subset	of	Ω.	Note	that	for	any	compact	C	⊂	E,	there	exists	an	N(C)	∈	N	such	that	C	⊂	Wn	for	all	n	≥	N(C).	In	the	following,	(Ω,	A,	P)	is	a	probability	space	and	the	sets	A	∈	A	are	the	events.	Give	an	example	that	shows	that	f	need	not	be	Borel	measurable.	We	give	the	proof	first	for	the	special	case
E	=	R	and	then	come	to	a	couple	of	applications.	Now	write	f	(ω1	,	ω2	)	=	f	(ω1	,	ω2	)	·	h1	(ω1	)h2	(ω2	).	If	A	is	an	algebra,	then	obviously	∅	=	Ω	\	Ω	is	in	A.	Reff	0	↔	B(n	+	1)c	=	B(k)	↔	B(k)c	=	k=0		(0	↔	∞)	=	Therefore,	Reff	1	3	∞	k=0	k=0		k	2	3	=	1	<	∞.	Hence,	for	t	>	s,	t						E[Yr		Fs	]	=	Xs	.	i=1	i=1	Therefore,	X	is	i.i.d.	given	A.	Thus	R	is	really	an
extension	of	the	real	line,	and	the	inclusion	R	→	R	is	measurable.	Since	E	is	Polish,	A	is	compact.	The	idea	is	that	Ft	reflects	the	knowledge	of	an	observer	at	time	t.	(Compare	Corollary	9.34.)	♣	Exercise	9.2.4	(Azuma’s	inequality)	Show	the	following.	Therefore,	P	+	N−1		,	A0n	=	P[τ	<	N]	≥	n=0	1	.	This	implies	μ(A	∩	E)	=	ν(A	∩	E)	for	any	A	∈	A	and	E
∈	E	with	μ(E)	<	∞.	Now	let	(Yn,i	,	n	∈	N0	,	i	∈	N0	)	be	i.i.d.	with	P[Yn,i	=	k]	=	qk	.	Let	S	−	:=	inf{Sn	:	n	∈	N0	}.	(iv)	Assume	that	X	is	uniformly	integrable	and	that	σ	≤	τ	are	finite	(not	necessarily	bounded)	stopping	times.	We	present	one	type	of	topological	space	that	is	of	particular	importance	in	probability	theory	in	a	separate	definition.	Hence	the
total	current	is	Ri	n	1	I	=	i=1	Ri	and	thus	we	have	Ceff	(0	↔	1)	=	n		i=1		Ci	and	n		1	Reff	(0	↔	1)	=	Ri	−1	.	n→∞	This	shows	(2.5).	For	the	geometric	offspring	distribution,	ψ	(n)	can	be	computed	explicitly.	As	an	example,	we	analyze	the	Weiss	ferromagnet.	This	μ	is	called	the	uniform	distribution	on	Ω.	4	1	Basic	Measure	Theory	(ii)	Let	Ω	=	R.	At	this
point,	we	use	the	topology	only	to	make	M1	(E)	a	measurable	space,	namely	with	the	Borel	σ	-algebra	B(M1(E)).	Define	TnK	:=	n		YiK	UnK	:=	and	i=1	n		ZiK	for	n	∈	N.	Exercise	19.6.1	Consider	the	situation	of	Theorem	19.35	but	with	the	random	walk	restricted	to	N0	.	As	above,	we	get	that	the	probability	of	drawing	out	of	n	balls	exactly	bi	balls	of
color	i	for	each	i	=	1,	.	Summation	over	x	and	y	yields	the	general	case.	.,	Yn	∈	L2	(P)	and	α1	,	.	(ii)	(Monotone	3	3	convergence)	If	fn	↑	f	,	then	the	integrals	also	converge:	fn	dμ	↑	f	dμ.	Show	that	E[Xn	]	=	n−1		k=0	r	+k	r	+s+k	for	any	n	∈	N.	The	corresponding	statement	holds	for	T	s	.	In	metrizable	spaces,	the	notions	compact	and	sequentially
compact	coincide.	The	second	equivalence	in	(ii)	follows	by	(3.2).	δ↓0	ω∈A	Theorem	21.40	A	family	(Pi	,	i	∈	I	)	of	probability	measures	on	C([0,	∞))	is	weakly	relatively	compact	if	and	only	if	the	following	two	conditions	hold.	and	let	E	be	the	exchangeable	σ	-algebra.	Since	q−1	q	=	p	,	we	have	κ(f	)p	·	gp	≥	fg1	=	|f	|q	||1	=	f	q	=	f	q	·	f	q	q	q−1	=	f	q	·	gp	.
21.7	Convergence	of	Probability	Measures	on	C([0,	∞))	.	Let	n	∈	N,	and	assume	that	ϕ	is	2n-times	differentiable	at	0	with	derivative	ϕ	(2n)	(0).	We	may	assume	that	the	sequences	l→∞	(kln	)l∈N	were	chosen	successively	such	that	(kln+1	)	is	a	subsequence	of	(kln	).	be	independent	random	variables	with	N	∼	Poiμ(E)	and	PYi	=	ν	for	all	i	∈	N.	Now
consider	the	following	rescaling:	Fix	x	≥	0,	start	with	Z0	=	Z	individuals	and	consider	Z˜	tn	:=	ntn!	for	t	≥	0.	Formally,	P[B]	=	0	where	B	is	the	event	where	there	is	one	color	of	which	only	finitely	many	balls	are	drawn.	,	BN	∈	βN	.	In	Hilbert	spaces,	continuous	linear	maps	can	be	represented	as	a	scalar	product	with	some	fixed	vector	(Riesz-Fréchet
theorem).	Hence	n→∞	Yn	1A	−→	1A	P[B]	almost	surely.	Here	we	employ	the	right	continuity	of	the	increasing	function	Fi	that	belongs	to	μi	.	Exercise	14.4.1	Assume	that	(νt	:	t	≥	0)	is	a	continuous	convolution	semigroup.	However,	in	general,	Ft	+s	is	a	strict	superset	of	Ft	;	hence	τ	−s	is	not	a	stopping	time.	Note	that	(for	fixed	n),	(Nn,t	)t	=0,1,...
(18.13)	If	(18.12)	and	(18.13)	hold	for	x1	,	.	Then,	for	f	∈	F	,			|f	|	dμ	≤	{|f	|>gε	}	{|f	|>gε	}	(|f	|	−	gε/2	)+	dμ	+		{|f	|>gε	}	gε/2	dμ.	In	particular,	we	can	recover	Cramér’s	theorem	for	random	variables	that	take	only	finitely	many	d-dimensional	values.	We	will	study	weak	convergence	in	Chap.	Proof	We	check	properties	(i)–(iii)	of	an	outer	measure.	,	xn
∈	{0,	1}	and	sk	=	)	*	P	Xi	=	xi	for	any	i	=	1,	.	Thus,	in	fact,	the	network	is	equivalent	to	that	in	Fig.	Again,	the	exact	values	can	23.4	Varadhan’s	Lemma	and	Free	Energy	609	Fig.	Theorem	23.17	(Varadhan’s	Lemma	[167])	Let	I	be	a	good	rate	function	and	let	(με	)ε>0	be	a	family	of	probability	measures	on	E	that	satisfies	an	LDP	with	rate	function	I	.
Hence			)	'	(	*			f1	dξn	(X)	·	·	·	fk	dξn	(X)		E	f1	(X1	)	·	·	·	fk	(Xk	)	−	E		'	(	'	(			F	dμn,k	(X)		=	E	F	dνn,k	(X)	−	E	n→∞	≤	F	∞	Rn,k	−→	0.	Define	p(i,	j	)	:=	1	exp(−βWj	)	Z	for	all	i,	j	=	1,	.	Then	Hb	(p)	≤	−		pe	logb	(qe	)	(5.10)	e∈E	with	equality	if	and	only	if	Hb	(p)	=	∞	or	q	=	p.	are	a.s.	continuous,	then	there	is	a	continuous	martingale	X	with	the	following		and
Xtn	n→∞	−→	Xt	in	Lp	for	every	t	≥	0.	Then	(Xi	)i∈I	is	independent	and	Xi	is	normally	distributed	with	parameters	(μi	,	σi2	).	In	particular,	the	unit	current	flow	is	uniquely	determined.	Denote	by	R(x,	y)	=	1	∈	(0,	∞]	C(x,	y)	the	resistance	of	the	connection	)x,	y*.	1.0	0.5	0.0	0.0	0.2	0.4	0.6	0.8	1.0	−0.5	Fig.	(iii)	By	Theorem	1.96,	any	nonnegative
measurable	map	is	a	monotone	limit	of	simple	functions.	(iv)	If	α	=	1,	then	there	exists	a	b	∈	R	such	that	μ	∗	δ−b	is	stable	with	index	α.	On	the	other	hand,	for	j	∈	{τk	+	1,	.	(iii)	ϕX	(t)	=	ϕX	(−t)	=	ϕ−X	(t).	(17.4)	Proof	If	the	conditional	distributions	exist,	then,	by	Theorem	17.9,	the	equation	(17.4)	is	equivalent	to	X	being	a	Markov	chain.	Then	(12.4)
formally	becomes	k			*	)	Ξ∞	(Al	)ml	.	Then	ϕPnk	(t)	=	ϕn	(t	ek	)	is	the	characteristic	function	of	Pnk	.	on	(Ω,	A,	P)	with	distributions	PX	=	μ	and	PXn	=	μn	,	n	∈	N,	such	that	n→∞	Xn	−→	X	P-a.s.	Hint:	Use	Exercise	13.2.13.	f	dμ.	,	σk	},	we	have	(H	·Y	)j	≥	(H	·Y	)τk	=	(H	·Y	)σk−1	.	,	Ck,ck	∈	A	such	that	k	.	Hence	PXn	[X	∈	A]	=	Pπ	[X	∈	A]	almost	surely	and
thus	(with	σ	=	n	in	(20.4))		Pπ	[X	∈	A		X0	,	.	(19.11)	19.4	Recurrence	and	Transience	475	Theorem	19.25	We	have	pF	(x1	)	=	1	Ceff	(x1	↔	∞).	Let	k	:=	(t	+	s)n!.	n=0	Hence,	⎡	τx1	−1	Ey	⎣		⎤	1{Xn	=y}	⎦	=	n=0	1	.	A	Often	this	measure	will	be	denoted	by	the	same	symbol	λ	when	there	is	no	danger	of	ambiguity.	,	Xtn	)	is	n-dimensional	normally
distributed,	and	(iv)	integrable	(respectively	square	integrable)	if	X	is	real-valued	and	E[|Xt	|]	<	∞	(respectively	E[(Xt	)2	]	<	∞)	for	all	t	∈	I	.	To	show	this,	let	V	⊂	Rn	such	that	V	∈	B(Rn	).	Hence	also			σ	X−1	(E		)	⊂	X−1	σ	(E		)	.	(5.6)	n	ε	n	Reflection	Let	Sn	be	the	sum	of	the	numbers	shown	when	rolling	a	die	n-times.	However,	n1	=	2	and	n4	=	4.
Clearly,	P[τ	−n	(A		Aε	)]	<	ε	and	P[τ	−n	(B		B	ε	)]	<	ε	for	508	20	Ergodic	Theory	every	n	∈	Z.	“	⇐	”	For	J	⊂	I	and	j	∈	I	\	J	,	choose	Ej	=	Ω.	If	f	=	m		αi	1Ai	(4.1)	i=1	for	some	m	∈	N	and	for	α1	,	.	324	14	Probability	Measures	on	Product	Spaces	This	implies	J	−1	)	(A)	=	PJ	◦(XL		=	A		A	P		(d(ω0	,	.	For	a	fixed	time	t,	on	the	basis	of	previous	observations,	we
cannot	determine	whether	X	is	already	in	K	for	the	last	time.	,	n,	let	κi	be	a	substochastic	kernel	from	×	Ωk	,	k=0	k=0	(Ωi	,	Ai	)	or	from	(Ωi−1	,	Ai−1	)	to	(Ωi	,	Ai	).	Proof	Let	A	∈	A1	⊗	A2	.	By	assumption,	ν(Ω)	=	fZ	dμ	=	ν(Ac	);	hence	ν(A)	=	0	and	thus	ν	0	μ.	Then	the	recursion	κ1	⊗	·	·	·	⊗	κi	:=	(κ1	⊗	·	·	·	⊗	κi−1	)	⊗	κi	for	any	i	=	1,	.	Hence	ω	∈	n=n0		
Xk2−n	(ω)	−	X(k−1)2−n	(ω)	<	2−γ	n	for	k	∈	{1,	.	(18.11)	3	Here	m(μ)	=	pN	(x)	μ(dx),	where	the	probability	pN	(x)	that	the	chain,	if	started	at	x,	hits	N	is	given	by	⎧		x	⎪	1	−	1−r	⎪	⎪	r	⎪	⎨		N	,	pN	(x)	=	1	−	1−r	r	⎪	⎪	⎪	x	⎪	⎩	,	N	if	r	=	12	,	if	r	=	12	.	Replace	the	parallel	edges	with	resistances	R1	=	5	and	R2	=	1	by	one	edge	with	R	=	(	15	+	1)−1	=	56
(right	in	Fig.	(15.5)	θ∈(0,1]	Define	a	continuous	function	fn	:	R	→	[0,	∞)	by	fn	(0)	=	1	and	fn	(x)	=	(−1)	(2n)!	x	n	−2n	cos(x)	−	n−1		k=0	x	2k	(−1)	(2k)!	.	Show	that	(PεX1/ε	)ε>0	satisfies	an	LDP	with	convex	good	rate	function	2	I	(x)	=	1	+	x	arc	sinh(x)	−	1	+	x	2	.	23.2).	♣	336	15	Characteristic	Functions	and	the	Central	Limit	Theorem	Exercise	15.1.8
Let	(Ω,	τ	)	be	a	separable	topological	space	that	satisfies	the	T3	1	2	separation	axiom:	For	any	closed	set	A	⊂	Ω	and	any	point	x	∈	Ω	\	A,	there	exists	a	continuous	function	f	:	Ω	→	[0,	1]	with	f	(x)	=	0	and	f	(y)	=	1	for	all	y	∈	A.	Then	Y	is	a	Markov	chain	Tt	in	continuous	time	with	Q-matrix	q(x,	y)	=	p(x,	y)	−	1{x=y}	.	(vi)	Trivially,	E[X]	is	measurable	with
respect	to	F	.	gm	:	Rd	→	C,	Let	C	be	the	algebra	of	finite	linear	combinations	of	the	gm	.	Remark	14.17	Let	g,	h	:	Ω	→	R	be	measurable	finite	almost	everywhere.		Since	f		≡	0	and	since	E	\	A	is	finite,	there	is	an	x0	∈	E	\	A	such	that	A	f	(x0	)	=	max	f	(E)	≥	f	(x)	>	0.	There	is	a	zoo	of	strong	laws	of	large	numbers,	each	of	which	varies	in	the	exact
assumptions	it	makes	on	the	underlying	sequence	of	random	variables.	For	d	≥	2,	we	have	0	≤	2d−1	≤	pc	≤	23	(Theorem	2.45).	n→∞	Corollary	15.26	For	every	α	∈	(0,	1]	and	r	>	0,	ϕα,r	(t)	=	e−|r	t	|	is	the	characteristic	function	of	a	symmetric	probability	measure	μα,r	on	R.	As	above,	we	have	A3L	⊂	A3L,0.	Proof	The	cases	p	=	1	and	p	=	∞	are	trivial.
We	conclude	that	μ(U	)	≤	μ(A)+	∞	ε	2	n=1	Inner	regularity	Replacing	B	by	B	c	,	the	outer	regularity	yields	the	existence	of	a	closed	set	D	⊂	B	with	μ(B	\	D)	<	ε/2.	p	is	called	the	Metropolis	matrix	of	q	and	π.	Being	an	infimum	of	monotone	increasing	and	continuous	functions	the	map	x	→	D	+	ϕ(x)	is	monotone	increasing	and	right	continuous.	Clearly,
n1	Sn	=	m(ξn	(X)).	We	are	well	aware	that	it	is	not	enough	to	show	this	for	the	case	n	=	2	only.	Before	stating	Jensen’s	inequality,	we	give	a	primer	on	the	basics	of	convexity	of	sets	and	functions.	Proof	This	follows	from	Theorem	19.25	and	Rayleigh’s	monotonicity	principle	(Theorem	19.19).	(23.22)	Varadhan’s	lemma	(more	precisely,	the	tilted	LDP)
and	Sanov’s	theorem	are	the	keys	to	building	a	connection	to	the	variational	principle	for	the	free	energy.	As	an	example	where	inequality	holds,	instead	of	the	standard	example	from	calculus	textbooks	(fn	=	n	·	1(0,1/n)	,	f	=	0),	we	studied	a	game	of	hazard	that	we	will	encounter	in	a	different	context	later.	Then	P	+	,	+	,	+	,	n	Aj	=	P	Bj	=	P	Bj	j	∈J	j	∈J
=		e1	∈B˜	1	···	j	=1		n		en	∈B˜	n	j	=1	pej	=	n				j	=1		pe	j	∈J			j	∈J	e∈B˜	j	This	is	true	in	particular	for	#J	=	1.	This	behaviour	has	been	quantified	in	Sect.	Then	there	exists	a	modification	X	Proof	For	a,	b	∈	Q+	,	a	<	b	and	I	⊂	[0,	∞),	let	UIa,b	be	the	number	of	upcrossings	of	(Xt	)t	∈I	over	[a,	b].	,	IB2n	−1	).	∈	D	with	∞	A	=	n	n=1	n=1	Bn	∈	D.	Corollary
16.11	If	ϕ	is	an	infinitely	divisible	CFP,	then	there	exists	a	γ	>	0	with	2	α	|ϕ(t)|	≥	12	e−γ	t	for	all	t	∈	R.		Let	Mn	:=	i∈Λ	Xn	(i)	be	the	total	number	of	individuals	of	opinion	1	at	time	n.	,	Y	(d)	)	and	τ	=	max{τ	(1),	.	+	Xˆ	n	,	we	get		P[Sn	≥	0]	=		=	{x1	+...+xn	≥0}	μ(dx1	)	·	·	·	μ(dxn	)	{x1	+...+xn	≥0}		−τ	x		n		e−τ	x1	μ(dx	ˆ	μ(dx	ˆ	1)	·	·	·		e	n)	(	'	ˆ	=	n	E	e−τ
Sn	1{Sˆn	≥0}	.	Note	that	the	contour	in	Fig.	For	q	∈	{p,	p	}	and	e	∈	E,	we	define	0	1,	if	Ye	≤	q,	q	Xe	:=	0,	else.	For	i	=	0,	1,	let	p	DLi	:=	{Xe	=	i	for	all	e	∈	EL	}.	Define	σ	n	:=	2−n	"2n	σ	#	and	τ	n	:=	2−n	"2n	τ	#.	♦	Example	1.45	(i)	Let	Ω	=	{1,	2,	3,	4}	and	E	=	{	1,	2},	{2,	3}	.	t	:=	Xt	.	Reflection	Let	X	=	(X(s,t	))s,t	≥0	be	a	centred	Gaussian	process	on
the	time	set	[0,	∞)2	with	covariance	function	Cov[X(s,t	),	X(s		,t		)	]	=	(s	∧	s		)	·	(t	∧	t		).	Furthermore,	we	show	that	the	absolutely	continuous	part	has	a	density.	be	random	measures	and	λ1	,	λ2	,	.	By	the	mean	value	theorem	of	calculus,	for	all	n	∈	N	and	for	almost	all	ω	∈	Ω,	there	exists	a	yn	(ω)	∈	I	with	gn	(ω)	=	f		(ω,	yn	(ω)).	♦	j	∈J	Example	12.22	If
(Ai	)i∈I	is	an	independent	family	of	σ	-algebras	and	if	A	is	trivial,	then	(Ai	)i∈I	is	independent	given	A.	,	Xn−1	.	+	Xn	)/n	of	i.i.d.	random	variables	(law	of	large	numbers).	(19.14)	Solving	these	three	equations	for	R		(0,	1),	R		(0,	x)	and	R		(1,	x)	and	plugging	the	values	into	(19.13)	yields	P	=	u(x)	=	Reff	(0	↔	1)	+	Reff	(0	↔	x)	−	Reff	(x	↔	1)	.	.)	of	events
and	assume	that	each	family	is	independent	but	they	are	not	necessarily	independent	of	each	other.	,	n	hn,l	(k)	=	n		j	=l	pn	(k,	j	)	=	⎧	⎪	⎨	⎪	⎩	0,	if	k	<	l	−	1,	1	−	k/n,	if	k	=	l	−	1,	1,	if	k	>	l	−	1.	♦	Example	7.39	Let	(Ω,	A)	be	a	measurable	space	and	let	μ	and	ν	be	finite	measures	on	(Ω,	A).	k=1	Letting	ε	↓	0	yields	(1.12);	hence	μ	is	σ	-subadditive.
Theorem	7.26	(Riesz–Fréchet	representation	theorem)	Let	(V	,	)	·	,	·	*)	be	a	Hilbert	space	and	let	F	:	V	→	R	be	a	map.	For	δ	>	0,	Chebyshev’s	inequality	yields	(together	with	(5.8))	)	*	∞	∞			*	)	)	*	Var	Tkn	−2			P	Tkn	−	E	Tkn	>	δ	kn	≤	δ	kn2	n=1	n=1	=	δ	−2	∞		kn−2	n=1	kn		Var[Ym	]	=	δ	−2	m=1	≤	4(1	−	α	−2	)−1	δ	−2	∞		kn−2	n:	kn	≥m	m=1	∞		
Var[Ym	]	)	*	m−2	E	Ym2	<	∞	by	Lemma	5.20.	For	the	second	one,	we	must	show	the	mutual	inclusions.	(i)	If	PX	=	PY	,	then	E[X]	=	E[Y	].	691	Notation	Index	..	We	want	to	show	that	ϕ	is	the	characteristic	function	of	a	probability	measure	μ	∈	M1	(R).	♣	Chapter	5	Moments	and	Laws	of	Large	Numbers	The	most	important	characteristic	quantities	of
random	variables	are	the	median,	expectation	and	variance.	n→∞	The	left-hand	side	is	Fτ	-measurable.	7.3).	Note	that	the	uniqueness	of	μn	and	ϕn	,	respectively,	is	by	no	means	evident.	Now	assume	(6.2).	k=1	k=1	Hence	L2d	≥	Var[Mn	]	=	E[)M*n	]	=	n		P[Xk−1	(Ik	)	=	Xk−1	(Ik	+	Nk	)]	k=1	≥	(2d)−1	L−d	n		P[Mk−1	∈	{0,	Ld	}].	♦	The	situation	is	not
completely	satisfying	as	we	have	made	the	very	restrictive	assumption	that	Y	is	real-valued.	Let	(Ω,	F	,	P)	be	a	probability	space	and	let	Q	be	another	probability	measure	on	(Ω,	A).	that	cannot	all	occur	jointly.	Define	A0n	:=	An	,	A1n	:=	A	\	An	,	and	let	Pn	:=	n			s(i)	Ai	:	s	∈	{0,	1}n	i=1	be	the	partition	of	A	that	is	generated	by	A1	,	.	are	identically
distributed	on	Rd	with	characteristic	function	ϕX	.	∈	E	and	numbers	α1	,	α2	,	.	are	independent	and	Berν(A)-distributed;	hence	we	have	X(A)	∼	Poiμ(A)	(see	Theorem	15.15(iii)).	♦	Example	1.44	n		(Distribution	function)	A	probability	measure	μ	on	the	space	R	,	B(Rn	)	is	uniquely	determined	by	the	values	μ((−∞,	b])	(where	(−∞,	b]	=	×ni=1	(−∞,	bi	],	b
∈	Rn	).	(ii)	If	X,	X1	,	X2	,	.	Let	(An	)n∈N	be	a	sequence	in	A	such	that	An	↑	A	and	let	A0	=	∅.		≥	1−2	1	+	2z	It	is	easy	to	check	that	P0	[τz	<	∞]	=	1	for	all	z	∈	N0	.	♣	Exercise	2.3.2	Consider	two	families	(A1	,	A3	,	A5	,	.	The	claim	follows	by	the	observation	that	(for	α	=	−1/2)	we	have	−1/2		additional	2n	−n	.	♣	Exercise	21.5.3	Define	Y	:=	(Yt	)t	∈[0,1]	by
Y1	=	0	and		t	Yt	=	(1	−	t)	(1	−	s)−1	dWs	for	t	∈	[0,	1).	The	situation	is	quite	the	opposite	for,	e.g.,	the	Poisson	distribution	μ	=	Poi	with	parameter		>	0	and	ν	=	N0,1	.	Changing	the	roles	of	x	and	Then	F	:(y,	x)	>	0.	The	speed	of	convergence	is	thus	exponential	with	a	rate	that	is	determined	by	the	spectral	gap	1	−	|λ2	|	of	the	second	largest	eigenvalue
of	p.	By	the	strong	law	of	large	numbers,	we	thus	have	1	n→∞	Yi	(x)	−→	F	(x)	almost	surely	n	n	Fn	(x)	=	i=1	130	5	Moments	and	Laws	of	Large	Numbers	and	1	n→∞	Zi	(x)	−→	F	(x−)	almost	surely.	Then,	by	Lemma	3.10,		i	Ei	[s	Zn	]	=	E1	[s	Zn	]i	=	ψ	(n)	(s)	.	and	let	(Fj	,	j	∈	J	)	be	a	Corollary	8.22	Let	(Xi	,	i	∈	I	)	be	uniformly	integrable		family	of	sub-σ	-
algebras	of	A.	♠	We	are	particularly	interested	in	σ	-algebras	that	are	generated	by	topologies.	(v)	If	α	=	1,	then	dn	=	(c+	−	c−	)	n	log(n),	n	∈	N.	If	log(0	)	has	a	finite	variance,	this	follows	by	the	central	limit	theorem.	As	f	and	gx	are	continuous,	for	any	x	∈	E,	there	exists	an	open	neighborhood	Vx		x	with	gx	(y)	≥	f	(y)	−	ε	for	any	y	∈	Vx	.	be	i.i.d.	real	2
random	variables	nwith	μ	:=	E[X1	]	∈	R	and	σ	:=	Var[X1	]	∈	(0,	∞).	Then	define	Fn	(x)	=	⎧	⎨	x	In	,	⎩	x,	'		(	if	Un	≤	exp	2β	j	:	j	∼i	(1{x(j	)=x(i)}	−	12	)	,	else,	and	define	the	Markov	chain	(Xn	)n∈N	by	Xn	=	Fn	(Xn−1	)	for	n	∈	N.	Hence,	the	formal	object	X˙	is	often	referred	to	as	white	noise	as	opposed	to	colored	noise	where	the	coefficients	for	the
different	frequencies	have	different	distributions.	,	km	∈	N0	,	we	have	)	*	P	Nti	−	Nti−1	=	ki	for	any	i	=	1,	.	Proof	(i)	“	⇒	”	Assume	f	=	0	almost	everywhere.	In	fact,	by	the	tower	property	of	the	conditional	expectation	(Theorem	8.14(iv)),	we	get				*	)	E[Xs+2		Fs	]	=	E	E[Xs+2		Fs+1	]		Fs	.	18.3	or	18.2,	where	d	=	2,	E0	=	{1,	3,	5,	7}	and	E1	=	{2,	)	4,	6,
8}).	By	a	backward	induction,	this	yields	the	claim.	Proof	We	have	)	*	E[f	(|X|)]	≥	E	f	(|X|)	1{f	(|X|)≥f	(ε)}	)	*	≥	E	f	(ε)	1{f	(|X|)≥f	(ε)}	)	*	≥	f	(ε)	P	|X|	≥	ε	.	k=1	Evidently,	Xn	=	Mn	+	An	.	Then	G(0,	0)	=	∞				2n	n=0	n	p(1	−	p)	n	=		∞			−1/2	n=0	n	n	−	4p(1	−	p)	.	Without	loss	of	generality,	we	may	hence	assume	that	E	is	σ	-compact	and	thus		separable.
5.1	Moments	115	Proof	Assume	first	that	X	and	Y	take	only	finitely	many	values.	19.13	Steps	7	and	8.	2	k=1	(iv)	Under	the	assumptions	of	(iii),	Azuma’s	inequality	holds:			*	λ2	P	|Mn	|	≥	λ	≤	2	exp	−	n	2	k=1	ck2	)	for	all	λ	≥	0.	As	x	→	gx	(y)	is	monotone,	we	get	D	+	ϕ(x		)	≥	D	−	ϕ(x		)	≥	D	+	ϕ(x)	for	x		>	x.	For	large	n,	the	expectation	describes	the
typical	approximate	value	of	the	arithmetic	mean	(X1	+	.	.--..-..	(3.1)	n=0	©	The	Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	A.	Hence,	by	symmetry,	the	chance	of	winning	should	be	p	=	18/37	<	12	.	Combining	this	with	the	assumption,	we	get	ϕ(y)	=	∞	for	all	y	>	x.	,	ωn	∈	E}.	If	she	wins
the	second	game,	she	leaves	the	casino	and	otherwise	doubles	the	stake	again	and	so	on.	In	the	sense	of	Definition	14.6,	X	=	(Xt	)t	≥0	is	thus	the	canonical	process	on	(Ω,	A).	If	the	values	of	f	on	A	are	prescribed,	then	we	say	that	f	solves	a	Dirichlet	problem.	Let	(Ωi	,	Ai	)	be	the	measurable	space	of	the	ith	experiment,	i	=	0,	.	n→∞	n→∞	(v)	lim	sup	μn
(E)	≤	μ(E)	and	lim	inf	μn	(G)	≥	μ(G)	for	all	open	G	⊂	E.	♦	Theorem	1.12	(Relations	between	classes	of	sets)	(i)	Every	σ	-algebra	also	is	a	λ-system,	an	algebra	and	a	σ	-ring.	(ω1	,...,ωn	)=(ω1	,...,ωn	)	Since	Ω	is	compact,	the	closed	subset	[ω1	,	.	However,	not	all	σ	-finite	measures	on	Rd	are	regular.	(6.1)	AN	Then	d˜	is	a	metric	that	induces	convergence
in	measure:	If	f,	f1	,	f2	,	.	Then,	for	A0	,	A1	⊂	E	with	A0	,	A1	=	∅	and	A0	∩	A1	=	∅,	19.3	Finite	Electrical	Networks	471	R1	R2	x0	=	1	x1	=	6	R3	R4	R5	u(0)	=	0	u(6)	=	1	R6	Fig.	With	(Xt	)t	≥0	,	we	have	almost	constructed	the	so-called	Brownian	motion.	Theorem	7.18	(Fischer–Riesz)	(Lp	(μ),		·	p	)	is	a	Banach	space	for	every	p	∈	[1,	∞].	Let	μ	=	λ	[0,1]
Lebesgue	measure	restricted	to	[0,	1].	Denote	by	A		B	:=	(A	\	B)	∪	(B	\	A)	for	A,	B	⊂	Ω	(1.14)	the	symmetric	difference	of	the	two	sets	A	and	B.	(i)	We	say	that	(Xn	)n∈N	fulfills	the	weak	law	of	large	numbers	if		+	,	1					lim	P		Sn		>	ε	=	0	n→∞	n	for	any	ε	>	0.	Proof	For	x	∈√R,	we	have	x	2	1{|x|>ε	}	≤	(ε	)−δ	|x|2+δ	1{|x|>ε	}	≤	(ε	)−δ	|x|2+δ	.	By	the	choice
of	k	and	since	the	increments	of	B	are	stationary,	we	have	+	,		)	*	P	B	∈	AN	=	lim	P	B	∈	AN,m	n→∞	m≥n	≤	lim	sup	P[B	∈	AN,n	]	n→∞	≤	lim	sup	n→∞	n		P[B	∈	AN,n,i	]	i=1	≤	lim	sup	n	P[B	∈	AN,n,1	]	n→∞	≤	N	k	lim	sup	n1+k(−γ	+1/2)	=	0	n→∞	Thus	P[B	∈	A]	=	0.	♣	3	Exercise	13.3.3	If	P	is	a	probability	measure	on	[0,	∞)	with	mP	:=	x	P	(dx)	∈	:	on	[0,	∞)
by	(0,	∞),	then	we	define	the	size-biased	distribution	P	P:(A)	=	m−1	P		x	P	(dx).	In	the	case	γ	=	1,	Hölder	continuity	is	Lipschitz	continuity	(see	Definition	13.8).	By	construction,	the	coupling	(X,	Y	)	is	successful.	Example	18.16	(Ising	model)	The	Ising	model	(pronounced	like	the	English	word	“easing”)	is	a	thermodynamical	(and	quantum	mechanical)
model	for	ferromagnetism	in	crystals.	4.1	Construction	and	Simple	Properties	99	Theorem	4.8	Let	f	:	Ω	→	[0,	∞]	be	a	measurable	map.	In	the	following,	we	always	assume	that	(Ω,	A,	P,	τ	)	is	a	measure-preserving	dynamical	system	and	that	Xn	:=	X0	◦	τ	n	.	Since	K	is	compact,	we	can	find	finitely	many	points	x1	,	.	Then	E[f	(Nn1	,T	)]	=	∞		E[f	(Nn1	,t	)]
P[T	=	t]	t	=0	≤	∞		E[f	(Nn2	,t	)]	P[T	=	t]	=	E[f	(Nn2	,T	)].	For	s,	t	>	0,	we	have		Cov[Xs	,	Xt	]	=	ts	·	Cov[B1/s	,	B1/t	]	=	ts	min	s	−1	,	t	−1	=	min(s,	t).	Then,	with	the	usual	arguments,	extend	it	step	by	step	first	to	simple	functions,	then	to	nonnegative	measurable	functions	and	finally	to	signed	measurable	functions.	We	do	not	intend	to	go	into	the	details
and	we	only	briefly	touch	upon	the	topic.	♣	Exercise	15.1.4	Show	that,	under	the	assumptions	of	Theorem	15.11,	Plancherel’s	equation	holds:		μ({x})2	=	(2π)−d	x∈Zd		[−π,π)d	|ϕμ	(t)|2	dt.♣	Exercise	15.1.5	(Mellin	transform)	Let	X	be	a	nonnegative	real	random	variable.	,	(Hs	−	Hsn	)2	ds	n→∞	−→	0.	Then	)M*n	=	n	n				)	)	*		*	E	1{Mk	=Mk−1	}		Fk−1	=
P	Xk−1	(Ik	)	=	Xk−1	(Ik	+	Nk	)		Fk−1	.	2	2	For	these	k,	|λk	|	equals	γ	:=	1	−	4r(1	−	r)	sin(π/N)	.	Since	ν	≤	μ	+	ν,	the	linear	functional	3	L2	(Ω,	A,	μ	+	ν)	→	R,	h	→	h	dν	is	continuous.	Let	C		be	the	algebra	of	finite	linear	combinations	of	elements	of	C.	be	measurable	functions	that	converge	to	some	f	almost	everywhere.	Case	2:	p	∈	(1,	∞).	Let	Z	be	a
connected	component	of	HL	that	contains	at	least	2.4	Example:	Percolation	83	one	point	x	∈	TL	.	However,	with	a	little	bit	of	abstract	nonsense,	one	can	apply	the	preceding	theorem	to	L2	(μ).	(If	at	the	root	we	apply	a	voltage	of	1	and	at	the	points	to	the	right	the	voltage	0,	then	by	symmetry	no	current	flows	through	the	superconductors.	Then	Xn	:=
k		cl	Yn−l	,	n	∈	Z,	l=1	defines	a	stationary	process	X	that	is	called	the	moving	average	with	weights	(c1	,	.	Hence,	there	is	a	phase	transition	between	the	high	temperature	phase	(β	≤	1)	without	magnetization	and	the	low	temperature	phase	608	23	Large	Deviations	Fig.	,	Xn	)−	]	<	∞	and	)	*	E	ϕ(X1	,	.	14.3	Kolmogorov’s	Extension	Theorem	..	,	Xn	)	≥
E[g(X1	,	.	By	Theorem	8.29,	we	obtain	the	regular	conditional	distribution	κY		,F	of	the	real	random	variable	Y		=	ϕ	◦	Y	.	We	will	study	product	measures	in	a	systematic	way	in	Chap.	,	k}.	n→∞	(ii)	μ	is	called	upper	semicontinuous	if	μ(An	)	−→	μ(A)	for	any	A	∈	A	and	any	sequence	(An	)n∈N	in	A	with	μ(An	)	<	∞	for	some	(and	then	eventually	all)	n	∈	N
and	An	↓	A.	515	515	522	529	532	535	544	546	549	553	560	22	Law	of	the	Iterated	Logarithm	..	2	x,y∈E	Proof	(Rayleigh’s	monotonicity	principle,	Theorem	19.19)	Let	I	and	I		be	the	unit	current	flows	from	A1	to	A0	with	respect	to	C	and	C		,	respectively.	♣	n→∞	Exercise	13.2.4	Let	E	=	R	and	λ	be	the	Lebesgue	measure	on	R.	♠	Theorem	19.15	An
electrical	potential	u	in	(E,	C)	is	a	harmonic	function	on	E	\	A:	u(x)	=		y∈E	1	C(x,	y)	u(y)	C(x)	for	all	x	∈	E	\	A.	We	see	that	the	square	variation	process	can	Hence	)X*n	=	ni=1	Var[Yi	]	Xi−1	indeed	be	a	truly	random	process.	We	assume	that	d	is	a	metric	on	Q	that	induces	the	standard	topology	and	such	that	(Q,	d)	is	complete.	Proof	See,	e.g.,	[88,
Theorem	3.2.18],	[168,	Theorem	4.17]	or	[156].	Fix	ε	>	0	and	let	α	=	1	+	ε.	♦	450	18	Convergence	of	Markov	Chains	Fig.	Let	P	=	be	the	Bernoulli	measure.	1	Hence	we	have	Reff	(0	↔	2)	=	I	({2})	=	R(0,	1)	+	R(1,	2)	and	Ceff	(0	↔	2)	=		−1	−1	−1	C(0,	1)	+	C(1,	2)	.	Check	that	in	this	case	A	has	either	probability	0	or	1.	−	+	(iii)	In	order	to	show	RW	=
RW	=	∞	almost	surely,	it	is	enough	to	show	n		lim	supn→∞	k=0	log(k	)	>	−∞	and	lim	supn→∞	1k=−n	log(k−1	)	>	−∞	almost	surely	if	E[log(0	)]	=	0.	,	zn	∈	Σ,	then	the	state	of	this	ensemble	can	be	described	by	x	:=	n1	ni=1	δzi	.	Then	(by	)	*	)	n	*	−	Zkn	)4	Ex	(Z¯	tn+s	−	Z¯	sn	)4	=	n−4	(tn)4	E	nx!	(Zk+1	)	*	=	t	4	E	nx!	24Zkn	+	12(Zkn	)2	+	2Zkn			=	t	4
26	nx!	+	24	nx!k	+	nx!2	≤	26x	t	3	+	24xs	t	2	+	x	2	t	2	≤	(50Nx	+	x	2	)	t	2	.	The	electrical	current	between	two	contacts	(vertices	in	the	graph)	minimises	the	electrical	power	among	all	unit	currents.	Theorem	9.39	(Stability	theorem)	Let	(Xn	)n∈N0	be	an	adapted,	real-valued	stochastic	process	with	E[|X0	|]	<	∞.	The	invariant	distribution	is	unique	and
is	given	as	the	reciprocals	of	the	expected	return	times.	be	i.i.d.	random	variables	that	are	independent	of	X1	,	X2	,	.	Reflection	Consider	the	random	walk	on	the	integers	with	transition	matrix	given	by	p(k,	k	+	1)	=	r	and	p(k,	k	−	1)	=	1	−	r	for	some	r	∈	[0,	1].	Show	that	μ	3	−)λ,x*	is	characterized	by	its	Laplace	transform	Lμ	(λ)	=	e	μ(dx),	λ	∈	[0,	∞)d	.
A	family	C	of	measurable	maps	E	→	R	is	called	a	separating	family	for	F	if,	for	any	two	278	13	Convergence	of	Measures	measures	μ,	ν	∈	F	,	the	following	holds:				f	dμ	=	f	dν	for	all	f	∈	C	∩	L1	(μ)	∩	L1	(ν)	⇒	μ	=	ν.	Step	4.	Exercise	19.5.1	Show	the	validity	of	the	star-triangle	transformation.	,	m.	For	λ	≥	0,	show	that			2	*	)	E	e−λτ	=	exp	−	ba	−	b	a	2	+
2λ	.	,	Mn,m	)	are	independent.	Some	readers	might	prefer	to	skip	the	somewhat	technical	construction	of	general	Markov	processes	in	Sect.	♣	11.2	Martingale	Convergence	Theorems	253	Exercise	11.2.4	Show	that	in	Theorem	11.14	the	converse	implication	may	fail.	n→∞	C(x1	)	Example	19.26	Symmetric	simple	random	walk	on	E	=	Z	is	recurrent.
The	destroyed	tubes	will	be	called	“closed”,	the	others	“open”.	=	1	−	it/θ	1	+	it/θ	1	+	(t/θ	)2	(viii)	(Cauchy	distribution)	This	can	either	be	computed	directly	using	residue	calculus	or	can	be	inferred	from	the	statement	for	the	two-sided	exponential	distribution	by	the	Fourier	inversion	formula	(equation	(15.2)).	These	are	useful	mostly	because	addition
of	independent	random	variables	leads	to	multiplication	of	the	transforms.	A	process	W	with	properties	(i)	and	(ii)	is	called	a	Brownian	sheet.	We	have	Poiα	0	Poiβ	if	and	only	if	β	>	0	or	α	=	0.	a	2a	2	(21.21)	♣	21.4	Supplement:	Feller	Processes	In	many	situations,	a	continuous	version	of	a	process	would	be	too	much	to	expect,	for	instance,	the	Poisson
process	is	generically	discontinuous.	By	Theorem	14.31,	the	equations	(14.18)	and	(14.19)	hold.	Since	the	support	of	f	is	contained	in	(−K,	K)d	,	f˜	is	continuous.	Using	the	notation	of	Theorem	6.28,	let	I	=	[0,	∞)	and	f	(x,	λ)	=	e−λx	for	λ	∈	I	.	See	also	[117].	528	21	Brownian	Motion	Takeaways	We	have	used	the	Kolmogorov-Chentsov	theorem	to
construct	Brownian	motion	as	a	continuous	Gaussian	process.	The	sets	lim	inf	An	:=	n→∞	∞	∞			Am	and	lim	sup	An	:=	n→∞	n=1	m=n	∞	∞			Am	n=1	m=n	are	called	limes	inferior	and	limes	superior,	respectively,	of	the	sequence	(An	)n∈N	.	If	I	=	i,	then	the	new	state	has	the	distribution	L(X|X−i	=	x−i	),	where	X	is	a	random	variable	with	distribution	π.	,
YtD	).	e∈E	e∈E	The	length	of	this	code	for		the	first	n	symbols	of	our	random	information	source	is	thus	approximately	−	nk=1	log2	(pXk	(ω)	)	=	−	log2	πn	(ω).	,	2n	−	1	n→∞	and	Htn	=	0	for	t	>	T	.	n→∞	n→∞	(iii)	μ	=	v-lim	μn	and	μ(E)	≥	lim	sup	μn	(E).	n=0	Now	assume	that	p0	,	p1	,	p2	,	.	Clearly,	χ1	(x)	=	(1	−	x)2	and	χ2	(x)	=	−x(1	−	x)2	.	(i)	Show	
there	exists	a	pmax	∈	Wm	that	maximises	the	entropy;	that	is,	that	H	pmax	=	supp∈Wm	H	(p).	For	n	∈	N,	define	En	:=	σ	(F	:	F	:	E	N	→	R	is	measurable	and	n-symmetric)	and	let	En	:=	X−1	(En	)	be	the	σ	-algebra	of	events	that	are	invariant	under	all	permutations		∈	S(n).	Then	E[ϕ(X1	,	.	Hence	the	limit	point	Q	is	unique	and	thus	(PXn	)n∈N	converges
weakly	to	Q.	♦	Remark	8.16	Let	X	:	Ω	→	R	be	a	random	variable	such	that	X−	∈	L1	(P).	Then	ϕ(x)	≥	t	+	·	(x	−	E[X])	+	ϕ(E[X])	for	all	x	∈	I	;	hence	E[ϕ(X)]	≥	t	+	E[X	−	E[X]]	+	E[ϕ(E[X])]	=	ϕ(E[X]).	{ϕ(τ,	Xτ	)	>	0}	∩	{τ	≤	n}	=	ϕ(τ,	Xτ	)	=	2	Thus,	in	the	last	step	of	(17.9),	equality	holds	and	hence	also	in	(17.8).	Convergence	to	Stable	Distributions	To
complete	the	picture,	we	cite	theorems	from	[54,	Chapter	XVII.5]	(see	also	[62]	and	[128])	that	state	that	only	stable	distributions	occur	as	limiting	distributions	of	rescaled	sums	of	i.i.d.	random	variables	X1	,	X2	,	.	For	any	subset	A	of	Rn	,	we	have	B(A,	d)	=	B(Rn	,	d)	.		Thus	f	−gp	≤	μ(Ω)1/p	f	−g∞	for	f,	g	∈	L∞	(μ)	and	hence	i	is	continuous.	Hence	also
A	=	∞	A	n=1	1/n	is	countable	and	thus	a	null	set.	♦	If	A	and	B	are	independent,	then	Ac	and	B	also	are	independent	since	P[Ac	∩	B]	=	P[B]	−	P[A	∩	B]	=	P[B]	−	P[A]P[B]	=	(1	−	P[A])P[B]	=	P[Ac	]P[B].	Define	gn	(ω)	=	f	(ω,	xn	)	−	f	(ω,	x0	)	xn	−	x0	for	all	ω	∈	Ω.	Hence	P-a.s.	κ(	·,	B)	=	P[Y	∈	B	|F	]	and	thus	κ	=	κY,F	.	Thus	(ii)	λ	holds	with	X	:=	)λ,	X*.
(8.4)	If	P[A]	>	0,	then	P[	·	|A]	is	a	probability	measure.	m→∞	n≥m	.	Let	n	∈	N	and	let	A1	,	.	The	actual	density	could	be	gained	using	Hilbert	space	theory,	in	particular	the	Riesz-Fréchet	representation	theorem.	If	all	κk	are	stochastic,	k=1	then	all	k=1	i	/	k=1	κk	are	stochastic.	Then	n				n	n	m	ψX	(z)	=	p	(1	−	p)n−m	zm	=	pz	+	(1	−	p)	.	Proof	(i)	Define
νn	=	n		pk	μk	.	We	have	thus	shown	that	(14.6)	and	(14.7)	hold	for	f	=	1A	for	all	A	∈	A1	⊗	A2	.	If	A	∈	B(Rn	)	and	f	:	Rn	→	R	is	measurable	(or		f	:	A	→	R	is	B	∗	(Rn	)	–	B(R)-measurable	and	hence	f	1A	is	B	∗	(Rn	)	–	B(R)A	measurable),	then	we	write			f	dλ	:=	f	1A	dλ.	<	yN−1	<	f	∞	<	yN	such	that	yi	∈	R	\	A	and	|yi+1	−	yi	|	<	ε	for	all	i.	For	L	∈	N,	let	BL	:=
{−L,	.	The	printed	phone	books	grew	in	popularity	during	the	decades	and	centuries.	Now,	by	Example	2.36(ii),	Y∞	is	T	-measurable;	hence	(since	T	⊂	E	and	by	virtue	of	the	tower	property	of	conditional	expectation)	Y∞	=	E[X1		T	].	If	there	was	a	second	strategy	H		and	a	second	v0	with	v0	+	(H		·X)T	=	VT	,	then,	in	particular,	v0	−	v0	=	((H		−	H	)·X)T
.	As	with	continuous	maps,	the	composition	of	measurable	maps	is	again	measurable.	Generate	Fn	and	let	F	←	F	◦	Fn	.	Let	μn,k	(x)	:=	ξn	(x)⊗k	=	n−k	n		i1	,...,ik	=1	δ(xi1	,...,xik	)	be	the	distribution	on	E	k	that	describes	k-fold	independent	sampling	with	replacement	(respecting	the	order)	from	(x1	,	.	m=−∞	We	define	the	nth	convolution	power
recursively	by	μ∗1	=	μ	and	μ∗(n+1)	=	μ∗n	∗	μ.	19.10	Steps	1	and	2.	Consider	a	Polish	space	Σ	that	is	interpreted	as	the	space	of	possible	states	of	a	particle.	As	we	required	only	first	moments,	in	general,	we	cannot	expect	to	get	any	useful	statements.	Now	assume	d	≥	2.	l=1	n→∞	n→∞	However,	for	ε	>	0,	we	have	νn	([−ε,	ε]c	)	=	Ln	(ε)	−→	0;	hence
νn	−→	δ0	.	Let	S(n)	be	the	set	of	permutations		:	{1,	.	Let	i	:=	−	+	Wi−	/Wi+	for	i	∈	Z	and	RW	and	RW	be	defined	as	above.	Let	L2	(μ)	=	L2	(μ)/N	be	the	factor	space.	Then	T	⊂	E,	and	strict	inclusion	is	possible.	However,	we	will	see	that	all	martingales	can	be	9.4	Discrete	Martingale	Representation	Theorem	and	the	CRR	Model	225	represented	as
stochastic	integrals	if	the	increments	Xn+1	−	Xn	can	take	only	two	values	(given	X1	,	.	Show	that	D	:=	{t	∈	R	:	Λ(t)	<	∞}	is	a	nonempty	interval	and	that	Λ	is	infinitely	often	differentiable	in	the	interior	of	D.	Show	that		Lp	(μ)	\	Lp	(μ)	=	∅.	The	idea	will	be	made	precise	by	the	notion	of	tightness.	♦	Example	8.33	If	X	and	Y	are	independent	real	random
variables,	then	for	PX	almost	all	x	∈	R	P[X	+	Y	∈	·	|X	=	x]	=	δx	∗	PY	.	Define	the	Schauder	functions	by		Bn,k	(t)	=	[0,t	]	B	C	bn,k	(s)	λ(ds)	=	1[0,t	]	,	bn,k	.	Let	d	be	a	metric	on	Ω,	and	denote	the	open	ball	with	radius	r	>	0	centered	at	x	∈	Ω	by	Br	(x)	=	{y	∈	Ω	:	d(x,	y)	<	r}.	Hint:	Apply	Exercise	13.2.14	to	the	image	measures	μn	◦	f	−1	.	It	is	enough	to
show	that	there	exist	continuous	adapted	processes	H	n	,	n	∈	N,	for	which	(25.3)	holds.	0	As	f	is	continuous	and	f	(0)	=	1,	the	last	integral	converges	to	0	for	K	→	∞.	This	version	is	called	Feller’s	(continuous)	branching	diffusion.	21.3	The	processes	X	n	,	n	=	0,	1,	4,	64,	8192	from	the	Fourier	Construction	of	Brownian	motion.	Hence	En	=	ni=1	(Ei−1	∩
Ωi	).	Clearly,	the	uniform	distribution	on	E	is	invariant	but	lim	δx	pn	does	n→∞	not	exist	for	any	x	∈	E.	Definition	8.11	(Conditional	expectation)	A	random	variable	Y	is	called	a	conditional	expectation	of	X	given	F	,	symbolically	E[X	|F	]	:=	Y	,	if:	(i)	Y	is	F	-measurable.	Show	that	for	t	>	0	Etemadi’s	inequality	holds:	'	(	)	*	P	max	|Sk	|	≥	t	≤	3	max	P	|Sk	|	≥
t/3	.	In	this	case,	μ	∈	Dom(μ).	(ii)	This	is	a	direct	consequence	of	(i).	Lemma	7.23	If	)	·	,	·	*	is	a	semi-inner	product	on	the	real	vector	space	V	,	then	)	·	,	·	*	:	V	×	V	→	R	is	continuous	(with	respect	to	the	product	topology	of	the	topology	on	V	that	is	generated	by	the	pseudo-metric	d(x,	y)	=	)x	−	y,	x	−	y*1/2).	21.2	Construction	and	Path	Properties	525
Clearly,	X	is	a	centered	Gaussian	process	with	continuous	paths.	For	example,	consider	I	=	N0	and	X1	=	X2	=	X3	=	.	We	will	see	in	a	computer	simulation	that	the	Ising	model	displays	this	critical	temperature	effect.	Define	Xn	:=	D1	+	.	The	three	points	on	the	very	right	of	the	graph	form	a	loop	that	can	be	deleted	from	the	network	without	changing
any	of	the	remaining	voltages.	Let	Pπ	=	π({x})	Px	.	♣	19.3	Finite	Electrical	Networks	467	Exercise	19.2.2	Let	β	>	0,	K	∈	N	and	W1	,	.	The	empirical	distributions	of	the	first	n	random	variables	yield	a	tight	family	which,	by	Prohorov’s	theorem,	has	a	limit	point.	19.16,	determine	Ceff	(a	←→	z)	and	Pa	[τz	<	τa	].	The	total	energy	(or	Hamilton	function)	of
the	system	in	state	x	is	the	sum	of	the	individual	energies,	H	(x)	=		H	i	(x)	=	i∈Λ		1{x(i)=x(j	)}.	Then,	by	Lemma	18.2,	there	exists	an	m0	∈	N	such	that	pn	(x1	,	x2	)	>	0	and	pn	(y1	,	y2	)	>	0	for	all	n	≥	m0	.	An	Determine	one	such	sequence	(An	)n∈N	explicitly.	i=0	Let	m	≥	n	≥	n0	and	s,	t	∈	Dm	,	s	≤	t	with	|s	−	t|	≤	2−n	.	Let	μ	be	a	finite	measure	on	(Ω1
,	A1	)	and	let	κ	be	a	finite	transition	kernel	from	Ω1	to	Ω2	.	(6.2)	Theorem	6.17	The	family	F	⊂	L1	(μ)	is	uniformly	integrable	if	and	only	if		sup	|f	|	dμ	=	0.	Remark	This	method	for	generating	random	variables	with	a	given	distribution	Q	is	called	rejection	sampling,	as	it	can	also	be	described	as	follows.	We	can	regard	the	graph	as	an	electrical	network
with	unit	resistors	at	each	edge,	voltage	0	at	0	and	voltage	1	at	1.	If	d	=	gcd(n,	r)	and	Ai	=	i,	τ	(i),	τ	2	(i),	.	Theorem	4.9	(Properties	of	the	integral)	Let	f,	g	∈	L1	(μ).	(iii)	The	distribution	on	N	with	weights	c	nα	if	n	is	even	and	c	nβ	if	n	is	odd.	The	map	Rd	→	C,	x	→	ei	s)λ,x*	is	n→∞	continuous	and	bounded;	hence	we	have	E[ei	s)λ,Xn	*	]	−→	E[ei	s)λ,X∞	*	].
(In	fact:	Choose	an	arbitrary	countable	base	U	of	the	topology.	Furthermore,	by	summing	over	k	∈	N0	,	this	yields	Nt	−	Ns	∼	Poiα(t	−s).	Note	that,	in	particular,	this	definition	does	not	require	that	the	individual	payments	be	independent	or	identically	distributed.	3	(i)	We3have	f	=	0	almost	everywhere	if	and	only	if	f	dμ	=	0.	A	map	f	:	Ω\N	→	Ω		is
called	a	μ-almost	everywhere	defined	and	measurable	map	from	(Ω,	A)	to	(Ω		,	A	),	if	f	−1	(A	)	⊂	A.	Proof	By	Lemma	14.13,3	for	every	ω1	∈	Ω1	,	the	map	fω1	is	measurable	with	respect	to	A2	;	hence	If	(ω1	)	=	fω1	(ω2	)	κ(ω1	,	dω2	)	is	well-defined.	By	Helly’s	theorem,	there	is	a	monotone	right	continuous	function	F	:	R	→	[0,	1]	k→∞	and	a	subsequence
(Fnk	)k∈N	of	(Fn	)n∈N	with	Fnk	(x)	−→	F	(x)	at	all	points	of	continuity	x	of	F	.	♣	Exercise	17.6.4	Let	r	∈	[0,	1]	and	let	X	be	the	Markov	chain	on	N0	with	transition	matrix	(see	Fig.	Hence	it	suffices	to	show	that	Nn1	,T	≤st	Nn2	,T	.	(ii)	If	μ	=	f	λn	and	ν	=	gλn	are	finite	measures	with	Lebesgue	densities	f	and	g,	then	μ	∗	ν	=	(f	∗	g)λn	.	Assume	that
(17.13)	and	(17.14)	hold	and	that	λ	:=	sup	|q(x,	x)|	<	∞.	Finally,	by	monotone	convergence,	for	any	f	∈	F	,		H	(|f	(ω)|)	μ(dω)	=	∞			(|f	|	−	an	)+	dμ	≤	n=1	∞		2−n	=	1.	For	ν	∈	A,	there	is	an	ε	>	0	with	Bε	(ν)	⊂	A.	21.7	Convergence	of	Probability	Measures	on	C([0,	∞))	547	Next	we	derive	a	useful	criterion	for	tightness	of	sets	{Pn	}	⊂	M1	(C([0,	∞))).	Proof
One	implication	has	been	shown	already	in	Corollary	16.7.	Hence,	let	ϕ	be	an	infinitely	divisible	CFP.	Since	any	Kn	is	bounded,	we	have	λ(Kn	)	<	∞.	On	the	other	hand,	every	stochastic	process	(Xt	)t	∈I	(on	an	arbitrary	probability	space	(Ω,	A,	P))	with	stationary	independent	increments	defines	a	convolution	semigroup	by	νt	=	P	◦	(Xt	−	X0	)−1	for	all	t
∈	I	.	Most	σ	-algebras	A	are	simply	too	large.	Here,	however,	we	follow	a	different	route.	Proof	(i)	For	t	∈	R,	h	∈	R	\	{0}	and	k	∈	{1,	.	Of	course,	transience	in	the	case	p	=	12	could	also	be	deduced	directly	from	the	strong	law	of	large	numbers	since	limn→∞	n1	Xn	=	E0	[X1	]	=	2p	−	1	almost	surely.	Hint:	Use	the	approximation	theorem	for	measures
(Theorem	1.65)	with	the	semiring	of	left	open	intervals	to	show	the	assertion	first	for	measurable	indicator	functions.	Starting	from	a	normed	vector	space	X	(here	the	space	of	finite	signed	measures	with	the	total	variation	norm),	consider	the	space	X	of	continuous	linear	functionals	X	→	R.	Then	N	:=	ω	∈	B	\	N	and	every	x	∈	V	.	As	x	∈	[0,	1)	increases,
each	coordinate	1[1/2,1)(τrk	(x)),	k	=	1,	.	Define	A	:=	Ωn+0	and	ε	:=	n10	.	Appealing	to	this	intuition	we	define	the	number	of	clicks	until	time	t	by	Nt	:=	#{n	∈	N0	:	Tn	≤	t}.	,	E12	from	Theorem	1.23.	♠	Theorem	20.29	Let	X	be	an	irreducible,	positive	recurrent	Markov	chain	on	the	countable	space	E	and	let	π	be	its	invariant	distribution.	.∪Ak	.	Since
E	⊂	D,	by	the	π–λ	theorem	(Theorem	1.19),	D	=	σ	(E)	=	A2	.	n=m	n=m+1	∞		hence	Em	↓	Ω	+	.	Definition	4.2	Define	the	map	I	:	E+	→	[0,	∞]	by	I	(f	)	=	m		αi	μ(Ai	)	i=1	if	f	has	the	normal	representation	f	=	m	i=1	αi	1Ai	.	Then	we	write	A	=	B	(mod	μ).	Then,	by	(2.4)	(in	Example	2.4),	for	2.2	Independent	Random	Variables	63	n	∈	N	and	x	∈	E	n	,	we	have
+	,	n	)	*	)	*	−1	P	Xj	=	xj	for	all	j	=	1,	.	With	a	little	more	work,	one	can	show	the	following	theorem	(see,	e.g.,	[147,	Chapter	III.8ff]	or	[145,	Chapter	III,	Theorem	2.7]).	For	any	b	>	0	and	x	>	0,	denote	by	logb	(x)	:=	log(x)	log(b)	the	logarithm	of	x	to	base	b.	More	precisely,	the	kth	ball	of	a	given	color	will	be	returned	together	with	rk	more	balls	of	the
same	color.	If	F	is	bounded	in	Lp	(μ),	then	F	is	uniformly	integrable.	,	in	}	(with	mutually	distinct	i1	,	.	A	trading	strategy	that	replicates	VT	with	respect	to	X	also	replicates	VT	with	respect	to	X	.	,	6}	and	˜	B	=	{1,	.	Then		n		κk	(0,	·	)	=	P(S1	,...,Sn	)	.	Hence	we	can	continue	(5.13)	to	get	Var[Sn	]	+	c2	≥	n		'	(	E	(t	+	c)2	1Ak	=	(t	+	c)2	P[A].	,	Snε	},	Fn	:=
{Mnε	>	0}.	x	∨	y	=	max(x,	y)	x	∧	y	=	min(x,	y)	x	+	=	max(x,	0)	x	−	=	max(−x,	0)	|x|	=	max(x,	−x)	=	x	−	+	x	+	sign(x)	=	1{x>0}	−	1{x	0,	there	exists	a	closed	set	C	⊂	R	with	λ(R	\	C)	<	ε	such		that	the	restriction	f		of	f	to	C	is	continuous.	Klenke,	Probability	Theory,	Universitext,	611	612	24	The	Poisson	Point	Process	Definition	24.1	Denote	by	M	=	σ	(IA
:	A	∈	Bb	(E))	the	smallest	σ	-algebra	on	M(E)	with	respect	to	which	all	maps	IA	:	μ	→	μ(A),	A	∈	Bb	(E),	are	measurable.	In	particular,	the	fair	price	does	not	change	if	we	pass	to	the	equivalent	martingale	X	.	Now	assume	the	claim	is	proved	for	n	∈	N.	Let	(U	x,y,n	:	x,	y	∈	Zd	,	n	∈	N0	)	be	an	independent	family	of	(Zd	)N−1	-valued	x,y,n	x,y,n	random
variables	U	x,y,n	=	(U1	,	.	+	Yn−1,xn−1	=	xn	]	∗x	∗x	=	PY1,1n−1	({xn	})	=	qxn	n−1	=	p(xn−1	,	xn	).	almost	surely.	,	2n	−	1.	(E,	τ	)	is	called	metrizable	if	there	exists	a	metric	d	on	E	such	that	τ	is	induced	by	the	open	balls	Bε	(x)	:=	{y	∈	E	:	d(x,	y)	<	ε}.	We	give	two	proofs	for	this	statement.	(ii)	If	X1	,	X2	,	.	Lemma	5.26	(Entropy	inequality)	Let	b	and	p
be	as	above.	Dominated	convergence	yields	E	X0ε	1Fn	−→)	E	X0ε*	.	Let	X	be	an	adapted	real-valued	stochastic	process.	Corollary	2.38	Let	(An	)n∈N	be	a	sequence	of	independent	events.	By	the	strong	law	7.4	Lebesgue’s	Decomposition	Theorem	177	of	large	numbers,	for	any	r	∈	{p,	q},	there	exists	a	measurable	set	Ar	⊂	Ω	with	(Berr	)⊗N	(Ω	\	Ar	)	=	0
and	1	Xi	(ω)	=	r	n→∞	n	n	for	all	ω	∈	Ar	.	19.12	Steps	5	and	6.	(iii)	(fn	)n∈N	is	uniformly	integrable	and	there	is	a	measurable	map	f	such	that	meas	fn	−→	f	.	,	Rn	that	connect	the	same	two	nodes	can	by	replaced	by	a	single	edge	with	resistance	R	=	(R1−1	+	.	♣	1	q	Lp	(P)	1	p	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	172	7.3	Hilbert	Spaces	In	this
section,	we	study	the	case	p	=	2	in	more	detail.	Then	E	=	N	i=1	Ei	and	by	(13.6),					μ	∂Ei	≤	μ	f	−1	({yi−1	})	+	μ	f	−1	({yi	})	+	μ	Uf	=	0.	Lemma	9.23	Let	I	be	countable,	let	X	be	adapted	and	let	τ	<	∞	be	a	stopping	time.	k=0	“Uniqueness”	For	x,	t	>	0,	we	have	0	≤	t	−1	(1	−	e−t	x	)	≤	x	∧	1	t	→∞	−→	0.	Here,	at	each	time	step,	a	system	of	two	linear
equations	with	two	unknowns	has	to	be	solved.	Due	to	the	lack-of-memory	property	of	the	exponential	distribution,	also	the	remaining	lifetimes	of	the	other	x	−	1	individuals	are	independent	and	exponentially	distributed	with	parameter	1.	If	μ∗	is	σ	-subadditive,	then	for	any	F	∈	U(A),	we	have	F	∈F	μ(F	)	≥	μ(A);	hence	μ	(A)	≥	μ(A).	Hence,	let	X	=	M	+
A	=	M		+	A	be	two	such	decompositions.	n	♣	Exercise	15.5.2	Let	Y1	,	Y2	,	.	,	6}N	,	A	=	(2{1,...,6}	)⊗N	is	the	product		1	⊗N	σ	-algebra	and	P	=	is	the	Bernoulli	measure	(see	Theorem	1.64).	Clearly,	t	→	Xt	is	continuous	at	every	point	t	>	0.	This	theorem	is	a	cornerstone	for	a	functional	analytic	proof	of	the	Radon–Nikodym	theorem	in	Sect.	Hence	⎧	⎨	p,
P[Ye	=	q]	=	−	p,	⎩	1	−	p	,	p	if	q	=	p,	if	q	=	p	,	if	q	=	1.	,	ωk	]	∩	Cn,in	=	∅	for	all	k,	n	∈	N.	(iv)	(Monotonicity)	If	X	≤	Y	almost	surely,	then	E[X]	≤	E[Y	]	with	equality	if	and	only	if	X	=	Y	almost	surely.	1.3	The	Measure	Extension	Theorem	31	μ	is	called	the	product	measure	or	Bernoulli	measure	on	Ω	with	weights	(pe	)e∈E	.	Then,	the	following	are
equivalent:	n→∞	(i)	There	is	a	random	vector	X	such	that	Xn	⇒	X.	By	Theorem	9.35,	Y	:=	(Xn2	)n∈I	2	is	a	submartingale.	θ	+ρ	♣	Exercise	2.2.2	(Box–Muller	method)	Let	U	and	V	be	independent	random	variables	that	are	uniformly	distributed	on	[0,	1].	(ii)	There	is	an	f	∈	V	with	F	(x)	=	)x,	f	*	for	all	x	∈	V	.	If	L[X0	]	=	π,	then	X	is	stationary.	,	tn+1	For
any	function	f	:	I	→	R	and	any	n	∈	N,	define	the	nth	lower	sum	and	upper	sum,	respectively,	by	Ltn	(f	)	:=	n		n		n	(tin	−	ti−1	)	inf	f	[ti−1	,	tin	)	,	i=1	Unt	(f	)	:=	n		n		n	(tin	−	ti−1	)	sup	f	[ti−1	,	tin	)	.	Further,	let	Dn	:=	sup	|Fn	(t)	−	F˜n	(t)|.	(15.2)	Rd	Furthermore,	by	Plancherel’s	theorem,	f	∈	L2	(λ)	if	and	only	if	ϕμ	∈	L2	(λ).	Here,	however,	it	is	primarily
used	to	provide	familiarity	with	the	techniques	that	will	be	needed	for	the	more	challenging	classification	of	the	infinitely	divisible	probability	measures	on	R.	(iii)	Modify	the	argument	in	order	to	show	that	for	α	>	2,	the	α-stable	distributions	in	the	broad	sense	are	also	necessarily	trivial.	The	strong	law	of	large	numbers	does	not	yield	recurrence
immediately	and	we	have	to	do	some	work:	By	the	Markov	property,	for	every	N	∈	N	and	every	y	=	x,	GN	(x,	y)	:=	N		k=0	Px	[Xk	=	y]	=	N		k=0		)	*	N−k	Px	τy1	=	k	Py	[Xl	=	y]	≤	GN	(y,	y).	420	17	Markov	Chains	Now	G(0,	0)	=	limλ↑1	Rλ	and	hence			X	is	recurrent	⇐⇒	lim	λ↑1	[−π,π)D	Re	1	1	−	λ	φ(t)		dt	=	∞.	Show	that	XYδ	has	a	continuous	density.
Let	E		be	another	Polish	space.	Ω1	Proof	The	proof	follows	the	usual	procedure	of	stepwise	approximations,	starting	with	an	indicator	function.	,	Xk	)	is	uniquely	determined	by	integrals	of	the	D	above	type,	we	conclude	that	P(X1	,...,Xk	)	=	PΞ	⊗k	.	Theorem	17.42	(Chung–Fuchs	[27])	An	irreducible	random	walk	on	ZD	with	characteristic	function	φ	is
recurrent	if	and	only	if,	for	every	ε	>	0,			lim	λ↑1	(−ε,ε)D	Re	1	1	−	λ	φ(t)		dt	=	∞.	In	particular,	Nt	is	a	random	variable;	that	is,	measurable.	,	E12	(but	not	E4	)	is	a	π-system.	,	N	−	1,	and	18.4	Speed	of	Convergence	457	where	ρ=	2	r/(1	−	r)	and	θ	∈	C	\	{−1,	+1}	with	|θ	|	=	1.	We	call	C	⊂	Cb	(E;	C)	a	separating	class	for	Mf	3(E)	if	for	any	3	two
measures	μ,	ν	∈	Mf	(E)	with	μ	=	ν,	there	is	an	f	∈	C	such	that	f	dμ	=	f	dν.	Using	the	strong	Markov	property	of	X	(see	Theorem	17.14),	we	get	(	'	'	'	(	(		Px	τyk	<	∞	=	Ex	Px	τyk	<	∞		Fτ	k−1	1{τ	k−1	0,	then	y	is	also	recurrent,	and	F	(x,	y)	=	F	(y,	x)	=	1.	For	this	distribution,	we	introduce	the	symbol	UΩ	:=	μ.	The	number	pω	is	called	the	weight	of	μ	at
point	ω.	By	the	discrete	Fourier	inversion	formula	(Theorem	15.11),	ϕ	is	the	characteristic	function	of	the	3π	probability	measure	μ	∈	M1	(Z)	with	μ({x})	=	(2π)−1	−π	cos(tx)	ϕ(t)	dt.	20.1	Definitions	Definition	20.1	Let	I	⊂	R	be	a	set	that	is	closed	under	addition	(for	us	the	important	examples	are	I	=	N0	,	I	=	N,	I	=	Z,	I	=	R,	I	=	[0,	∞),	I	=	Zd	and	so	on).
Furthermore,	P0	[Yt1	is	even]	≈	12	.	Now	choose	successively	ri+1	∈	Bεi	/2	(ri	)	and	εi+1	∈	(0,	εi	/2)	such	that	qi+1	∈	Bεi+1	(ri+1	).	Lemma	14.21	The	map	f	∗	g	is	measurable	and	we	have	f	∗	g	=	g	∗	f	and			(f	∗	g)	dλ	=			n	Rn		n	Rn	f	dλ	n	Rn	g	dλ	.		Takeaways	A	family	of	measures	is	called	tight	if	for	larger	and	larger	compacts,	there	is	arbitrarily
little	mass	outside	the	compact.	μ	is	∅-continuous.	In	words,	we	choose	a	random	site	i	∈	Λ	(uniformly	on	Λ)	and	invert	the	spin	at	that	site.	23.2	Large	Deviations	Principle	597	Now	let	U	⊂	R	be	open.	If	A	∈	A,	then	clearly	also	1A	X	∈	L1	(P).	(iii)	If	E	is	separable,	then	it	can	be	shown	that	(Mf	(E),	τw	)	is	metrizable;	for	example,	by	virtue	of	the	so-
called	Prohorov	metric.	By	construction,	−	log2	(pe	)	≤	l(e)	≤	1	−	log2	(pe	).	By	(ii)	and	Lemma	4.3,	this	implies			(αf	+	βg)	dμ	=	lim	n→∞	(αfn	+	βgn	)	dμ		=	α	lim	n→∞			fn	dμ	+	β	lim	n→∞	gn	dμ	=	α		f	dμ	+	β	g	dμ.	Proof	Let	An0	↓	∅	be	a	decreasing	sequence	such	that	|E	\	An0	|	<	∞	and	x1	∈	An0	n	for	all	n	∈	N.	be	i.i.d.	variables	with	E[Y1	]	=	0	and
Var[Y1	]	=	σ	2	>	0.		The	additional	statement	holds	since	#C	p	(x)	=	y∈Zd	1{x←→p	y}	.	Let	(Rn	)n∈N0	be	an	independent	family	of	random	variables	with	values	in	E	E	and	with	the	property	P[Rn	(x)	=	y]	=	p(x,	y)	for	all	x,	y	∈	E.	,	αn	such	that	h	=	nk=1	αk	1(tk−1	,tk	]	.	#G	♣	g∈G	20.2	Ergodic	Theorems	In	this	section,	(Ω,	A,	P,	τ	)	always	denotes	a
measure-preserving	dynamical	system.	m=n	(ii)	De	Morgan’s	rule	and	the	lower	semicontinuity	of	P	yield	.	♠	56	2	Independence	The	most	prominent	example	of	an	independent	family	of	infinitely	many	events	is	given	by	the	perpetuated	independent	repetition	of	a	random	experiment.	(iii)	Let	A	⊂	Ω.	As	en(ϕn	−1)	is	the	CFP	of	CPoinμn	,	we	infer
CPoinμn	−→	n→∞	μ.	•	Due	to	thermic	fluctuations,	the	state	of	the	system	is	random	and	distributed	according	to	the	so-called	Boltzmann	distribution	π	on	the	state	space	E	:=	{−1,	1}Λ	.	Then	P[X	+	Y	=	n]	=	e−μ	e−λ	n		μm	λn−m	m!	(n	−	m)!	m=0	=e	−(μ+λ)	n			1		n	m	n−m	(μ	+	λ)n	.	+	Yn	for	n	∈	N.	In	the	second	section,	we	prove	the	convergence
theorem.	Then	E[X1	]	=	0	and	σ	2	:=	Var[X1	]	=	1/(1	−	2α)	<	∞	if	α	<	1/2.	17.5	to	prove	recurrence	are	not	very	robust	and	would	need	a	substantial	improvement	in	order	to	cope	with	even	a	small	change.	A1	If	κ	is	stochastic	and	if	μ	is	a	probability	measure,	then	μ	⊗	κ	is	a	probability	measure.	For	ω	∈	Ac	,	we	define	X		conditions,	X	is	F-adapted.	2
Summing	up,	we	have		|f	|	dμ	≤	ε.	17.6	Invariant	Distributions	.	We	make	the	ansatz	λ	=	(1	−	r)ρ(θ	+	θ)	and	xk	=	ρ	k	(θ	k	−	θ	k	)	1−r	λ−1	x1	for	k	=	1,	.	This	is	a	crucial	property	that	will	be	needed	later.	,	n}	black	balls	is	given	by	the	hypergeometric	distribution	with	parameters	B,	W,	n	∈	N:				B	W		b	n−b		HypB,W	;n	{b}	=		B	+W	n	for	b	∈	{0,	.	♦
Example	15.17	Define	the	function	ϕ	:	R	→	[−1,	1]	for	t	∈	[−π,	π)	by	ϕ(t)	=	1	−	2|t|/π,	and	assume	ϕ	is	periodic	(with	period	2π).	We	abbreviate	Lx	[Z˜	n	]	:=	L	nx!	)	−1	(n	Z	nt	!	)t	≥0	*	.	Proof	By	the	Cauchy–Schwarz	inequality,			|ϕ(t)	−	ϕ(s)|2	=		Rd	2		ei)t,x*	−	ei)s,x*	μ(dx)		2			i)t	−s,x*		e	=		−	1	ei)s,x*	μ(dx)	Rd			2		i)t	−s,x*		i)s,x*	2	e	e		μ(dx)	≤	−	1	μ(dx)	·
Rd		=	Rd	Rd			i)t	−s,x*	−	1	e−i)t	−s,x*	−	1	μ(dx)	e		=	2	1	−	Re(ϕ(t	−	s))	.	Now	assume	that	μ1	and	μ2	are	finite	measures.	For	β	large	n,	only	those	values	of	m	for	which	F	is	close	to	its	minimal	value	can	be	attained	and	thus	the	distribution	is	concentrated	around	0	if	β	≤	1	and	around	β,0	m±	if	β	>	1.	,	xN	∈	I	−1	([0,	a])	such	that		N	i=1	Br(xi	)	(xi	)	⊃
K.	Proof	As	we	need	these	statements	only	in	the	proof	of	the	multidimensional	Jensen	inequality,	which	will	not	play	a	central	role	in	the	following,	we	only	give	references	for	the	proofs.	♦	Remark	20.27	Clearly,	(20.8)	implies	(20.7)	and	hence	“mixing”	implies	“ergodic”.	In	particular,	the	case	1	=	r1	=	r2	=	.	The	same	computation	with	k	=	N	−	1
shows	that	(18.13)	holds	if	and	only	if	θ	N	−	θ	N	=	0;	that	is,	if	θ	2N	=	1.	4.	,	xn	∈	A	such	that	A	⊂	Bε	(xi	).	.}).	Definition	1.8	A	class	of	sets	A	⊂	2Ω	is	called	a	ring	if	the	following	three	conditions	hold:	(i)	∅	∈	A.	Hence,	it	is	enough	3	to	show	that	f	dμ1	=	f	dμ2	for	all	f	∈	Cc	(Rd	).	We	start	by	collecting	some	properties	of	the	space	Ω	=	C([0,	∞))	⊂
R[0,∞)	.	x	1	2	x	1	0	2	0	2	Fig.	,	Bn+1	∈	B(E)).	5).	(Compare	Sect.	By	the	transformation	formula	for	densities	(Theorem	1.101),	the	distribution	of	X	has	the	density			1	1	x	−1	exp	−	log(x)2	f	(x)	=	√	2	2π	for	x	>	0.	(vi)	Consider	an	urn	with	B	∈	N	black	balls	and	W	∈	N	white	balls.	aεi	=	i=1	lim	sup	ε	log(aεi	).	Exercise	5.4.1	Let	X1	,	.	The	“space”	in
“space	average”	is	the	probability	space	in	mathematical	terminology,	and	in	physics	it	is	considered	the	space	of	admissible	states	with	a	certain	energy	(Greek:	ergon).	The	aim	is	to	simulate	a	Markov	chain	X	with	transition	matrix	p	on	a	computer.	On	the	other	hand,	for	a	function	ϕ	that	is	Hölder-γ	-continuous	at	a	given	point	t,	there	need	not
exist	an	open	neighborhood	in	which	ϕ	is	continuous.	+	Xn	n→∞	⇒	N0,1	.	6.1	Almost	Sure	and	Measure	Convergence	In	the	following,	(Ω,	A,	μ)	will	be	a	σ	-finite	measure	space.	Linearity	and	positivity	are	obvious,	and	the	triangle	inequality	is	a	consequence	of	Minkowski’s	inequality,	which	we	will	show	in	Theorem	7.17.	In	the	following,	we	will	not
need	these	statements.	k=1		d	3d	<	∞,	and	so,	by	the	Borel–Cantelli	Therefore,	∞	k=1	P[Mk−1	∈	{0,	L	}]	≤	2dL	d	lemma,	M∞	∈	{0,	L	}.	18.3	Markov	Chain	Monte	Carlo	Method	449	Furthermore,	define	the	state	x	i	in	which	the	spin	at	i	is	reversed,	x	i	:=	x	i,−x(i)	.	Let	(Xn,l	;	l	=	1,	.	♦	n→∞	n→∞	Theorem	5.14	Let	X1	,	X2	,	.	Then	(	'	P	lim	sup	An	∈	{0,
1}	n→∞	and	'	(	P	lim	inf	An	∈	{0,	1}.	Proof	For	every	n	∈	N,	we	have	νn	∈	M1	(R)	since	νn	(R)	=	kn			x	2	PXn,l	(dx)	=	l=1	kn		Var[Xn,l	]	=	1.	Corollary	14.26	(Products	via	kernels)	Let	(Ω1	,	A1	,	μ)	be	a	finite	measure	space,	let	(Ω2	,	A2	)	be	a	measurable	space	and	let	κ	be	a	finite	transition	kernel	from	Ω1	to	Ω2	.	As	t	→	α(t)	is	monotone	increasing,	this
implies	linearity:	α(t)	=	t	α(1)	for	any	t	≥	0.	x∈Σ	That	is,	m	maps	ν	to	its	first	moment.	Note	that	μ1	Σ	−1	=	−1	σ12	σ22		−σ12	σ12	−σ12	σ12	+	σ22		=	(σ12	σ22	)−1	B	T	B,	208	8	Conditional	Expectations			σ1	−σ1	where	B	=	.	By	Theorem	13.23,	this	is	enough	to	conclude	the	proof.	Then	ϕn	=	ϕ.	(ii)	In	particular,	if	E[X2	]	<	∞,	then	1	ϕ(t)	=	1	+	it	E[X]
−	t	2	E[X2	]	+	ε(t)	t	2	2	with	ε(t)	→	0	for	t	→	0.	Proof	If	θ	(p)	=	0,	then	by	(2.14)	ψ(p)	≤		P[#C	p	(y)	=	∞]	=	y∈Zd		θ	(p)	=	0.	Proof	Let	(μn	)n∈N	be	a	sequence	in	M≤1	(E).	♣	9.3	Discrete	Stochastic	Integral	223	9.3	Discrete	Stochastic	Integral	So	far	we	have	encountered	a	martingale	as	the	process	of	partial	sums	of	gains	of	a	fair	game.	Hence,	k	3		if
we	let	ν	=	∞	to	(−1,1)	x	2	ν(dx)	<	∞.	Example	8.18	Let	X,	Y	∈	L1	(P)	be	independent.	Then	X	is	a	martingale	if	and	only	if	E[Xτ	]	=	E[X0	]	for	any	bounded	stopping	time	τ	.	Corollary	17.10	A	stochastic	process	(Xn	)n∈N0	is	a	Markov	chain	if	and	only	if		*	)	)	*	Lx	(Xn+k	)n∈N0		Fk	=	LXk	(Xn	)n∈N0	for	every	k	∈	N0	.	Lemma	15.45	If	(i)	of	Theorem	15.44
holds,	then	(Xn,l	)	is	a	null	array.	12.3	De	Finetti’s	Theorem	269	Proof	“	⇐	”	This	follows	as	in	the	proof	of	Theorem	12.24.	Hence,	it	is	not	enough	to	consider	pairs	only.	If	i	is	the	number	of	the	urn	from	which	the	ball	is	drawn,	then	with	probability	p(i,	j	)	move	the	ball	to	the	urn	with	number	j	.	,	xn−1	)	and	0	≤	k	<	n	−	1,	let	p(k,	x)	=	π({xk	})P	(xk	,
xk+1	)	·	·	·	P	(xn−2	,	xn−1	).	Proof	We	compute		x,y∈E	(w(x)	−	w(y))I	(x,	y)	=							w(x)	w(y)	I	(x,	y)	−	I	(x,	y)	x∈E	y∈E	y∈E	x∈E	x∈A	y∈E	y∈A	x∈E							=	I	(x,	y)	−	I	(x,	y)	w(x)	w(y)	=	w0	I	(A0	)+w1	I	(A1	)−w0(−I	(A0	))−w1	(−I	(A1	))	=	2(w1	−	w0	)I	(A1	).	(ii)	(fn	)n∈N	is	an	L1	(μ)-Cauchy	sequence;	that	is,	fn	−fm	1	−→	0	for	m,	n	→	∞.	k=1	This	is	a
continuous,	symmetric,	real	function	with	ϕμ	(0)	=	1.	20.6	Entropy	.	bm,p	∗	bn,p	=	bm+n,p	for	m,	n	∈	N	and	p	∈	[0,	1].	Changing	the	roles	of	x	and	y	in	the	above	argument,	we	get	F	(x,	y)	=	1.	For	distributions	on	R,	the	problem	is	equivalent	to	finding	a	weak	limit	point	for	a	sequence	of	distribution	functions.		(i)	Show	that	Mn	:=	Xn	−	n−1	k=0	d(Xk
)	defines	a	martingale	M	with	square	n−1	variation	process	)M*n	=	i=0	f	(Xi	)	for	a	unique	function	f	:	E	→	[0,	∞).	Show	that	E[Xi	|Sn	]	=	1	Sn	n	for	every	i	=	1,	.	The	most	prominent	role	is	played	by	the	Euclidean	space	Rn	;	however,	we	will	also	consider	the	(infinite-dimensional)	space	C([0,	1])	of	continuous	functions	[0,	1]	→	R.	Then	there	exists	a
regular	conditional	distribution	i	P[Z1	∈	·	|Z1	+	Z2	=	x]	for	x	∈	R.	Choose	a	parameter	p	∈	[0,	1]	and	an	independent	family	of	identically	distributed	random	variables	p	p	p	p	(Xe	)e∈E	with	Xe	∼	Berp	;	that	is,	P[Xe	=	1]	=	1	−	P[Xe	=	0]	=	p	for	any	74	2	Independence	Fig.	,	N}	and	with	the	convention	ml	:=	#{r	∈	{1,	.	However,	a	finite	measure	is	not
determined	by	its	value	on	{1},	as	μ	=	0	and	ν	=	δ2	are	different	finite	measures	that	agree	on	E.	be	i.i.d.	real	random	variables	with	E[X1	]	=	0	and	E[|X1	|k	]	<	∞	for	all	k	∈	N.	be	an	arbitrary	enumeration	of	Q.	♦	Remark	9.26	The	etymology	of	the	term	martingale	has	not	been	resolved	completely.	If	the	test	functions	are	also	assumed	to	have
compact	support,	we	get	vague	convergence	of	measures.	<	tn	and	B0	,	.	(2.10)	j	∈J	Corollary	2.23	Let	n	∈	N	and	let	μ1	,	.	Clearly,	the	sets	(τ	n	(E0	),	n	∈	Z)	are	disjoint	and	E	=	n∈Z	τ	n	(E0	).	Hence,	let	I	be	a	countable	set	and	let	(Bi	)i∈I	be	pairwise	Bi	=	Ω.	(ii)	If	μ2	is	a	finite	measure	on	Ω2	,	then	κ(ω1	,	·	)	≡	μ2	is	a	finite	transition	kernel.	♠	We
collect	some	simple	properties	of	Hölder-continuous	functions.	The	black	dots	are	the	Ones.	Hence	the	fair	price	π(VT	)	is	determined	uniquely	once	there	is	one	trading	strategy	H	and	a	v0	such	that	VT	=	v0	+	(H	·X)T	.	By	the	measure	extension	theorem	(Theorem	1.53),	μ˜	can	be	uniquely	extended	to	a	σ	-finite	measure	on	A	=	σ	(Z	R	).	♦	Most
Markov	processes	one	encounters	have	the	strong	Markov	property.	1	ϕ(t)	:=	E[ei)t,X*	]	=	ei)t,μ*	e−	2	)t,Ct	*	for	every	t	∈	Rd	.	In	particular,	any	continuous	function	E	→	C	is	measurable.	∈	M(μ∗	)	be	mutually	disjoint,	and	define	A	:=	An	.	By	the	Markov	property,	we	have	*	)	κt	+s	(x,	A)	=	Px	[Xt	+s	∈	A]	=	Ex	PXs	[Xt	∈	A]		=	Px	[Xs	∈	dy]	Py	[Xt	∈	A]		=
κs	(x,	dy)κt	(y,	A)	=	(κs	·	κt	)	(x,	A).	By	the	Riesz–Fréchet	theorem	(here	Corollary	7.28),	there	exists	a	g	∈	L2	(Ω,	A,	μ	+	ν)	such	that			h	dν	=	hg	d(μ	+	ν)	for	all	h	∈	L2	(Ω,	A,	μ	+	ν)	(7.7)	or	equivalently			f	(1	−	g)	d(μ	+	ν)	=	f	dμ	for	all	f	∈	L2	(Ω,	A,	μ	+	ν).	Details	can	be	found,	e.g.,	in	[37,	Theorem	10.2.6].	23.4).	♦	Proof	(of	Theorem	13.29(ii))	We	start
as	in	the	proof	of	Lemma	13.5.	Let	N		{x1	,	x2	,	.	Hence,	let	μ	=	0.	i=1	Evidently,	compact	sets	are	totally	bounded.	1	n	Rn	n→∞	−→	0.	Each	of	these	four	random	variables	is	manifestly	FT	−1	-measurable.	Applying	this	formalism	we	have	been	able	to	describe	the	phase	transition	of	the	Weiss	ferromagnet.	It	is	called	ergodic	if	there	are	no	nontrivial



(w.r.t.	P)	invariant	sets.	Thus	we	can	arrange	the	eigenvalues	by	decreasing	modulus	λ1	=	1	≥	|λ2	|	≥	.	,	ωn	))	=	∞		μ(A	˜	k	).	In	the	case	of	monotone	convergence	we	have	equality.	This	contradicts	the	assumption	and	thus	(i)	holds.	(iii)	If	(Mn	)n∈N0	is	a	martingale	with	M0	=	0	and	if	there	is	a	sequence	(ck	)k∈N	of	nonnegative	numbers	with	|Mn	−
Mn−1	|	≤	cn	a.s.	for	all	n	∈	N,	then			n	)	λM	*	1	2	2	n	λ	≤	exp	Ee	ck	.	The	tower	property	of	conditional	expectation	thus	yields	(21.16).	4.1	Construction	and	Simple	Properties	In	the	following,	(Ω,	A,	μ)	will	always	be	a	measure	space.	Define	U	:=	R	∪	S	=	{u1	,	u2	,	.	However,	even	in	less	extreme	situations	the	solution	of	(19.4)	may	be	ambiguous.	For
n	∈	N,	define	the	map	fn	:	[0,	1]	→	[0,	1]	by	fn	:	x	→	x	n	.	Takeaways	A	signed	measure	is	a	finite	measure	that	can	also	assume	negative	values.	♦	Let	T	∈	N	be	a	fixed	time.	Assume	further	that	there	is	an	r	>	0	such	that	supn∈N	Mr	(Xn	)	<	∞.	(i)	If	E[ϕ(Xt	)+	]	<	∞	for	all	t	∈	I,	(9.1)	then	(ϕ(Xt	))t	∈I	is	a	submartingale.	Now	take	the	expectations	of	both
sides.	Hence	U	=	∞	i=1	Bi	is	an	open	set	U	⊃	A	with	λn	(U	\	A)	<	ε.	˜	Y˜	).	Then	f	◦	X	∈	L1	(μ)	and			(f	◦	X)	dμ	=		f	d	μ	◦	X−1	.	That	is,	A	∈	σ	((Xe	)e∈E\F	)	for	every	finite	F	⊂	E.	♦	Theorem	24.12	For	every	μ	∈	M(E),	there	exists	a	Poisson	point	process	X	with	intensity	measure	μ.	i=1	Now	assume	the	gambler	adopts	the	following	doubling	strategy.	P	ζT
≤	t	=	π		be	a	further,	Proof	Without	loss	of	generality,	assume	T	=	1	and	ζ	=	ζ1	.	(Ω,	A∗	,	μ∗	)	is	called	the	completion	of	(Ω,	A,	μ).	Often	α	is	also	easy	to	obtain	(e.g.,	via	the	representation	from	Exercise	16.1.3).	For	the	proof	of	that	theorem,	only	(17.5)	was	needed.	Then	construct	Uf	from	such	Ufδ,ε	.	(ii)	For	every	N,	we	have	lim	sup	V	N	(ω,	δ)	=	0.
Thus	there	exists	a	C	>	0	such	that,	for	every	μ	∈	M1	(E),	we	have			π	n	μpn	({1,	.	Hint:	Consider	the	random	variable	Y	with	respect	to	the	probability	measure	Xm	P[	·]/E[Xm	],	and	use	Corollary	15.33	to	show	that	E[Xm	1A	(Y	)]/E[Xm	]	=	P[Y	∈	A]	for	all	A	∈	B(R)	and	m	∈	N0	.	Let	B	=	(Bt	,	t	∈	[0,	1])	be	a	Brownian	motion	and	let	Xt	:=	Bt	−	tB1	.
Definition	23.7	(Large	deviations	principle)	Let	I	be	a	rate	function	and	(με	)ε>0	be	a	family	of	probability	measures	on	E.	Hence	(Xn	)n∈N	is	exchangeable.	Since	conditional	expectations	are	defined	only	up	to	equality	a.s.,	all	equalities	with	conditional	expectations	are	understood	as	equalities	a.s.,	even	if	we	do	not	say	so	explicitly.	Hint:	Use	the
stopping	times	σK	=	inf{n	∈	N	:	|Xn	|	≥	K};	σK±	=	inf{n	∈	N	:	±Xn	≥	K}	and	τK	as	in	the	proof	of	Theorem	11.14.	X	and	Y	are	called	(i)	modifications	or	versions	of	each	other	if,	for	any	t	∈	I	,	we	have	Xt	=	Yt	P-almost	surely,	©	The	Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	A.	Let	B	⊂
E	be	closed	and	let	ε	>	0.	n→∞	n→∞	284	13	Convergence	of	Measures	Proof	“(iv)	⇐⇒	(v)	⇒	(vi)”	This	is	trivial.	Let	Λ	⊂	Zd	be	a	set	that	we	interpret	as	the	sites	at	each	of	which	there	is	one	voter.	Show	that	με	:=	N0,ε2	satisfies	an	LDP	with	good	rate	function	I	(x)	=	∞	·	1R\{0}	(x).	i=1	Let	An	(ϕ)	be	the	symmetrized	average	from	Theorem	12.17.	Proof
Let	kn	=	2n	and	l(n)	=	n1/2	(log(n))(1/2)+ε	for	n	∈	N.	Furthermore,	it	is	easy	to	see	that	X	has	Fig.	x3	R3	x2	19.5	Network	Reduction	483	Application	to	Example	19.32	With	the	four	transformations	at	hand,	we	solve	the	problem	of	Example	19.32.	Then	|f	|p	≤	1	+	|f	|p	;	hence				|f	|p	dμ	≤	μ(Ω)	+	|f	|p	dμ	<	∞.	Example	5.24	(Shannon’s	theorem)
Consider	a	source	of	information	that	sends	a	sequence	of	independent	random	symbols	X1	,	X2	,	.	“(iii)	⇒	(i)	⇒	(ii)”	This	is	trivial.	By	the	Markov	property,	for	x	∈	A	and	y	∈	E,		*	Ex	g(Xτ	)		X1	=	y	=	)	g(y),	Ey	[g(Xτ	)],	if	y	∈	A	if	y	∈	E	\	A		=	f	(y).	Definition	7.47	(Dual	space)	Let	(V	,		·	)	be	a	Banach	space.	Unless	otherwise	stated,	the	vector	spaces	C(E),
Cb	(E)	and	Cc	(E)	are	equipped	with	the	supremum	norm.	The	third	section	is	devoted	to	applications	of	the	convergence	theorem	to	computer	simulations	with	the	so-called	Monte	Carlo	method.	If	Ω	is	finite,	then	so	is	μ.	(18.3)	Proof	(i)	Let	m,	n	∈	N0	with	pm	(x,	y)	>	0	and	pn	(y,	z)	>	0.	Hence,	in	general,		τ	is	not	a	stopping	time.	Exercise	21.8.1	Let
X1	,	X2	,	.	“(i)	⇒	(ii)”	If	F	≡	0,	then	choose	f	=	0.	,	n}	→	R	be	monotone	increasing.	The	image	measure	PX	describes	the	distribution	of	X.	nx!	(21.43)	556	21	Brownian	Motion	˜n	Evidently,	Ex	[Z˜	tn	]	=	nx!	n	≤	x	for	every	n;	hence	(Lx	[Zt	],	n	∈	N)	is	tight.	We	consider	the	transition	matrix	⎧	r,	if	j	=	i	+	1	(mod	N),	⎨	p(i,	j	)	=	1	−	r,	if	j	=	i	−	1	(mod	N),	⎩
0,	else.	If	all	Xi	are	real-valued,	then	the	Cesàro	limits	1	Xi	n	n	lim	inf	n→∞	1	Xi	n	n	and	lim	sup	n→∞	i=1	i=1	are	also	almost	surely	constant.	(13.15)	A	Now	let	(X		i	)i∈I	be	a	family	of	random	variables	on	[0,	∞)	with	E[Xi	]	=	1.	290	13	Convergence	of	Measures	Let	f	be	continuous	and	uniformly	integrable	with	respect	to	(μn	)n∈N	and	assume	3	n→∞
that	μn	−→	μ	weakly.	(i)	If	A	is	a	ring,	then	μ(A	∪	B)	+	μ(A	∩	B)	=	μ(A)	+	μ(B)	for	any	two	sets	A,	B	∈	A.	If	C	is	only	positive	semidefinite	(and	symmetric,	of	course),	we	define	Nμ,C	as	1	that	distribution	on	Rn	with	characteristic	function	ϕ(t)	=	ei)t,μ*	e−	2	)t,Ct	*	.	There	are	four	elementary	transformations	for	the	reduction	of	an	electrical	network:	1.
♦	Takeaways	The	speed	at	which	a	Markov	chain	converges	towards	its	invariant	distribution	is	determined	by	the	spectral	gap	of	its	transition	matrix.	i=1	In	other	words,	Z	is	exponentially	distributed	with	parameter	θ1	+	.	For	f	∈	L2	(μ1	),	define		(Af	)(t2	)	=	a(t1	,	t2	)f	(t1	)	μ1	(dt1	).	“(i)”	For	n	∈	N0	and	x,	y,	z	∈	E,	by	construction,			)	x		*	Px	[Xn+1	=
z		Fn	,	Xn	=	y]	=	P	Xn+1	=	z		σ	Rm	,	m	≤	n	,	Xnx	=	y			*	)	=	P	Rn+1	(Xnx	)	=	z		σ	Rm	,	m	≤	n	,	Xnx	=	y	)	=	P	Rn+1	(y)	=	z]	=	p(y,	z).	There	is	a	sequence	(gn	)n∈N	in	L(ϕ)	with	ϕ	=	limn→∞	max{g1	,	.	19.9)	is	equivalent	to	the	triangle-shaped	part	(right	in	1	,	R	2	,	R	3	satisfy	the	condition	Fig.	♣	Exercise	13.3.4	(Helly’s	theorem	in	Rd	)	Let	x	=	(x	1	,	.	♦
Theorem	7.37	Let	μ	and	ν	be	measures	on	(Ω,	A).	For	A	⊂	E,	we	denote	by	A	the	closure	of	A,	by	A◦	the	interior	and	by	∂A	the	boundary	of	A.	Analogously,	we	write	f	≥	0	and	so	on.	464	19	Markov	Chains	and	Electrical	Networks	Further,	define	FA	for	pA	similarly	as	F	was	defined	for	p.	24.2	Properties	of	the	Poisson	Point	Process	.	Then	n	n→∞	PSn∗
−→	N0,C	weakly.	That	is,	P[X	=	n]	=	e−λ	λn	/n!	for	n	∈	N0	.	Uniqueness	of	the	Infinite	Open	Cluster∗	Fix	a	p	such	that	θ	(p)	>	0.	Since	˜	G(y,	y)	=	1	for	all	y	∈	A,	we	have	(compare	Theorem	17.35)	˜	Px	[Xτ	=	y]	=	Px	[τ˜y	<	∞]	=	F˜	(x,	y)	=	G(x,	y)	for	all	x	∈	E	\	A,	y	∈	A.	(4.3)	3	3	3	If	we	only	have	f	−	dμ	<	∞	or	f	+	dμ	<	∞,	then	we	also	define	f	dμ	by
(4.3).	♣	Exercise	14.4.5	Use	the	methods	developed	in	this	section	to	construct	a	stochastic	process	(Xt	)t	≥0	with	independent	and	stationary	Poisson-distributed	increments.	n	n	Fn	(x−)	=	i=1	Formally,	define	F	(−∞)	=	0	and	F	(∞)	=	1.	If	in	(ii)	we	also	have	κ(ω1	,	Ω2	)	≤	1	for	any	ω1	∈	Ω1	,	then	κ	is	called	sub-Markov	or	substochastic.	By	an	iteration
procedure,	show	the	even	stronger	statement	D		X(n)	,	X(n−1)	,	.	Assume	that	the	computer	provides	a	random	number	generator	that	generates	an	i.i.d.	sequence	(Un	)n∈N	of	random	variables	that	are	uniformly	distributed	on	[0,	1].	Observe	that	any	leaf	u	∈	HL	contains	an	edge	that	is	incident	to	a	point	x	∈	TL	.	We	get	things	to	work	out	better	if
we	modify	the	definition:	Fn	=	[−n/2,	(n+1)/2]∩Z.	l=1	l=1	15.5	The	Central	Limit	Theorem	359	In	the	following,	ϕn,l	and	ϕn	will	always	denote	the	characteristic	functions	of	Xn,l	and	Sn	.	Of	course,	for	real	probability	measures,	it	coincides	with	the	old	definition.	Proof	Let	a	<	b.	In	particular,	the	Lebesgue	integral	does	not	make	any	assumption	on
the	geometry	of	the	domain	and	is	thus	more	universal	than	the	Riemann	integral.	(i)	f	is	locally	Hölder-continuous	of	order	γ		for	every	γ		∈	(0,	γ	).	Since	(Y	−	Y		)	1A	≥	0,	we	have	P[A]	=	0;	hence	Y	≤	Y		almost	surely.	i=1	Let	T¯tK,n	and	U¯	tK,n	be	the	linearly	interpolated	versions	of	tK,n	:=	√	1	T	Knt	!	T	σ	2n	tK,n	:=	√	1	U	Knt	!	U	σ	2n	and	for	t	≥	0.
24	in	a	more	general	setting.	Let	X	be	a	random	point	that	is	uniformly	distributed	on	the	surface.	If	only	PXt	=	PX0	holds	for	every	t	∈	I	(without	the	independence),	then	in	general,	X	is	not	stationary.	Step	5.	♦	Example	2.10	Let	Λ	∈	(0,	∞)	and	0	≤	λn	≤	Λ	for	n	∈	N.	(ii)	Every	σ	-ring	is	a	ring,	and	every	ring	is	a	semiring.	In	particular,	if	X	∈	L2	(P),	the
Chebyshev	inequality	holds:	)	*	P	|X	−	E[X]|	≥	ε	≤	ε−2	Var[X].	E[ϕ(X)		En	]	=	An	(ϕ)	:=	n!	(12.3)	∈S(n)	Proof	Let	A	∈	En	.	The	map	Γ	(s,	t)	:=	Cov[Xs	,	Xt	]	for	s,	t	∈	I	is	called	the	covariance	function	of	X.	Here	R1	=	5,	R2	=	2,	R3	=	56	,	δ	=	95/6,	R			R2	=	δ/R2	=	95/12	and	R3	=	δ/R3	=	19.	This	will	imply	that	ft	is	bounded	also	on	the	compact	set	[−1,
1].	n=−∞	This	series	converges	in	L2	,	and	the	sequence	of	square	summable	coefficients	(cn	)n∈Z	is	unique	(compare	Exercise	7.3.1	with	cn	=	(−i/2)an	+	(1/2)bn	and	c−n	=	(i/2)an	+	(1/2)bn	for	n	∈	N	as	well	as	c0	=	b0	).	Independent	random	variables	allow	for	a	rich	calculus.	For	each	x	∈	I	◦	,	there	exists	a	P-null	set	Nx	such	that,	for	every	ω	∈	B	\
Nx	,	we	have		*	)	*	)	E	ϕ(X)|F	(ω)	≥	ϕ(x)	+	E	D	+	ϕ(x)	(X	−	x)		F	(ω)	(8.8)		=	ϕ(x)	+	D	+	ϕ(x)	E[X	|F	](ω)	−	x	=:	ψω	(x).	We	come	back	to	this	point	in	more	detail	in	Chap.	For	an	illustration	of	the	inclusions	between	the	classes	of	sets,	see	Fig.	Now,	for	any	z	∈	[0,	1],	1≥	∞		ψS	n	(z)	k→∞	=	ψS	n	−Skn	(z)	≥	1	−	P[S	n	−	Skn	≥	1]	≥	1	−	pn,l	−→	1,	ψSkn	(z)
l=k+1	3.3	Branching	Processes	91	hence	ψS	n	(z)	=	lim	ψSkn	(z)	=	k→∞	∞		(pn,l	z	+	(1	−	pn,l	))	l=1		=	exp			log	1	+	pn,l	(z	−	1)	.	n→∞	n→∞	Hence	E[Tkn	]/kn	−→	E[X1	].	Then	σ	n	n→∞	PSn∗	−→	N0,1	weakly.	Hence,	for	A	:=	{Xs1	=	i1	,	.	Proof	of	Theorem	15.44	2	“(i)	⇒	(ii)”	We	have	to	show	that	lim	log	ϕn	(t)	=	−	t2	for	every	t	∈	R.	We	only	consider
the	case	d	=	1	(see	[120,	Thm.	By	construction,	ϕ(x)	+	(y	−	x)t	≤	ϕ(y)	for	all	y	<	x	if	and	only	if	t	≥	D	−	ϕ(x).	Definition	21.21	Let	E	be	a	Polish	space.	Let	N	be	the	smallest	(random)	nonnegative	integer	n	such	that	Un	≤	f	(Xn	)/c	and	define	Y	:=	XN	.	♦	7.6	Supplement:	Dual	Spaces	187	We	are	interested	in	the	case	V	=	Lp	(μ)	for	p	∈	[1,	∞]	and	write	F
p	for	the	norm	of	F	∈	V		.	21.1	for	a	computer	simulation	of	a	Brownian	motion.	We	write	Ex	for	expectation	with	respect	to	Px	,	Lx	[X]	=	Px	and	Lx	[X	|F	]	=	Px	[X	∈	·	|F	]	(for	a	regular	conditional	distribution	of	X	given	F	).	Theorem	17.30	For	all	x,	y	∈	E	and	k	∈	N,	we	have	)	*	Px	τyk	<	∞	=	F	(x,	y)	F	(y,	y)k−1.	Since	|f	−	fnk	|	=	(|f	−	fnk	|	−	g)+	+	gk	,
this	implies	that		lim	sup	f	−	fnk	1	≤	lim	sup	k→∞	contradicting	(6.6).	Then	Sn	−	dn	n→∞	⇒	μ.	Then	there	exists	a	unique	stochastic	kernel	κ	from	(E,	B(E))	to	(E	I	,	B(E)⊗I	)	with	the	property:	For	all	x	∈	E	and	for	any	choice	of	finitely	many	numbers	0	=	t0	<	t1	<	t2	<	.	,	6}2	×	A˜	3	.	Roughly	speaking,	it	says	that	a	sequence	of	characteristic	functions
converges	pointwise	to	a	continuous	function	if	and	only	if	the	limiting	function	is	a	characteristic	function	and	the	corresponding	probability	measures	converge	weakly.	,	6}	and	Ω2	=	{1,	2,	3},	then	Ω1	×	Ω2	=	ω	=	(ω1	,	ω2	)	:	ω1	∈	{1,	.	We	denote	Px	=	Pδx	=	κ(x,	·	)	for	x	∈	E.	s,p	(vi)	Poiλ	∗	Poiμ	=	Poiλ+μ	for	λ,	μ	≥	0.	By	assumption	(i),	we	have	S	−
>	−∞	almost	surely	and	τ	:=	sup{n	∈	N0	:	Sn	=	S	−	}	is	finite	almost	surely.	This	is	obvious	since	D	−	ϕ	and	D	+	ϕ	are	the	limits	of	the	sequences	of	slopes	of	the	left-sided	and	right-sided	secant	lines,	respectively.	Hence,	for	pairwise	disjoint,	measurable	sets	A1	,	.	Hence	we	define	the	real	random	variable	X	as	the	sum	of	independent	random
variables,	X	=	b	+	XN	+	X0	+	∞		(Xk	−	αk	),	(16.8)	k=1	where	b	∈	R,	XN	=	N0,σ	2	for	some	σ	2	≥	0	and	PXk	=	CPoiνk	with	intensity	measure	νk	that	is	concentrated	on	Ik	:=	(−1/k,	−1/(k	+	1)]	∪	[1/(k	+	3	1),	1/k)	(with	the	convention	1/0	=	∞),	k	∈	N0	.	By	the	n→∞		Borel–Cantelli	lemma,	μ(B(ε))	=	0.	We	come	back	to	this	point	in	Theorem	5.36.	The
event	is	called	n-symmetric	if	we	allow	only	permutations	of	X1	,	.	Conclude	that	if	F	is	the	distribution	function	of	a	Stieltjes	measure	μ	on	R	and	if	d	F	(x)	=	0	for	λ	-almost	all	x	∈	A.	Definition	13.26	(Tightness)	A	family	F	⊂	Mf	(E)	is	called	tight	if,	for	any	ε	>	0,	there	exists	a	compact	set	K	⊂	E	such	that	sup	μ(E	\	K)	:	μ	∈	F	<	ε.	n→∞	(ii)	E[f	(Xn	)]	−→
E[f	(X)]	for	all	f	∈	Cb	(R).	We	generalize	this	observation	in	the	following	theorem.	(vii)	μ	=	v-lim	μn	and	μ(E)	=	lim	μn	(E).	In	fact,	Ω1	×	Ω2	∈	G	is	trivial.	6.1	Almost	Sure	and	Measure	Convergence	151	Proof	Clearly,	condition	(i)	implies	(ii)	since	Markov’s	inequality	yields	that	p	μ({|f	−	fn	|	>	ε})	≤	ε−p	f	−	fn	p	.	,	XtnN	−→	Xt1	,	.	,	Xk−1	)		A	E	fk	(X1	)	
A	.	p	q	(7.1)	xp	yq	+	−	xy	for	x	∈	[0,	∞).	However,	by	Birkhoff’s	ergodic	theorem,	1	n	If	we	define	A	:=	Thus	P	⊥	Q.	Proof	The	proof	is	simple	and	is	left	as	an	exercise.	In	particular,	X	∼	expθ	if	and	only	if	P[X	>	t	+	s	|X	>	s]	=	e−θt	for	all	s,	t	≥	0.	Show	that	μ(K)	<	∞	for	any	compact	set	K.	Hence	also	A	∩	B	=	A	\	(A	\	B)	∈	A.	As	a	simple	application	of
Fubini’s	theorem,	we	can	give	a	new	definition	for	the	convolution	of,	more	generally,	finite	measures	on	Rn	.	In	particular,	the	composition	κ1	·	κ2	is	a	(sub)stochastic	kernel	from	(Ω0	,	A0	)	to	(Ω2	,	A2	).	Draw	n	∈	N	balls	from	the	urn	without	replacement.	Theorem	14.22	(Convolution	of	n-dimensional	measures)	(i)	If	X	and	Y	are	independent	Rn	-
valued	random	variables	with	densities	fX	and	fY	,	then	X	+	Y	has	density	fX	∗	fY	.	Note	that	X1	◦	i	is	constantly	ω˜	1	(and	hence	A1	-measurable),	and	X2	◦	i	=	idΩ2	(and	hence	A2	-measurable).	If	in	addition,	ϕ(tn	)	=	1	for	all	n,	then	X	=	0	almost	surely.	,	Yk	are	independent	with	distribution	Ξ∞	.	(A	somewhat	more	systematic	proof	is	based	on	the	fact
that	(f,	g)	is	A	–	B(E	×	E)-measurable	(this	will	follow	from	Theorem	14.8)	and	that	d	:	E	×	E	→	[0,	∞)	is	continuous	and	hence	B(E	×	E)	–	B([0,	∞))-measurable.	Since	E	is	Polish,	E	N0	is	also	Polish	and	we	have	B(E	N0	)	=	B(E)⊗N0	(see	Theorem	14.8).	82	2	Independence	For	three	distinct	points	x	1	,	x	2	,	x	3	∈	BL	\	BL−1	,	let	Fx	1	,x	2	,x	3	be	the	event
where	for	any	i	=	1,	2,	3,	there	exists	an	infinite	self-intersection	free	open	path	πx	i	starting	at	x	i	that	uses	only	edges	in	E	p	\	EL	and	that	avoids	the	points	x	j	,	j	=	i.	♠	Example	19.10	Let	(E,	K)	be	a	graph	with	vertex	set	(or	set	of	nodes)	E	and	with	edge	set	K	(see	page	73).	21.5	Construction	via	L2	-Approximation	535	Exercise	21.4.1	(Doob’s
inequality)	Let	X	=	(Xt	)t	≥0	be	a	martingale	or	a	nonnegative	submartingale	with	RCLL	paths.	Using	a	Borel–Cantelli	argument,	it	is	not	hard	to	show	that	this	is	exactly	the	condition	for	recurrence	of	X.	Recursively,	we	define	the	convolution	powers	μ∗k	for	all	k	∈	N	and	let	μ∗0	=	δ0	.	We	want	to	use	this	equation	for	the	conditional	expectations	as
the	defining	equation	for	a	fair	game	that	in	the	following	will	be	called	a	martingale.	Then	Ka	:=	infx≥a	H	x(x)	↑	∞	if	a	↑	∞.	Finally,	we	define	random	variables	as	measurable	maps.	I	(x1	)	l=0	By	symmetry,	we	also	have	Reff	(k	↔	n)	=	n−1		R(l,	l	+	1)	l=k	and	thus	Reff	(0	↔	n)	=	Reff	(0	↔	k)	+	Reff	(k	↔	n).	Define	the	free	energy	(or	Helmholtz
potential)	per	particle	as	F	β	(x)	:=	U	(x)	−	β	−1	H	(x).	For	B	∈	Fσ	,	using	the	Markov	property	(in	the	third	line),	we	get	∞		)	*		)	*	Eπ	1{X∈B}	1{X∈A}	=	Pπ	X	∈	B,	σ	=	n,	Xn	=	x,	X	∈	A	n=0	x∈E	=	∞			)	*	Pπ	X	∈	B,	σ	=	n,	Xn	=	x,	X	◦	τ	n	∈	A	n=0	x∈E	=	∞			)	*	Pπ	X	∈	B,	σ	=	n,	Xn	=	x	Px	[X	∈	A]	n=0	x∈E	)	*	=	Eπ	1{X∈B}	PXσ	[X	∈	A]	.	We	construct	a
whole	family	of	distributions	with	the	same	moments	as	X.	We	now	define	N	=	(Nt	)t	∈[0,1]	by	Nt	:=	L		1(0,t	](Xl	)	for	t	∈	[0,	1].	Let	Λ(t)	=	log	E	e)t,X1	*		for	t	∈	Rd	(which	is	finite	since	Σ	is	finite)	and	Λ∗	(x)	=	supt	∈Rd	)t,	x*	−	Λ(t)	for	x	∈	Rd	.	♦	i=1	Entropy	and	Source	Coding	Theorem∗	We	briefly	discuss	the	importance	of	πn	and	the	entropy.	Then,
for	every	t	∈	R,	−1/2	)	*	E	et	X	=	2πσ	2	=	e	μt	+t	2	σ	2	/2	=	eμt	+t	2	σ	2	/2		∞	−∞	et	x	e−(x−μ)	−1/2	2πσ	2		∞	−∞	2	/2σ	2	dx	e−(x−μ−t	σ	2	)2	/2σ	2	dx	<	∞.	By	Lemma	4.6(ii),	we	have	fn	dμ	−→	f		dμ.	The	convolution	μ	∗	ν	is	defined	as	the	probability	measure	on	(Z,	2Z	)	such	that	(μ	∗	ν)({n})	=	∞		μ({m})	ν({n	−	m}).	Then	h	=	H	(π)	=	−		π({e})
log(π({e})).	(q)	=	lim	Fnk	(q)	and	Define	F	k→∞	(q)	:	q	∈	Q	with	q	>	x	.	By	Definition	17.3,	a	Markov	process	X	=	(Xn	)n∈N0	on	E	is	a	discrete	Markov	chain	(or	Markov	chain	with	discrete	state	space).	Exercise	19.2.1	Show	that	p	is	reversible	with	respect	to	π	if	and	only	if	the	linear	map	L2	(π)	→	L2	(π),	f	→	pf	is	self-adjoint.	The	complement	of	[ω1	,	.
+	αN	μN	,	we	have	μpn	=	N	i=1	λi	αi	μi	−→	α1	π.	396	17	Markov	Chains	Theorem	17.11	Let	I	=	N0	.	Denote	by	Px	that	measure	on	C([0,	∞))	for	which	X	0	=	0).	Let	ξ0,1	,	(ξn,k	)n∈N,	k=1,...,2n−1	be	independent	and	N0,1	-distributed.	n	n=1	Hence	F	is	tight.	As	a	supplement,	we	cite	a	statement	about	the	speed	of	convergence	in	the	central	limit
theorem	(see,	e.g.,	[155,	Chapter	III,	§11]	for	a	proof).	Radon	measures	are	inner	regular	Borel	measures	(locally	finite	measures).	♦	Example	12.23	There	is	no	“monotonicity”	for	conditional	independence	in	the	following	sense:	If	F1	,	F2	and	F3	are	σ	-algebras	with	F1	⊂	F2	⊂	F3	and	such	12.3	De	Finetti’s	Theorem	267	that	(Ai	)i∈I	is	independent
given	F1	as	well	as	given	F3	,	then	this	does	not	imply	independence	given	F2	.	Clearly,	the	set	function	α	on	C	is	monotone,	additive	and	subadditive:	α(C1	)	≤	α(C2	),	α(C1	∪	C2	)	=	α(C1	)	+	α(C2	),	if	C1	⊂	C2	,	if	C1	∩	C2	=	∅,	(13.13)	α(C1	∪	C2	)	≤	α(C1	)	+	α(C2	).	As	E	is	locally	compact	and	separable,	E	is	σ	-compact.	Now,	G	is	a	Dynkin	system
that	contains	a	∩-stable	generator	of	A1	⊗A2	(namely,	the	cylinder	sets	A1	×	A2	,	A1	∈	A1	,	A2	∈	A2	).	3d	Show	by	a	counterexample	that	the	condition	of	similarity	of	the	open	sets	in	U	is	essential.	n→∞	Proof	“(i)	⇐⇒	(ii)	⇐⇒	(iii)”	This	follows	by	the	Portemanteau	theorem.	(iii)	Assume	that,	more	generally,	X	is	only	adapted	and	integrable.	Show	that	X
is	a	martingale	that	converges	almost	surely.	,	d	−	1}	and	Lx,y	=	−Ly,x	(mod	d).	Now	we	check	that	A	and	B	indeed	fulfill	(2.1).	Rw	(19.19)	If	X	is	transient,	in	which	direction	does	it	get	lost?	If	Ft	=	σ	(Xs	,	s	≤	t)	for	all	t	∈	I	,	then	we	denote	by	F	=	σ	(X)	the	filtration	that	is	generated	by	X.	The	following	theorem	says	that	the	converse	also	holds;	that
is,	X	is	a	martingale	if,	for	sufficiently	many	predictable	processes,	the	stochastic	integral	is	a	martingale.	Define	gn	:=	inf	fm	.	As	an	application	we	construct	a	certain	subordinator	and	show	that	the	Poisson	point	process	is	the	invariant	measure	of	systems	of	independent	random	walks.	23.3	Shifted	free	energy	F	β	(m)	−	F	β	(0)	of	the	Weiss
ferromagnet	with	exterior	field	h	=	0.04.	13.1	A	Topology	Primer	.	7.2	Inequalities	and	the	Fischer–Riesz	Theorem	.	n→∞	i=1	“(iii)	⇒	(i)”	Assume	now	that	(iii)	holds.	,	Yn	are	independent	and	Berx	-distributed.	Let	E	be	a	locally	compact	Polish	space	and	let	C0	(E)	be	the	set	of	(bounded)	continuous	functions	that	vanish	at	infinity.	Letter	A	B	C	D	E	F	G
H	I	J	K	L	M	Morse	code	.-...	,	xi−1	,	yi	,	xi+1	,	.	A	different	derivation,	in	contrast	to	the	appearance,	is	based	on	the	function	of	the	rein,	which	is	to	“check	the	upward	movement	of	the	horse’s	head”.	In	order	to	prove		(0	↔	∞)	<	∞.	Exercise	15.3.1	(Compare	[50]	and	[4])	Show	that	there	exist	two	exchangeable	sequences	X	=	(Xn	)n∈N	and	Y	=	(Yn
)n∈N	of	real	random	variables	with	PX	=	PY	but	such	that	n		k=1	D	Xk	=	n		Yk	for	all	n	∈	N.	,	n.	All	eigenvalues	λ1	,	.	;	;	lim	;Xn	−	X;∞	=	0	P-almost	surely.	By	Thomson’s	19.4	Recurrence	and	Transience	473	principle,	the	principle	of	conservation	of	energy	and	the	assumption	R(x,	y)	≤	R		(x,	y)	for	all	x,	y	∈	E,	we	have	u(1)	−	u(0)	=	u(1)	−	u(0)	I	(A1	)	1
	=	I	(x,	y)2	R(x,	y)	2	Reff	(A0	↔	A1	)	=	x,y∈E	≤	1			1			I	(x,	y)2	R(x,	y)	≤	I	(x,	y)2	R		(x,	y)	2	2	x,y∈E	x,y∈E		=	u	(1)	−	u	(0)	=	Reff	(A0	↔	A1	).	With	the	help	of	signed	measures	we	could	present	a	different	approach	to	proving	the	RadonNikodym	theorem.	Exercise	9.2.1	Let	Y	be	a	random	variable	with	E[|Y	|]	<	∞	and	let	F	be	a	filtration	as	well	as		Xt	:=
E[Y		Ft	]	for	all	t	∈	I.	I	Hence	h	=	g	λ-a.e.	By	construction,	g	≤	f	≤	h,	and	as	limits	of	simple	functions,	g	and	h	are	B(I	)	–	B(R)-measurable.	As	I	and	u	are	uniquely	determined	by	x0	,	x1	and	C,	the	quantities	Ceff	(x0	↔	x1	)	and	Reff	(x0	↔	x1	)	are	well-defined	and	can	be	computed	from	C.	♣	Exercise	13.2.7	We	can	extend	the	notions	of	weak
convergence	and	vague	convergence	to	signed	measures;	that	is,	to	differences	ϕ	:=	μ+	−	μ−	of	measures	from	Mf	(E)	and	M(E),	respectively,	by	repeating	the	words	of	Definition	13.12	for	these	classes.	Hence	the	random	variables	X1	,	X2	,	.	,	n}	:	ir	=	l}	for	l	∈	{1,	.	Therefore,	)	*	1	=	P[A]2	.	Now,	by	(P5),	n	2		)	*	)	*	n→∞	P	Nt	=	Ntn	≤	P	Xn	(k)	≥	2	=
2n	P	[N2−n	t	≥	2]	−→	0.	i=1	i=1	⊗N	.	Now	consider	the	general	case	where	G	is	not	necessarily	open.	Markov	processes	can	be	characterised	by	their	transition	probabilities	(stochastic	kernels).	k=0	Theorem	20.16	(Lp	-ergodic	theorem,	von	Neumann	(1931))	Let	(Ω,	A,	P,	τ	)	be	a	measure-preserving	dynamical	system,	p	≥	1,	X0	∈	Lp	(P)	and	Xn	=	X0
◦	τ	n	.	Further,	let	E		:=	∞			En	=	σ	F	:	F	:	E	N	→	R	is	measurable	and	symmetric	n=1		−1		and	let	En	:=	∞	n=1	En	=	X	(E	)	be	the	σ	-algebra	of	exchangeable	events	for	X,	or	briefly	the	exchangeable	σ	-algebra.	Here	C(x,	y)	=	1{|x−y|=1}	.	It	is	easy	to	check	that	(bn,k	)	is	a	basis	(exercise!).	Reflection	Find	an	example	that	shows	that	condition	(iii)	in
Theorem	6.27	cannot	simply	be	dropped.	Then	the	limit	(inferior)	of	the	integrals	is	at	least	as	large	as	the	integral	of	the	limit	(Fatou’s	lemma).	(iii)	B(Rn	)	is	not	a	topology.	k∈K	If	the	family	(Xi	)i∈I	is	independent,	then	the	family	of	σ	-algebras	(σ	(Xj	,	j	∈	Ik	))k∈K	is	independent.	We	thus	get			p2n	(0,	0)	=	(2D)−2n	k1	+...+kD	=n	where	N		l1	,...,lr	=
N!	l1	!···lr	!		2n	,	k1	,	k1	,	.	Proof	Let	(xn	)n∈N	be	a	sequence	in	E	with	lim	xn	=	x0	.	i=1	Then	β	is	a	countable	base	of	the/	topology	τ	;	hence	any/open	set	A	⊂	Ω	is	a	(countable)	union	of	sets	in	β	⊂	i∈N	Bi	.	Hence	the	intersection		AI	:=	A	⊂	Ω	:	A	∈	Ai	for	every	i	∈	I	=	Ai	i∈I	is	a	σ	-algebra.	Clearly,	p	is	the	transition	matrix	of	an	aperiodic	recurrent
random	walk	on	Z.	(13.8)	Let	ε	>	0.	♣	5.2	Weak	Law	of	Large	Numbers	Theorem	5.11	(Markov	inequality,	Chebyshev	inequality)	Let	X	be	a	real	random	variable	and	let	f	:	[0,	∞)	→	[0,	∞)	be	monotone	increasing.	Define	the	intervals	I0	=	[1,	∞)	and	Ik	=	[1/(k	+	1),	1/k)	for	k	∈	N.	That	is,	we	define	the	Cramér	transform	μˆ	∈	M1	(R)	of	μ	by	μ(dx)	ˆ	=	−1
eτ	x	μ(dx)	for	x	∈	R.	This	definition	is	parallel	to	that	of	a	signed	measure	that	is	the	difference	of	two	finite	measures.	=	ki	!	=	i=1	We	close	this	section	by	presenting	a	further,	rather	elementary	and	instructive	construction	of	the	Poisson	process	based	on	specifying	the	waiting	times	between	the	clicks	of	the	Geiger	counter,	or,	more	formally,
between	the	points	of	discontinuity	of	the	map	t	→	Nt	(ω).	,	d.	One	has	to	check	that	the	intervals	(a,	bε	]	and	so	on	can	be	chosen	such	that	μ((a,	bε	])	<	μ((a,	b])	+	ε.	n=1	1An	Summarising,	D	is	a	λ-system	that	contains	a	π-system	that	generates	A1	⊗	A2	(namely,	the	rectangles).	+	Y	martingale	with	n	defines	a	square	integrable		)X*n	=	ni=1	E[Yi2	].
13.	Hence,	by	assumption,	t	]	=	E[X	lim	Q+	s↓t,	s>t	E[Xs	]	=	E[Xt	].	Exercise	7.3.1	(Fourier	series)	For	n	∈	N0	,	define	Sn	,	Cn	:	[0,	1]	→	[0,	1]	by	Sn	(x)	=	sin(2πn	x),	Cn	(x)	=	cos(2πn	x).	,	B2n	−1	with	Ai	=	k:	Bk	⊂Ai	Bk	for	all	i	=	1,	.	That	is	(see	we	make	use	of	the	fact	that	bn,p	=	b1,p	Theorem	2.31),	PX	=	PY1	+...+Yn	,	where	Y1	,	.	18.2	Coupling	and
Convergence	Theorem	Our	goal	is	to	use	a	coupling	of	two	discrete	Markov	chains	that	are	started	in	different	distributions	μ	and	ν	in	order	to	show	the	convergence	theorem	for	Markov	chains.	In	fact,	t	→	N˜	t	is	not	monotone.	Formally,	however,	we	can	also	define	independence	of	random	variables	via	independence	of	the	σ	-algebras	they
generate.	Definition	8.13	If	Y	is	a	random	variable	and	X	∈	E[X	|Y	]	:=	E[X	|σ	(Y	)].	are	also	identically	distributed,	then	the	probability	generating	function	of	S	is	given	by	ψS	(z)	=	ψT	(ψX1	(z)).	Furthermore,	it	shows	that	two	ergodic	measures	are	either	equal	or	mutually	singular.	∈	L1	(μ).	On	the	other	hand,	if	Gn	(x)	=	F	(x	−	n),	then	(Gn	)n∈N
converges	pointwise	to	G	≡	0.	Exercise	14.2.1	Show	the	following	convolution	formulas.	Hence	one	can	choose	the	constant	sequence	En	=	Ω,	n	∈	N.	A	second	possibility	to	spoil	(iii)	is	to	define	N	t	:=	supr	0	und	N	0	=	0.	,	Xtn	)−1	=	δx	⊗	n−1	κti+1	−ti	.	,	Xn	);	hence	n	σ	(Y	)	⊂	σ	(X),	and	thus	also	F	=	σ	(X).	For	example,	we	could	buy	resistors	in	an
electronic	market,	solder	the	network	and	measure	the	resistances	with	a	multimeter.	(i)	If	ϕ	is	differentiable	at	0,	then	ϕ		(0)	=	i	m	for	some	m	∈	R.	For	n	∈	N,	define	An,N	:=	B1/n	(xi	).	In	particular,	in	this	case,	Mf	(E)	⊂	M(E).	The	elements	A	∈	B(Ω,	τ	)	are	called	Borel	sets	or	Borel	measurable	sets.	Zn	decomposes	Fn	subset	Zn	⊂	Fn	\	{∅}	such	that
B	=	C∈Zn	C⊂B	into	its	“atoms”.	,	6}	×	A˜	2	×	{1,	.	Let	u1	=	(1,	0,	.	∈	E	with	Nn		∞				ε	E=	B1/n	(xin	).	If	we	choose	the	orthonormal	basis	cleverly,	then	we	automatically	get	a	continuous	process.	“	⇐	”	Let	ν	be	finite	but	not	totally	continuous	with	respect	to	μ.	♠	Reflection	Consider	the	case	P[Y1	=	1]	=	P[Y1	=	−1]	=	12	.	Let	Sn∗	1	:=	√	nσ	2	n		(Xk	−
μ)	k=1	be	the	normalized	nth	partial	sum.	Consequently,	we	have	P[lim	inf	Sn	=	−∞]	=	1.	♦	(10.2)	i=1	Definition	10.3	Let	(Xn	)n∈I	be	a	square	integrable	F-martingale.	It	remains	to	close	the	gaps	between	the	points	{0,	N,	2N,	.	ε↓0	This	implies	(P5).	For	any	measurable	A	⊂	E,	{Xi	∈	A}	occurs	for	exactly	NΞN	(A)	of	the	i	∈	{1,	.	Hence	E[X0	]	≤	E[XT
]	=	E[YT	]	=	E[Yt	]	≤	E[Xt	]	≤	E[X0	].	(1.7)	Let	A0	=	{∅}.	Then,	for	all	m1	,	.	The	product-σ	-algebra	A=	Ai	i∈I	is	the	smallest	σ	-algebra	on	Ω	such	that	for	every	i	∈	I	,	the	coordinate	map	Xi	is	measurable	with	respect	to	A	–	Ai	;	that	is,			A	=	σ	Xi	,	i	∈	I	:=	σ	Xi−1	(Ai	),	i	∈	I	.	Evidently,	the	set	A	:=	y	∈	R	:	μ	f	−1	({y})	>	0	of	atoms	of	the	finite	measure	μ
◦	f	−1	is	at	most	countable.	Then	pm+n	(x,	z)	≥	pm	(x,	y)	pn	(y,	z)	>	0.	53	53	61	69	73	3	Generating	Functions	.	Joining	serial	edges.	By	the	Borel–Cantelli	lemma,	there	exists	an	N	=	such	that		N−1N(ω)		∞	|Xn	|	≤	K;	hence	Xn	=	Yn	for	all	n	≥	N.	Why	is	this	kind	of	limit	incompatible	with	the	concept	of	the	Lebesgue	integral?	Thus	there	exists	an	open
set	D1	with	B1	⊂	D1	⊂	D	1	⊂	A1	.	A∈Pn	Similarly	as	in	the	simple	shift	case,	we	obtain	the	subadditivity	of	(hn	)	and	thus	the	existence	of	h(P,	τ	;	P)	:=	lim	n→∞	1	1	hn	(P,	τ	;	P)	=	inf	hn	(P,	τ	;	P).	Therefore,	∞		)	*	*	)	−	log	E	e−t	X	=	αt	−	log	E	e−t	Xk	=	αt	+			1	−	e−t	x	ν(dx).	36	6	6	(ii)	Stochastic	independence	can	occur	also	in	less	obvious	situations.
5.5.)	♣	Chapter	15	Characteristic	Functions	and	the	Central	Limit	Theorem	The	main	goal	of	this	chapter	is	the	central	limit	theorem	(CLT)	for	sums	of	independent	random	variables	(Theorem	15.38)	and	for	independent	arrays	of	random	variables	(Lindeberg–Feller	theorem,	Theorem	15.44).	Klenke,	Probability	Theory,	Universitext,	461	462	19
Markov	Chains	and	Electrical	Networks	19.1	Harmonic	Functions	In	this	chapter,	E	is	always	a	countable	set	and	X	is	a	discrete	Markov	chain	on	E	with	transition	matrix	p	and	Green	function	G.	For	t	∈	[0,	1]	\	D	and	{sn	,	n	∈	N}	⊂	D	with	For	t	∈	D,	define	X		sn	−→	t,	the	sequence	Xsn	(ω)	n∈N	is	a	Cauchy	sequence.	For	D	≥	3,	the	sum	over	the
multinomial	coefficients	cannot	be	computed	in	a	satisfactory	way.	For	stopping	times,	however,	only	retrospection	is	allowed.	Then,	for	any	A	∈	E	there	exists	a	B	∈	T	with	P[A		B]	=	0.	Then					lim	inf	fn	dμ	≤	lim	inf	fn	dμ.	Thus	also	(αfn	+	βgn	)	↑	αf	+	βg.	Since	(ii)	implies	(iii),	there	is	a	δ		>	0	such	that	ν(A)	<	ε/2	for	all	A	∈	A	with	μ(A)	≤	δ		.	♦	i=0	i=0
i=1	Takeaways	For	finite	products	of	measurable	spaces,	we	define	the	product	measure.	Therefore,	A	is	sometimes	called	the	increasing	process	of	Y	.	We	further	assume	that	the	U	x,y,n	are	independent	of	X	and	Y		.	By	the	above,	for	any	n	∈	N,	we	can	choose	an	Nn	∈	N	such	c	n	that	μ(An,N		)	<	ε/2	for	all	μ	∈	F	.	(To	be	precise,	we	have	shown	only
for	/n1/α	α	∈	(0,	1]	(in	Corollary	15.26)	and	for	α	=	2	(normal	distribution)	that	ϕα,γ	is	in	fact	a	CFP.	As	X	is	a	supermartingale,	for	every	N,	the	family	(Xs	)s≤N	is	uniformly	integrable.	Proof	By	Lemma	23.12,	for	every	A	⊂	E,	)	*	P	ξn	(X)	∈	A	=		P[ξn	(X)	=	ν]	ν∈A∩En	≤		e−nH	(ν	|	μ)	ν∈A∩En		≤	#(A	∩	En	)	exp	−	n	inf	Iμ	(A	∩	En	)		≤	(n	+	1)#Σ	exp	−	n
inf	Iμ	(A)	.	Let	ϕ	:	R	→	[0,	∞)	have	the	properties	that	•	ϕ(ak	)	=	yk	for	all	k	=	0,	.	,	Xn	)]	=	g	E[X1	],	.	21.9	Pathwise	Convergence	of	Branching	Processes	557	Lemma	21.47	The	first	k	moments	of	Yt	can	be	computed	by	differentiating	the	Laplace	transform,	Ex	[Ytk	]	=	(−1)k		dk	x		ψ(λ)		,	dλk	λ=0			where	ψt	(λ)	=	exp	−	λtλ+1	.	Proof	Clearly,	X	is	a
Gaussian	process.	A	probability	measure	μ	on	(E1	×E2	,	E1	⊗E2	)	with	μ(	·	×E2	)	=	μ1	and	μ(E1	×	·	)	=	μ2	is	called	a	coupling	of	μ1	and	μ2	.	Similarly,	we	get	dy	dx	;	hence	dx	=	dy	.	First	assume	that	r	is	rational.	Now	let	k	≥	2.	.,	such	that	X1	+	.	♦	Definition	20.11	The	stochastic	process	X	(from	Example	20.10)	is	called	ergodic	if	(Ω,	A,	P,	τ	)	is
ergodic.	We	assume	that	(Ft	)t	∈I	=	F	=	σ	(X)	is	the	filtration	generated	by	X.	Let	P	be	a	finite	measurable	partition	of	Ω;	that	is,	P	=	{A1	,	.	+	Tn−1	and	define	X	by	Xt	:=	sup	n	∈	N	:	Sn	≤	t	for	all	t	≥	0.	Example	16.4	For	every	measurable	set	A	⊂	R	\	{0}	and	every	r	>	0,	r	−1	CPoirν	(A)	=	e−rν(R)ν(A)	+	e−rν(R)	∞	k−1	∗k		r	ν	(A)	k=2	k!	r↓0	−→	ν(A).
Further,	let	E	=	{0,	.	In	the	case	of	bond	percolation	on	Z2	,	however,	the	exact	value	of	pc	can	be	determined	due	to	the	self-duality	of	the	planar	graph	(Z2	,	E).	Example	5.9	(i)	Let	p	∈	[0,	1]	and	X	∼	Berp	.	It	is	substochastic	if	Ki	≤	1	for	all	i	∈	Ω1	.	X	is	a	submartingale	if	and	only	if	A	is	monotone	increasing.	In	particular,	for	countable	time	sets,	the
strong	Markov	property	follows	from	the	Markov	property.	If	μ	=	P	is	a	probability	measure,	then	we	say	that	E	holds	P	-almost	surely	(a.s.),	respectively	almost	surely	on	A.	♦	Example	23.5	If	PX1	=	12	δ−1	+	12	δ1	,	then	Λ(t)	=	log	cosh(t).	5.5)	is	a	stochastic	process	with	range	N0	.	Now	X¯	is	an	aperiodic	irreducible	random	walk;	hence,	by	Theorem
18.8,	there	is	a	successful	coupling	for	all	initial	states.	×	{en−1	}	×	E	{n,n+1,...}	.	Since	we	have	Sn	→	∞	almost	surely,	the	coupling	(X,	Y	)	is	successful.	+	Xn	,	n	∈	N.	,	yn	∈	C,	we	have	n		yk	y¯l	f	(tk	−	tl	)	≥	0,	k,l=1	in	other	words,	if	the	matrix	(f	(tk	−	tl	))k,l=1,...,n	is	positive	semidefinite.	Then	1	E[X]	=	√	2πσ	2	1	=	√	2πσ	2		∞	−∞		∞	−∞	1	=	μ+	√
2πσ	2	x	e−(x−μ)	2	/(2σ	2	)	(x	+	μ)	e−x		∞	−∞	x	e−x	dx	2	/(2σ	2	)	2	/(2σ	2	)	dx	(5.4)	dx	=	μ.	♣	Exercise	23.2.6	Let	Xλ	∼	Poiλ	for	every	λ	>	0.	(13.9)	Proof	“(i)	⇒	(ii)”	By	the	simple	implication	in	Prohorov’s	theorem	(Theorem	13.29(ii)),	weak	convergence	implies	tightness.	,	τ	(d)}	<	∞.	♣	⎞	1/2	1/3	1/6	⎟	⎜	Exercise	18.4.4	Let	E	=	{1,	2,	3}	and	p	=	⎝	1/3	1/3
1/3⎠.	Definition	13.1	A	topological	space	(E,	τ	)	is	called	a	Polish	space	if	it	is	separable	and	if	there	exists	a	complete	metric	that	induces	the	topology	τ	.	♣	Exercise	11.2.8	Let	p	∈	[0,	1]	and	let	X	=	(Xn	)n∈N0	be	a	stochastic	process	with	values	in	[0,	1].	Hence	there	is	an	N	∈	N	with	P[τ	<	N]	≥	12	.	The	σ	-algebra	(2E	)⊗N	:=	σ	(A)	is	called	the	We
write	e∈E	pe	δe	product	σ	-algebra	on	Ω.	Hint:	Use	(ii)	and	the	law	of	large	numbers.	Hence	we	make	the	following	definition.	1	+	2−Sn	We	conclude	that	(Zn	)n∈N0	:=	(|Sn	|)n∈N0	is	a	Markov	chain	on	N0	with	transition	matrix	⎧	z	2	/(1	+	2z	),	⎪	⎪	⎨	1,	p(z,	z	)	=	z	⎪	1/(1	+	2	),	⎪	⎩	0,	if	z	=	z	+	1	>	1,	if	z	=	z	+	1	=	1,	if	z	=	z	−	1	≥	0,	else.	The	chapter
on	Brownian	motion	(21)	ix	x	Preface	to	the	First	Edition	makes	reference	to	Chaps.	n>x	Proof	For	m	∈	N,	by	comparison	with	the	corresponding	integral,	we	get	∞		n−2	≤	m−2	+		∞	t	−2	dt	=	m−2	+	m−1	≤	m	n=m	2	.	This	shows	that	in	Part	(ii)	of	n∈N	the	Borel–Cantelli	lemma,	the	assumption	of	independence	is	indispensable.	+	Zi	.	This	doubling
strategy	itself	is	the	second	meaning	of	la	martingale.	♦		Remark	12.8	If	we	write	Ξn	(ω)	:=	ξn	(X(ω))	=	n1	ni=1	δXi	(ω)	for	the	nth	empirical	distribution,	then,	by	Exercise	12.1.1,	we	have	En	⊃	σ	(Ξn	)	and	En	=	σ	(Ξn	,	Xn+1	,	Xn+2	,	.	with	distribution	Ξ∞	.	Since	C	=	C0	+	iC0	,	C	is	dense	in	Cb	(E;	C).	Exercise	7.6.1	Show	that	Ef	⊂	Lp	(μ)	is	dense	if	p
∈	[1,	∞).	Hence	I	(x)	≥	J	(x).	Hence	E[X2	]	=	E[X(X	−	1)]	+	E[X]	=	n2	p2	+	np(1	−	p)	and	thus	Var[X]	=	np(1	−	p).	Furthermore,	κ1	⊗	κ2	(ω0	,	An	×	Ω2	)	≤	n	·	κ1	(ω0	,	An	)	<	∞.	Furthermore,	assume	there	is	a	sequence	(En	)n∈N	in	Z	E	,R	with	En	↑	Ω	and	μ(En	)	<	∞	for	all	n	∈	N	(this	condition	is	satisfied,	for	example,	if	μ	is	finite	and	Ωi	∈	Ei	for	all	i	∈
I	).	Otherwise	the	bet	is	lost	(for	the	player,	not	for	the	casino).	Let	V	:=	Q	∩	I	◦	.	An	irreducible	and	aperiodic	positive	recurrent	Markov	chain	is	mixing.	In	the	following,	an	important	role	is	played	by	the	function	*	)	U	(x)	:=	E	X2	1{|X|≤x}	.	Then	F1	⊂	F2	⊂	.	Define	either	B	=	C	or	B	∩	C	=	∅	holds.	Thus	the	notion	of	a	martingale	might	first	have
been	used	for	general	gambling	strategies	(checking	the	movements	of	chance)	and	later	for	the	doubling	strategy	in	particular.	Proof	We	carry	out	the	proof	by	induction	on	k.	(18.4)	438	18	Convergence	of	Markov	Chains	If,	in	particular,	m	∈	N(x,	y),	n	∈	N(y,	x)	and	k	≥	ny	,	then	kdy	∈	N(y,	y);	hence	m	+	kdy	∈	N(x,	y)	and	m+	n	+	kdy	∈	N(x,	x).	E
ϕ(X)		En	=	E	⎣	n!	n!	∈S(n)	∈S(n)	Heuristic	for	the	Structure	of	Exchangeable	Families	Consider	a	finite	exchangeable	family	X1	,	.	Define	S	n	:=	∞		l=1	Xn,l	and	Skn	:=	k		Xn,l	for	k	∈	N.	(20.4)	Indeed,	we	have	{X	∈	A}	=	{X	∈	τ	−n	(A)}	=	{(Xn	,	Xn+1	,	.	For	any	A	∈	AJ	,	XJ−1	(A)	⊂	Ω	is	called	a	cylinder	set	with	base	J	.	19.15	Simple	ladder	graph	a	z	Fig.
(8.6)	Lemma	8.10	The	map	E[X	|F	]	has	the	following	properties.	3.1	Definition	and	Examples	87	Example	3.4	(i)	Let	X	be	bn,p	-distributed	for	some	n	∈	N	and	let	p	∈	[0,	1].	Since	we	have	a	prefix	code,	the	sets	CL	(e),	e	∈	E,	are	pairwise	disjoint	and	e∈E	CL	(e)	⊂	{0,	1}L	.	118	5	Moments	and	Laws	of	Large	Numbers	(ii)	Let	n	∈	N	and	p	∈	[0,	1].	For	ω
∈	Ω	\	N,	define	F˜	(z,	ω)	:=	inf	F	(r,	ω)	:	r	∈	Q,	r	>	z	for	all	z	∈	R.	(iv)	Let	r	>	0	(note	that	r	need	not	be	an	integer)	and	let	p	∈	(0,	1].	If	(Ω	,	A	)	=	R,	B(R)	,	then	X	is	called	a	real	random	variable	or	simply	a	random	variable.	Clearly,	A2L	↑	{N	≥	2}	for	L	→	∞.	Let	r	:=	Pp	[0	∈	T	].	♦	Definition	1.106	If	the	distribution	function	F	:	Rn	→	[0,	1]	is	of	the	form	
F	(x)	=	x1	−∞		dt1	·	·	·	xn	−∞	dtn	f	(t1	,	.	21.5	Construction	via	L2	-Approximation	541	As	shown	above,	the	sequence	(Xn	)	converges	in	L2	([0,	1])	towards	a	process	X,	which	(up	to	continuity	of	paths)	has	all	properties	of	Brownian	motion:	Xt	=	ξ0	t	+	∞		n=1	√	2	ξn	sin(nπ	t).	On	the	other	hand,	(16.4)	implies	ϕn,ln	−→	1	for	n→∞	every	sequence	(ln	)
with	ln	≤	kn	.	nx,y	:=	nx	+	d	d	Owing	to	(18.4),	we	have	(nx,y	+	ny,z	)d	+	Lx,y	+	Ly,z	∈	N(x,	z).	We	say	that	E	holds	μ-almost	everywhere	(a.e.)	or	for	almost	all	(a.a.)	ω	if	there	exists	a	null	set	N	such	that	E(ω)	holds	for	every	ω	∈	Ω	\	N.	For	periodic	chains,	the	state	space	decomposes	into	d	subspaces	that	can	be	entered	at	specific	times	(mod	d)	only.
♦	Next	we	show	Jensen’s	inequality	for	conditional	expectations.	Remark	8.26	It	is	sufficient	to	check	property	(i)	in	Definition	8.25	for	sets	A2	from	a	π-system	E	that	generates	A2	and	that	either	contains	Ω2	or	a	sequence	En	↑	Ω2	.	Finally,	we	consider	the	general	situation.	To	this	end,	the	voter	chooses	a	neighbor	In	+	Nn	∈	Λ	(with	periodic
boundary	conditions;	that	is,	with	addition	modulo	L	in	each	coordinate)	at	random	and	adopts	his	or	her	opinion.	Now	assume	that	all	of	the	composed	maps	Xi	◦Y	are	A	–	Ai	-measurable.	Let	(E,	d)	be	a	metric	space.	By	construction,	we	have	g	≤	h	and			g	dλ	=	lim	I	n→∞	I	gn	dλ	=	lim	Ltn	(f	)	n→∞			=	lim	Unt	(f	)	=	lim	n→∞	n→∞	I	hn	dλ	=	h	dλ.	On	the
other	hand,	by	construction,	we	have	qk	∈	i=1	Bεi	(ri	)	for	all	k	∈	N.	Using	the	notation	of	variance	and	covariance,	a	simple	proof	looks	like	this:	Case	1:	Var[Y	]	=	0.	We	can	represent	the	codes	of	all	letters	in	a	tree.	By	the	local	central	limit	theorem	(see,	e.g.,	[20,	pages	224ff]	for	a	one-dimensional	version	of	that	theorem	or	Exercise	17.5.1	for	an
analytic	derivation),	we	have	n→∞	nD/2	p2n	(0,	0)	=	nD/2	P[Sn	=	0]	−→	2	(4π/D)−D/2	.	Exercise:	Prove	the	statements	made	above.	A	nice	survey	on	MCMC	methods	including	coupling	from	the	past	is	[66].	Let	1,	if	the	nth	ball	is	black,	Xn	:=	0,	else,	270	12	Backwards	Martingales	and	Exchangeability	and	let	Sn	=	n	i=1	Xi	.	We	saw	that	almost	sure
convergence	implies	convergence	in	measure/probability.	3	3	Proof	(i)	Case	Mf	(E).	As	a	consequence,	the	terminal	σ	-algebra	and	the	exchangeable	σ	-algebra	coincide	(mod	P).	Let	N	∈	A	with	μ(N)	=	0.	Theorem	4.10	(Image	measure)	Let	(Ω,	A)	and	(Ω		,	A	)	be	measurable	spaces,	let	μ	be	a	measure	on	(Ω,	A)	and	let	X	:	Ω	→	Ω		be	measurable.	We	can
define	the	conditional	expectation	as	the	monotone	limit	E[X	|F	]	:=	lim	E[Xn	|F	],	n→∞	where	−X−	≤	X1	and	Xn	↑	X.	Definition	1.48	(μ∗	-measurable	sets)	Let	μ∗	be	an	outer	measure.	Takeaways	A	Polish	space	is	a	separable	topological	space	that	allows	for	a	complete	metric,	e.g.,	the	euclidian	space	Rd	.	For	λ	≥	0,	define	the	continuous	function	fλ	:
[0,	∞]	→	[0,	1]	by	fλ	(x)	=	e−λx	if	x	<	∞	and	fλ	(∞)	=	limx→∞	e−λx	.	We	only	sketch	the	argument.	,	yn−1	)	κn	yne−1	,	yn−1	+	An	k=1		μk	(Ak	)	μn	(An	).	(ii)	This	is	a	direct	consequence	of	(i)	since	SA	(x)	⊃	E	\	A	for	any	x	∈	E	\	A.	,	Yn	)	given	{X	=	x}”	should	be	(Berx	)⊗n	.	♣	Exercise	5.3.7	Let	m	∈	(0,	∞)	and	let	Wm	=	p	=	(pk	)k∈N0	is	a	probability
measure	on	N0	and	∞			kpk	=	m	k=0	be	the	set	of	probability	measures	on	N0	with	expectation	m.	♣	13.2	Weak	and	Vague	Convergence	In	Theorem	13.11,	we	saw	that	integrals	of	bounded	continuous	functions	f	determine	a	Radon	measure	on	a	metric	space	(E,	d).	Reflection	Let	f	:	R	→	R	be	continuously	differentiable.	In	Theorem	7.17,	we	verified
the	triangle	inequality	and	hence	that		·	p	is	a	norm.	Replace	the	parallel	edges	by	edges	with	resistances	(	12	=	19	95	+	5	)	10	and	6	19	−1	(	19	+	1)	=	25	,	respectively	(right	in	Fig.	The	following	are	equivalent.	Hence,	by	(21.7),	|Xt	(ω)	−	Xu	(ω)|	≤	m			Xt	(ω)	−	Xt	l	m				≤	(ω)	2−γ	l	≤	l−1	l=n	l=n	2−γ	n	.	1	19.5	Network	Reduction	481	R	(x,	1)	x	R	(0,
x)	1	R	(0,	1)	0	Fig.	Macroscopically,	this	is	the	quantity	that	can	be	measured.	If	simple	random	walk	on	(E,	K)	is	recurrent,	then	so	is	simple	random	walk	on	(E		,	K		).	3	Indeed,	if	P	=	Q,	then	there	exists	an	f	with	|f	|	≤	1	and	f	dP	=	f	dQ.	“≥”	For	any	admissible	pair	p,	q	and	all	f	∈	Lq3(μ),	g	∈	Lp	(μ),	by	the	definition	of	the	operator	norm,	κ(f	)p	gp	≥	
fg	dμ.	Clearly,	we	have	E	=	σ	(A).	Hence,	by	the	π–λ	theorem	(Theorem	1.19),	D	=	A1	⊗A2	.	Proof	Define	Y	n	=	(B2−n	+t	−	B2−n	)t	∈[0,2−n	]	,	n	∈	N.	“(i)	⇒	(iii)”	Let	μ	be	a	premeasure	and	A	∈	A.	Hence	one	cannot	infer	that	(X1	,	.			If	B	is	a	Brownian	motion	)	*	(on	some	probability	space	(Ω,	A,	P)),	then	there			exists	an	Ω	∈	A	with	P	Ω	=	1	and	B(ω)	∈
C([0,	∞))	for	every	ω	∈	Ω.	In	the	first	category,	we	have	characteristic	functions,	Laplace	transforms	and	probability	generating	functions.	−1	+	0	♦	(5.5)	Theorem	5.10	(Blackwell–Girshick)	Let	T	,	X1	,	X2	,	.	(vii)	Let	Ω	be	an	arbitrary	nonempty	set.	For	the	latter,	we	prove	only	that	one	of	the	two	implications	(Lindeberg’s	theorem)	that	is	of	interest	in
the	applications.	If	X1	,	X2	,	.	At	the	second	stage,	depending	on	the	value	of	X,	the	values	of	Y	=	(Y1	,	.	˜	Let		t	+1	α	+	u(t)	−	u(s)	ds	2	t				1			e−sx	ds	ν(dx)	=	e−t	x	ν˜	(dx).	<	jn	from	I	,	and	with	the	notation	J	:=	{j0	,	.	,	mn	}	such	that	[ω1	,	.		The	series	∞	X	n=1	n	converges	almost	surely	if	and	only	if	each	of	the	following	three	conditions	holds:	∞		(i)
P[|Xn	|	>	K]	<	∞.	On	the	other	hand,	there	exist	weakly	mixing	systems	that	are	not	strongly	mixing	(see	[81]).	Similarly,	for	closed	C	⊂	Rd	,	we	have	lim	sup	n→∞	1	log	PSn	/n	(C)	≤	−	inf	I˜(C).	19.8	Reduced	network	with	three	nodes.	∈	A	such	that	(a,	b]	⊂	∞	n=1	(a(n),	b(n)]	and	a	<	b.	We	will	not	go	into	the	17.1	Definitions	and	Construction	393
details	but	will	henceforth	assume	that	all	Markov	processes	are	time-homogeneous.	♣	Exercise	6.1.2	Give	an	example	of	a	sequence	that	(i)	converges	in	L1	but	not	almost	everywhere,	(ii)	converges	almost	everywhere	but	not	in	L1	.	♠♠	The	following	theorems	are	simple	consequences	of	Corollary	15.3.	Theorem	15.4	The	distribution	of	a	bounded
real	random	variable	X	is	characterized	by	its	moments.	n→∞	(i)	fn	−→	f	in	measure.	122	5	Moments	and	Laws	of	Large	Numbers	(ii)	We	say	that	(Xn	)n∈N	fulfills	the	strong	law	of	large	numbers	if			,	+	1		P	lim	sup			Sn		=	0	=	1.	2	x	0	2	5/2	2	x	1	0	Fig.	Show	that	X	is	lattice	distributed	if	and	only	if	there	exists	a	u	=	0	such	that	|ϕ(u)|	=	1.	Let	Z0	=	1
and	inductively	define	Zn+1	=	Zn		Xn,i	for	n	∈	N0	.	2p	−	1	♦	476	19	Markov	Chains	and	Electrical	Networks	5	4	3	2	1	0	Fig.	(8.18)	Proof	We	check	that	the	right-hand	side	in	(8.18)	has	the	properties	of	the	conditional	expectation.	n→∞	(iii)	If	A	⊂	2Ω	is	a	σ	-algebra	and	if	An	∈	A	for	every	n	∈	N,	then	A∗	∈	A	and	A∗	∈	A.	In	particular,	we	let	{X	≥	0}	:=
X−1	([0,	∞))	and	define	{X	≤	b}	similarly	and	so	on.	A	quick	test	detects	a	defective	device	with	probability	95%;	however,	with	probability	10%	it	gives	a	false	alarm	for	an	intact	device.	“(iv)	⇒	(v)”	Let	A,	A1	,	A2	,	.	17.5	Application:	Recurrence	and	Transience	of	Random	Walks	415	As	E	is	finite,	there	is	a	y	∈	E	with	G(x,	y)	=	∞.	♣	Chapter	21
Brownian	Motion	In	Example	14.48,	we	constructed	a	(canonical)	process	(Xt	)t	∈[0,∞)	with	independent	stationary	normally	distributed	increments.	(iii)	Show	that	if	Y	is	adapted,	integrable	and	right	continuous,	then	Y	is	a	martingale	if	and	only	if	E[Yτ	]	=	E[Y0	]	for	every	bounded	stopping	time	τ	.	,	Yn	.	The	exchangeable	events	form	the	so-called
exchangeable	σ	-algebra	E.	The	set	function	μ	on	A	defined	by	μ(A)	=	(iv)	(v)	(vi)	(vii)	(viii)	0,	if	A	is	finite,	∞,	if	Ac	is	finite,			is	a		content	but	is	not	a	premeasure.	be	independent	and	uniformly	distributed	on	[0,	1]	and	independent	of	T	.	@	Example	8.23	Let	μ	and	ν	be	finite	measures	with	ν	0	μ.	This	is	a	direct	consequence	of	the	fact	that	σ	(Xi	)	⊂	A˜i	.
Proof	Let	X˜	and	Y˜	be	two	independent	Markov	chains	on	E,	each	with	transition	matrix	p.	(iv)	Let	k	∈	N	and	let	ϕ	:	E	k	→	R	be	a	map.	20.1	Definitions	..	14.2	Finite	Products	and	Transition	Kernels	315			Evidently,	B((Rd	)n	)	=	σ	ϕn	(A1	×	·	·	·	×	An	)	:	A1	,	.		=	(X	t	,	t	∈	[0,	∞))	of	X	whose	paths	are	locally	(i)	There	is	a	modification	X			Hölder-continuous
of	every	order	γ	∈	0,	βα	.	Define	Bi0	=	Ai	and	Bi1	=	Aci	for	i	∈	I	.	Thereafter,	for	irreducible	aperiodic	chains,	we	state	the	convergence	theorem.	A	⊂	E	is	called	relatively	compact	if	A	is	compact.	Therefore,	t	→∞	P[Sn	≥	0]	=	P[X1	=	.	Let	(μn	)n∈N	be	a	sequence	of	measures	(premeasures,	contents)		and	let	(αn	)n∈N	be	a	sequence	of	nonnegative
numbers.	are	i.i.d.	(with	nontrivial	distribution),	then	trivD	n→∞	ially	Xn	−→	X	but	not	Xn	−→	X	in	probability.	However,	in	general,	B	∈	/	Fτ	since	up	to	time	τ	,	we	cannot	decide	whether	X	will	ever	exceed	K	+	5.	n=1	Reflection	Check	that	suprema	of	lower	semicontinuous	functions	are	lower	semicontinuous.	Example	2.2	(Rolling	a	die	three	times)
We	roll	a	die	three	times.	In	order	to	illustrate	this,	assume	that	X	and	Y	are	nontrivial	independent	real	random	variables.	Proof	For	the	case	d	=	1	see	[19,	§20,	Theorem	23]	or	[54,	Chapter	XIX.2,	page	622].	,	2m	},	and	let	D=	Dm	.	Hence,	by	(20.7),	(	n→∞	1	'	P	A	∩	τ	−k	(A)	−→	P[A]2.	n→∞	n→∞	(vi)	lim	μn	(A)	=	μ(A)	for	all	measurable	A	with	μ(∂A)	=
0.	<	sn	<	t	and	all	i1	,	.	However,	for	the	formal	proofs	of	the	latter	inequalities,	we	will	follow	a	different	route.	E	(T¯tK	+s	−	Ts	Hence,	by	Kolmogorov’s	moment	criterion	(Theorem	21.42	with	α	=	4	and	β	=	1/2),	(L[T¯	Kn	,n	],	n	∈	N)	is	tight	in	M1	(C([0,	∞))).	Proof	The	claims	follow	inductively	by	Theorem	14.25.	703	Subject	Index	.	To	this	end,	let	Y
be	an	independent	copy	of	X;	that	is,	a	random	variable	with	PY	=	PX	that	is	independent	of	X.	Lemma	14.7	Let	∅	=	J	⊂	I	.	We	denote	by	−	br,p		∞			−r	(−1)k	pr	(1	−	p)k	δk	:=	k	(1.17)	k=0	the	negative	binomial	distribution	or	Pascal	distribution	with	parameters		r	and	p.	n→∞		±	(ii)	If	ϕ	∈	M	,	then	ϕ(∅)	=	0	since	R		ν(∅)	=	n∈N	ν(∅).	It	is	linear	on	each
of	the	intervals	[ak−1	,	ak	].	Reflection	Find	an	example	for	strict	inequality	in	(17.8).	So	far,	with	our	machinery	we	can	only	deal	with	conditional	probabilities	of	the	type	P[	·	|X	∈	[a,	b]],	a	<	b	(since	X	∈	[a,	b]	has	positive	probability).	(Note:	Clearly,	this	does	not	mean	C	that	f	would	be	continuous	in	every	point	x	∈	C.)	Hint:	Use	the	inner	regularity
of	Lebesgue	measure	λ	(Remark	1.67)	to	show	the	assertion	first	for	indicator	functions.	Define	x∗	:=	inf{x	∈	R	:	P[X∗	≤	x]	=	1}	∈	R.	Similarly,	for	three	sets	A,	B,	C	∈	A	with	finite	content,	we	have	μ(A	∪	B	∪	C)	=μ(A	∪	B)	+	μ(C)	−	μ((A	∩	C)	∪	(B	∩	C))	=μ(A)	+	μ(B)	+	μ(C)	−	μ(A	∩	B)	−	μ(A	∩	C)	−	μ(B	∩	C)	+	μ(A	∩	B	∩	C).	Finally,	fix	two	arbitrary
neighboring	points	x0	,	x1	∈	Zd	.	Definition	15.1	Let	K	=	R	or	K	=	C.	Then	B	:	Ω	−→	C([0,	∞))	is	measurable	with	respect	to	A	Ω	(A,	A).	Consider	now	two	sets	A0	,	A1	⊂	E	with	A0	∩	A1	=	∅,	A0	,	A1	=	∅.	Furthermore,	show	(using	Exercise	21.2.2)	that	E[τa,b	]	=	−ab.	Sometimes	a	σ	-algebra	is	also	named	a	σ	-field.	Define	gk	=	|fnk	−	f	|	∧	g	for	k	∈	N.
10.3	Uniform	Integrability	and	Optional	Sampling	..	n→∞	Concluding,	we	have	μ	=	v-lim	μknn	.	,	Xtn	)−1	=	δx	⊗	n−1	κti+1	−ti	i=0	for	any	choice	of	finitely	many	points	0	=	t0	<	t1	<	.	lim	inf	P	A	∩	τr−n	(A)	=	0	=	n→∞	16	♦	Reflection	Why	is	τr	not	mixing	if	r	is	rational?	Recall	that	F	(x,	y)	is	the	probability	of	hitting	y	at	least	once	when	starting	at	x.
As	an	example	for	even	n,	©	The	Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	A.	If	k	is	large	enough	that	2−k	<	ε/2	and	if	n	≥	nk	,	then	the	first	summand	is	smaller	n→∞	meas	than	2−k	.	X	is	called	reversible	if	there	is	a	π	with	respect	to	which	X	is	reversible.	The	map	F	:	V	→	R	is
continuous	and	linear	if	and	only	if	there	is	an	f	∈	V	with	F	(x)	=	)x,	f	*	for	all	x	∈	V	.	Under	a	mild	consistency	condition,	the	resulting	set	function	can	be	extended	to	the	whole	σ	-algebra.	The	Borel-Cantelli	lemma	shows	that	infinitely	many	of	countably	many	independent	events	occur	jointly	with	probability	either	0	or	1	depending	on	the
summability	of	the	probabilities	of	the	single	events.	24.1	Random	Measures	In	the	following,	let	E	be	a	locally	compact	Polish	space	(for	example,	E	=	Rd	or	E	=	Zd	)	with	Borel	σ	-algebra	B(E).	That	is,	(i)	holds.	(ii)	We	have	F	(∞)	≥	lim	supk→∞	Fnk	(∞).	Summarising,	we	have	'	)	*	E	f1	(X1	)	·	·	·	fk	(Xk	)	=	E			f1	dΞ∞	·	·	·	(	fk	dΞ∞	.	Hence	F	is	continuous
at	x0	.	,	n		M	+	si−1	=	N	+i−1	i≤n:	xi	=1	k	i=1	xi	,		i≤n:	xi	=0	we	get	N	+	i	−	1	−	M	−	si−1	N	+i−1		(N	−	1)!	(M	+	sn	−	1)!	N	−	M	−	1	+	(n	−	sn	)	!	=	·	.	+	R6−1	)−1	.	8.2	Conditional	Expectations	195	Exercise	8.1.1	(Lack	of	memory	of	the	exponential	distribution)	Let	X	>	0	be	a	strictly	positive	random	variable	and	let	θ	>	0.	By	the	individual	ergodic
theorem,	0		n→∞	ε	−→	p	almost	surely.	Then	the	sets	M≤1	(E)	and	M1	(E)	are	weakly	sequentially	compact.	In	addition,	clearly,			H	(ν	|μ)	+	H	(ν)	=	−	log	μ({x})	ν(dx).	♣	Exercise	8.2.3	(Bayes’	formula)	Let	A	∈	A	and	B	∈	F	⊂	A.	Then	we	can	define	a	probability		measure	on	B(Rn	)	by	A	μ(B)	:=	λn	(B)	λn	(A)	for	B	∈	B(Rn	)	with	B	⊂	A.	444	18
Convergence	of	Markov	Chains	Proof	It	is	enough	to	consider	the	case	μ	=	δx	,	ν	=	δy	for	some	x,	y	∈	E.	♣	Exercise	14.4.3	Show	that	a	nonnegative	convolution	semigroup	is	continuous.	♣	134	5	Moments	and	Laws	of	Large	Numbers	Exercise	5.3.2	Let	(Xn	)n∈N	be	a	sequence	of	independent	identically	distributed	n→∞	random	variables	with	n1	(X1	+
.	With	respect	to	the	image	measure	P	=	P	◦	B	−1	on	Ω	=	C([0,	∞)),	the	canonical	process	X	=	(Xt	,	t	∈	[0,	∞))	on	C([0,	∞))	is	a	Brownian	motion.	Choose	an	enumeration	of	the	rational	theorem,	the	sequence	numbers	Q	=	{q1	,	q2	,	q3	,	.	Hence,	we	have	d	fn	(t)	=	n	P1	[Xt	=	n]	=	n	(fn−1	(t)	−	fn	(t)).	2.2	can	be	considered	as	a	closed	path	in	the	dual
graph.)	We	cite	a	theorem	of	Kesten	[94].	We	give	the	details.	Proof	(i)	This	is	a	direct	consequence	of	Remark	5.2(ii).*	)	(ii)	By	Theorem	5.3(iii),	we	have	E	(X	−	E[X])2	=	0	⇐⇒	(X	−	E[X])2	=	0	a.s.	(iii)	Clearly,	f	(x)	=	E[X2	]	−	2x	E[X]	+	x	2	=	Var[X]	+	(x	−	E[X])2	.	The	key	role	for	connecting	convergence	in	measure	and	convergence	of	integrals	is
played	by	the	concept	of	uniform	integrability.	Now	let	I	=	∅	and		π	∈	I.	For	E	:=	In	particular,	this	implies	ϕ(Em	m	m	n	Em	↑	Em	(n	→	∞)	and	m	m	)	≤	ϕ(Em	)+	ϕ(Am	)	≤	ϕ(Cm	)	=	ϕ(Em		=	ϕ	m	Em	∞		∪		n	(Em	n−1	\	Em	)	∞		Now	define	Ω	+	=	m=1	Em	;	n≥m	Cn	,		=	ϕ	we	also	have	n	n−1	ϕ(Em	\	Em	)	n=m+1	∞			n	Em	=	ϕ(Em	).	Recall	from	Exercise
1.1.3	that	Ug	is	Borel	measurable.	If	P[A]	∈	{0,	1}	for	any	A	∈	F	,	then	E[X	|F	]	=	E[X].	(ii)	For	a	real	random	variable	X,	the	map	FX	:	x	→	P[X	≤	x]	is	called	the	distribution	function	of	X	(or,	more	accurately,	of	PX	).	(ii)	The	exponential	distribution	expθ	for	θ	>	0.	We	have	got	acquainted	with	some	fundamental	probability	distributions:	•	•	•	•	•	•	•	•	•
•	•	Bernoulli-distribution	Berp	on	{0,	1}	binomial	distribution	bn,p	on	{0,	.	Theorem	23.8	The	rate	function	in	an	LDP	is	unique.	The	full	strength	of	the	result	is	displayed	in	the	following	examples.	As	U	K	is	a	martingale,	Doob’s	inequality	(Theorem	11.2)	yields	+	P	sup	l=1,...,n	|UlK	|	√	>ε	n	,	)	*	≤	ε−2	Var	Z1K	for	every	ε	>	0.	∈	A	with	An	↓	∅	and
μ(A1	)	<	∞.	Definition	19.13	A	map	I	:	E	×	E	→	R	is	called	a	flow	on	E	\	A	if	it	is	antisymmetric	(that	is,	I	(x,	y)	=	−I	(y,	x))	and	if	it	obeys	Kirchhoff’s	rule:	I	(x)	=	0,	for	x	∈	E	\	A,	(19.8)	I	(A)	=	0.	Thus	we	henceforth	assume	Xn	≥	0	almost	surely	for	all	n	∈	N.	Evidently,	λε,0	=	1,	and	if	ε	>	0	is	very	small,	then	λε,N/2	=	2ε	−	1	is	the	eigenvalue	with	the
second	largest	modulus.	Then,	by	(ii),	0	=	E[Y	1A	]	−	E[Y		1A	]	=	E[(Y	−	Y		)	1A	].	♦	a,b	Let	a	<	b	and	n	∈	N.	We	illustrate	this	with	an	example.	13.2	Weak	and	Vague	Convergence	283	Lemma	13.15	Let	E	be	a	locally	compact	Polish	space	and	let	μ,	μ1	,	μ2	,	.	=	=	2	2	2	(t	+	c)	(t	+	c)	t	+	tc	t	+	Var[Sn	]	5.4	Speed	of	Convergence	in	the	Strong	LLN	137
This	shows	(5.11).	Then			f	τ,	(Xτ	+m	)m∈N0	=	1{τ	≤n}	1{Xn	>a}	+	1	2		1{Xn	=a}	.	Hence	there	is	a	constant	C	<	∞	such	that	μpn	−	UE	T	V	≤	C	γ	n	for	all	n	∈	N,	μ	∈	M1	(E).	In	addition,	f	2	=	)f,	f	*1/2	.	We	can	construct	˜	τ˜	:=	the	coupling	using	two	independent	chains	X˜	and	Y˜	by	defining	X	:=	X,	˜	˜	inf{n	∈	N0	:	Xn	=	Yn	}	and	0	Yn	:=	Y˜n	,	Xn	,	if
n	<	τ˜	,	if	n	≥	τ˜	.	For	e	∈	E,	let	pe	≥	0	be	the	probability	that	e	occurs.	The	second	statement	follows	from	Theorem	4.9(i)	since	|f	+	g|	≤	4.1	Construction	and	Simple	Properties	103	|f	|	+	|g|;	hence		f	+	g1	=		|f	+	g|	dμ	≤		|f	|	dμ	+	|g|	dμ	=	f	1	+	g1	.	+	θn	)	x	.	Show	that	D	max{X1	,	.	3b	Show	that,	for	all	0	≤	a	<	b,	the	map	ω	→	a	Xt	(ω)	dt	is
measurable.	We	will	show	that	Cramér’s	theorem	implies	that	Pn	:=	PSn	/n	satisfies	an	LDP	with	rate	n	and	with	good	rate	function	I	(x)	=	Λ∗	(x)	:=	supt	∈R	(tx	−	Λ(t)).	For	any	x0	∈	I	,	there	exists	a	g	∈	L(ϕ)	with	g(x0	)	=	ϕ(x0	)	.	Let	f	∈	Cb	(E;	R),	ε	>	0	and,	for	any	x	∈	E,	let	gx	be	as	in	Step	3.	Note	that	Hn	depends	on	D1	,	.	Denote	by	N	∈	{0,	1,	.		)	*	)
*	Since	Pπ	Aε	∩	τ	−n	(B)	−	P	A	∩	τ	−n	(B)		<	ε,	the	statement	follows	by	letting	ε	→	0.	n→∞	As	shown	above,	Rn	−→	0	almost	surely.	25.2	Itô	Integral	with	Respect	to	Diffusions	.	14.4	Markov	Semigroups	325	Example	14.48	(Independent	normally	distributed	increments)	Let	I	=	[0,	∞)	and	Ωi	=	R,	i	∈	[0,	∞),	equipped	with	the	Borel	σ	-algebra	B	=	B(R).
Applying	Lemma	10.10	to	M	yields		Xσ	=	Aσ	+	Mσ	=	E[Aσ	+	MT		Fσ	]				≥	E[Aτ	+	MT		Fσ	]	=	E[Aτ	+	E[MT		Fτ	]		Fσ	]			=	E[Aτ	+	Mτ		Fσ	]	=	E[Xτ		Fσ	].	Hence	1	0	1	∩	{τ	≤	n}	{τ	≤	n}	=	{τ	≤	n}	∩	{Xτ	≥	a}	⊂	ϕ(τ,	Xτ	)	≥	2	=	{ϕ(τ,	Xτ	)	>	0}	∩	{τ	≤	n}.	So	it	is	an	important	theorem	that	a	regular	version	of	the	conditional	probabilities	exists	at	least	on
Polish	spaces	(like	Rd	).	Further,	let	Xt	be	the	projection	on	the	tth	coordinate.	(If	G	=	(V	,	E)	is	a	planar	graph;	that	is,	a	graph	that	can	be	embedded	into	R2	without	self-intersections,	then	the	vertex	set	of	the	dual	graph	is	the	set	of	faces	of	G.	,	YN	be	independent	random	variables	with	E[Yt	]	=	0	for	t		all	t	=	1,	.	e∈E	Takeaways	For	random
variables	with	second	moments,	a	strong	law	of	large	numbers	can	be	shown	using	the	Borel-Cantelli	lemma	and	Chebyshev’s	inequality	first	on	an	subsequence	and	then	on	the	full	sequence.	Clearly,	the	product	measure	μ	=	μ1	⊗	μ2	is	a	coupling,	but	in	many	situations	there	are	more	interesting	ones.	be	independent	random	variables	with
unknown	continuous	distribution	functions	F	and	F˜	and	with	empirical	distribution	functions	Fn	and	F˜n	.	Thus	the	Borel–Cantelli	lemma	belongs	to	the	class	of	so-called	0–1	laws.	∈	E+	f	such	that	q−1	gn	↑	|f	|	μ-a.e.	Define	hn	=	sign(f	)(gn	)	∈	Ef	;	hence	q		gn	q	≤	hn	f	dμ	=	F	(hn	)	≤	F	p	·	hn	p	=	F	p	·	(gn	q	)q−1	.	14	1	Basic	Measure	Theory	(iii)	μ	is
subadditive.	21	and	leave	this	as	a	warning	for	the	time	being.	Then	g	−	h	is	almost	everywhere	defined	and	measurable.	For	n	∈	N,	1	∗	let	Sn	:=	√	2	i=1	(Xi	−	μ).	Remark	15.36	For	odd	moments,	the	statement	of	the	theorem	may	fail	(see,	e.g.,	Exercise	15.4.4	for	the	first	moment).	For	example,	roulette	is	such	a	game.	,	N},	if	j	=	i	−	1	∈	{0,	.	i=1	
Then	μ	is	a	σ	-finite	content	on	A	(even	a	premeasure)	since	∞	n=1	(−n,	n]	=	R	and	μ((−n,	n])	=	2n	<	∞	for	all	n	∈	N.	As	a	corollary	to	Theorem	7.18,	we	get	the	following.	Since	ψ	is	strictly	convex,	in	this	case,	we	have	ψ(z)	>	z	for	all	z	∈	[0,	1);	hence	F	=	{1}.	Hence	Z	∼	βM,N−M	.	We	want	to	show	that	the	random	variables	f	(X)	and	g(X)	are
nonnegatively	correlated.	(ii)	I	(f	+	g)	=	I	(f	)	+	I	(g).	For		∈	S(n)	and	x	=	(x1	,	.	Proof	For	N	∈	N,	define	d˜N	(f,	g)	:=			1	∧	d(f	(ω),	g(ω))	μ(dω).	We	conclude	that	)	*	f	=	inf	c	∈	R	:	P	f	−1	((c,	∞))	=	0	P-a.s.	“	⇐	”	Assume	any	I-measurable	map	is	P-a.s.	constant.	i=1	Indeed,	if	we	let	Yn	:=	1	n	n		Xi	,	then	(by	Example	12.13)	(Yn	)n∈N	is	a	backwards	i=1
martingale	with	respect	to	(Fn	)n∈−N	=	(E−n	)n∈−N	and	thus		n→∞	Yn	−→	Y∞	=	E[X1		E]	a.s.	and	in	L1	.	,	UN−1	)	such	that	P[(X1	,	.	See	Figs.	Then	;(μ	−	ν)pn	;T	V	−→	0	for	all	μ,	ν	∈	M1	(E).	Therefore,	X	and	Y	coalesce	almost	surely.	Further,	let	(pω	)ω∈Ω	be	nonnegative	numbers.	,	xN	)	to	be	a	left	eigenvector	for	the	eigenvalue	λ,	the	following
equations	have	to	hold:	λxk	=	rxk−1	+	(1	−	r)xk+1	for	k	=	2,	.	Recursively,	define	the	nth	iterate	of	ψ	by	ψ1	:=	ψ	ψn	:=	ψ	◦	ψn−1	for	n	=	2,	3,	.	By	the	factorization	lemma	(Corollary	1.97	with	f	=	X	and	g	=	Z),	there	is	a	map	ϕ	:	E	→	R	such	that	ϕ	is	E	–	B(R)-measurable	and	ϕ(X)	=	Z.	dν	dμ	ν	0	μ.	(10.4)	Remark	10.5	If	Y	and	A	are	as	in	Example	10.2,
then	A	is	monotone	increasing	since	(Xn2	)n∈I	is	a	submartingale	(see	Theorem	10.1).	Then	μ(A)	=	A	f	dλ	=	0	for	every	A	∈	A	with	3λ(A)	=	0;	hence	μ	0	λ.	(Note	that	the	three	neighboring	edges	of	a	trifurcation	point	are	in	different	equivalence	classes.)	We	turn	the	set	HL	:=	UL	∪	TL	into	a	graph	by	considering	two	points	x	∈	TL	and	u	∈	UL	as
neighbors	if	there	exists	an	edge	k	∈	u	which	is	incident	to	x.	For	a	detailed	description,	see	[12]	or	[83].	Then	there	exists	a	disjoint	decomposition	of	the	state	space	E=	d−1	(18.5)	Ei	i=0	with	the	property	p(x,	y)	>	0	and	x	∈	Ei	⇒	y	∈	Ei+1	(mod	d)	.	(20.2)	Furthermore,	we	have	{Mn	>	0}c	⊂	{Mn	=	0}	∩	{Mn	◦	τ	≥	0}	⊂	{Mn	−	Mn	◦	τ	≤	0}.	For
distinct	leaves	these	are	distinct	points	since	the	leaves	belong	to	disjoint	open	clusters.	Now,	de	Finetti’s	theorem	states	that	any	infinite	and	exchangeable	family	can	be	constructed	in	this	way	and	that	Ξ∞	is	measurable	with	respect	to	the	exchangeable	σ	-algebra.	Thus	let	Y1	,	Y2	,	.	For	example,	assume	that	E	is	partially	ordered	with	a	smallest
element	0	and	a	largest	element	1	(like	the	Ising	model).	(14.17)	k=0	For	any	probability	measure	μ	on	E,	there	exists	a	unique	probability	measure	Pμ	on	E	I	,	B(E)⊗I	with	the	property:	For	any	choice	of	finitely	many	numbers	0	=	t0	<	t1	<	/	t2	<	.	i=1	Proof	The	proof	is	the	same	as	for	Theorem	1.55.	12.1	Exchangeable	Families	of	Random	Variables
Definition	12.1	Let	I	be	an	arbitrary	index	set	and	let	E	be	a	Polish	space.	Further,	let	M	=	supt	∈[0,1]	|Bt	|,	where	B	is	a	Brownian	bridge.	,	Un	∈	U	such	that	n		λd	(Ui	)	>	i=1	1−ε	λ(W	).	Then	(aX	+	b)	∼	Naμ+b,a	2	σ	2	.	The	maximum	and	limit	(superior)	can	be	interchanged	and	hence	max	lim	sup	ε	log(aεi	)	=	lim	sup	ε	log	i=1,...,N	ε→0			i=1,...,N	ε→0
≤	lim	sup	ε	log	max	aεi	N		ε→0	aεi		i=1	≤	lim	sup	ε	log(N)	+	max	lim	sup	ε	log(aεi	)	i=1,...,N	ε→0	=	max	lim	sup	i=1,...,N	ε→0	ε	log(aεi	).	Hence,	let	ψ(z)	=	∞		k=0	pk	zk	3.3	Branching	Processes	93	be	the	p.g.f.	of	the	offspring	distribution	and	let	ψ		be	its	derivative.	Proof	This	is	obvious	since	ϕμ	(t	+	2πk)	=	ϕμ	(t)	for	all	k	∈	Zd	.	0	Show	that	Y	is	a
Brownian	bridge.	n=2N	We	conclude	pc	≤	23	.	Note	that	F	(v)	=	F	(0)	=	0	for	all	v	∈	N	since	F	is	continuous.	♣	Exercise	21.5.5	Consider	the	coefficients	(An	)n∈N0	of	the	Fourier	basis	of	the	construction	of	Brownian	motion.	We	first	define	the	notion	of	exchangeability.	If	there	exists	a	strategy	H	and	a	v0	such	that	VT	=	v0	+	(H	·X)T	,	then	the	trader
can	sell	the	claim	for	v0	(at	time	0)	and	replicate	the	claim	by	building	a	portfolio	that	follows	the	trading	strategy	H	.	Let	δ	:=	sup	inf	sup	μ(Acn,N	).	Hence	we	have	n→∞	P[F1n	(x)	=	y]	−→	π(y)	for	every	y.	Lemma	13.5	If	E	is	Polish	and	μ	∈	Mf	(E),	then	for	any	ε	>	0,	there	is	a	compact	set	K	⊂	E	with	μ(E	\	K)	<	ε.	On	the	other	hand,	if	she	loses,	then	in
the	second	game	she	doubles	the	stake;	that	is,	H2	=	2	if	D1	=	−1.	Exercise	15.2.1	Let	ϕ	be	the	characteristic	function	of	the	d-dimensional	random	variable	X.	1.3	The	Measure	Extension	Theorem	35		Later	we	will	see	(Corollary	1.84)	that	B(R)	=	B(A),	where	B(A)	is	the	Borel	A	σ	-algebra	on	A	that	is	generated	by	the	(relatively)	open	subsets	of	A.
Since	B1	⊃	B2	⊃	.	Now	we	determine	the	asymptotic	growth	rate	of	X.	The	statement	for	lim	sup	Sn	is	similar.	Λ↑Zd	448	18	Convergence	of	Markov	Chains	0.7	0.6	Magnetization	0.5	0.4	0.3	0.2	0.1	0	0.84	0.85	0.86	0.87	0.88	0.89	0.9	0.91	0.92	Inverse	temperature	Fig.	Then	E[UN	]	≤	(E[|XN	|]	+	|a|)/(b	−	a).	(ix)	Let	μ	∈	Rd	and	let	Σ	be	a	positive
definite	symmetric	d	×	d	matrix.	Define	the	shift	operator	τ	:	Ω	→	Ω,	(ωn	)n∈N0	→	(ωn+1	)n∈N0	.	In	particular,	for	D	=	2,	p2n	(0,	0)	=	4−2n	=	4	−2n	n		(2n)!	k=0	(k!)2	((n	−	k)!)2						2	n			2n	n	n	−2n	2n	=	2	.	It	allows	dependencies	between	events	as	long	as	they	wash	out	when	the	events	are	shifted	apart.	Step	1.	Hence,	let	0	∈	L	⊂	J	⊂	I	with	J	⊂	I	J	)
−1	=	P	.	7.2,	we	first	derive	some	of	the	important	inequalities	(Hölder,	Minkowski,	Jensen)	and	then	in	Sect.	Hence	μ∗	is	an	outer	Step	4	(Closed	sets	are	μ∗	-measurable).	Proof	By	the	superposition	principle,	f	:=	f1	−	f2	is	harmonic	on	E	\	A	with		f		≡	0.	Exercise	1.3.1	Show	the	following	generalization	of	Example	1.58(iv):	A	measure	∞	α	δ	n	xn	is	a
Lebesgue–Stieltjes	measure	for	a	suitable	function	F	if	and	only	if	n=1		n:	|xn	|≤K	αn	<	∞	for	all	K	>	0.	Clearly,	we	have	μn	((−∞,	0))n	≤	μ((−∞,	0))	=	0.	In		particular,	for	any	sequence	(An	)n∈N	of	pairwise	∞	disjoint	sets,	we	have	lim	k=n	|ϕ(Ak	)|	=	0.	♣	344	15	Characteristic	Functions	and	the	Central	Limit	Theorem	Exercise	15.2.4	Let	X	be	a	real
random	variable	with	characteristic	function	ϕ.	264	12	Backwards	Martingales	and	Exchangeability	Theorem	12.14	(Convergence	theorem	for	backwards	martingales)	Let	(Xn	)n∈−N0	be	a	martingale	with	respect	to	F	=	(Fn	)n∈−N0	.	That	is,	we	understand	Xs	as	the	initial	value	of	a	second	Markov	process	with	the	same	distributions	(Px	)x∈E	.
Mainz,	Germany	June	2020	Achim	Klenke	v	Preface	to	the	Second	Edition	In	the	second	edition	of	this	book,	many	errors	have	been	corrected.	Then	F	=	(Fn	,	n	∈	N0	)	=	σ	(Y	)	is	the	filtration	generated	by	Y	=	(Yn	)n∈N	and	X	is	adapted	to	F;	hence	σ	(X)	⊂	F.	,	tN	∈	K	with	K	⊂	N	i=1	Bδ	(ti	).	The	speed	of	convergence	is	exponential	and	the	exponential
rate	function	is	the	relative	entropy.	be	uncorrelated,	square	integrable,	centered	random	variables	and	let	(an	)n∈N	be	an	increasing	sequence	of	nonnegative	numbers	such	that	∞		(log	n)2	an−2	Var[Xn	]	<	∞.	Remark	9.11	Clearly,	a	stochastic	process	is	always	adapted	to	the	filtration	it	generates.	E0	E2	E1	Fig.	Which	p	maximises	the	entropy
under	the	constraint?	For	every	set	A	⊂	E,	define	τA	:=	inf{t	>	0	:	Xt	∈	A}.	In	the	right	figure,	the	nodes	at	the	ends	of	xz/zx,	xy/yx	and	yz/zy	are	split	into	two	nodes	and	then	connected	by	a	superconductor	(bold	line).	Corollary	13.7	The	Lebesgue	measure	λ	on	Rd	is	a	regular	Radon	measure.	♦	Lemma	3.5	(Generalized	binomial	theorem)	For	α	∈	R
and	k	∈	N0	,	we	define	the	binomial	coefficient			α	α	·	(α	−	1)	·	·	·	(α	−	k	+	1)	.	In	order	to	be	able	to	recycle	the	terms	later	in	a	more	general	context,	we	go	for	greater	generality	than	is	necessary	for	the	treatment	of	martingales	only.	♦	Example	17.20	(Branching	process	as	a	Markov	chain)	We	want	to	understand	the	Galton–Watson	branching
process	(see	Definition	3.9)	as	a	Markov	chain	on	E	=	N0	.	For	p	>	1,	Lp	bounded	martingales	also	converge	in	Lp	.	(ii)	Let	A	⊂	B.	(P2)	The	distribution	of	NI	depends	only	on	the	length	of	I	:	PNI	=	PNJ	for	all	I,	J	∈	I	with	(I	)	=	(J	).	Proof	Let	ϕ	=	ϕXk	−μ	.	Let	Fn	denote	the	distribution	function	of	Sn∗	and	FΦ	the	distribution	function	of	the	standard
normal	distribution.	♣	18.3	Markov	Chain	Monte	Carlo	Method	Let	E	be	a	finite	set	and	let	π	∈	M1	(E)	with	π(x)	:=	π({x})	>	0	for	every	x	∈	E.	(17.5)	In	this	case,	the	n-step	transition	kernels	κn	can	be	computed	inductively	by		κn	=	κn−1	·	κ1	=	κn−1	(	·	,	dx)	κ1(x,	·	).	We	formalize	these	requirements	by	introducing	the	following	notation:	I	:=	(a,	b]	:
a,	b	∈	[0,	∞),	a	≤	b	,	((a,	b])	:=	b	−	a	(the	length	of	the	interval	I	=	(a,	b]).	We	now	assume	that	the	individual	opinions	may	change	at	discrete	time	steps.	(ii)	(fn	)n∈N	is	a	Cauchy	sequence	in	Lp	(μ).	However,	there	is	no	number	H1	such	that	H1	X1	=	Y1	.	This	suggests	that	we	can	use	Cb	(E)	and	Cc	(E)	as	classes	of	test	functions	in	order	to	define	the
convergence	of	measures.	For	the	classical	model,	we	saw	(Example	12.29)	that	the	fraction	of	black	balls	in	the	urn	converges	a.s.	to	a	Beta-distributed	random	variable	Z.	Here	we	are	concerned	with	notions	of	mixing	that	lie	between	these	two.	In	order	to	underline	this,	we	present	the	following	theorem	that	will	also	be	useful	later.	s	Hence	Xg	:=
(e−t	h(Xt	))t	≥0	is	an	F-supermartingale.	Hence	it	remains	to	show	that	almost	surely	N	does	not	assume	the	value	∞.	If	A	is	a	ring,	then	μ(B)	=	μ(A)	+	μ(B	\	A)	for	any	two	sets	A,	B	∈	A	with	A	⊂	B.	In	particular,	E[W∞	]	=	E[W0	]	=	1.	♠	Takeaways	Loosely	speaking,	a	σ	-finite	measure	μ	has	a	density	with	respect	to	a	σ	-finite	measure	ν	if	locally	μ	is	a
multiple	of	ν.	Then	we	describe	those	properties	necessary	for	such	a	function	to	qualify	as	a	probability	assignment.	Below	the	Curie	temperature,	these	materials	are	magnetic,	and	above	it	they	are	not.	Let	Bn	:=	{−n,	−n	+	1,	.	To	this	end,	let	(a,	b],	(a(1),	b(1)],	(a(2),	b(2)],	.	4	t	∼	2π/D	2	2	nt	(17.21)	3∞	Since	1	t	−α	dt	<	∞	if	and	only	if	α	>	1,	we
also	have	GY	<	∞	if	and	only	if	D	>	2.	Since	[ω1	]	⊃	[ω1	,	ω2	]	⊃	.	.	,	Cn,mn	∈	A.	(ii)	Let	A	=	{E[X	|F	]	<	E[Y	|F	]}	∈	F	.	As	the	path	δb,t	has	length	b	|t|,	we	get	the	estimate					r−1	−z			dz	≤	br	e−b	(1	+	t	2	)r/2	−→	0	for	b	→	0.	x0	,x1	∈E	We	infer	that	the	entropy	of	the	dynamical	system	is	h(P,	τ	)	=	−		π({x})P	(x,	y)	log(P	(x,	y)).	18.5	Equilibrium	states	of
the	Ising	model	on	an	800	×	800	grid	(black	dot	=	spin	+1).	By	μ(A)	:=	#A	#Ω	for	A	⊂	Ω,	we	define	a	probability	measure	on	A	=	2Ω	.	n=1	If	g(t)	:=	μ({f	≥	t})	=	∞	for	some	t	>	0,	then	both	sides	in	(4.8)	equal	∞.	Hence,	for	n	∈	N	sufficiently	large	and	k	∈	N	with	l(kn+1	)/	l(kn	)	−→	kn−1	≤	k	≤	kn	,	we	have	|Sk	|/	l(k)	≤	2|Sk	|/	l(kn	).	By	Lemma	1.49,	a
set	B	⊂	E	is	μ∗	measurable	if	and	only	if	μ∗	(B	∩	G)	+	μ∗	(B	c	∩	G)	≤	μ∗	(G)	for	all	G	∈	2E	.	For	x,	y	∈	R,	we	agree	on	the	following	notation.	,	An	∈	A	with	n	n			A⊂	Ai	,	we	have	μ(A)	≤	μ(Ai	),	and	i=1	i=1	(v)	σ	-subadditive	if	for	any	choice	of	countably	many	sets	A,	A1	,	A2	,	.	We	say	that	(μn	)n∈N	converges	weakly	to	μ,	n→∞	formally	μn	−→	μ	(weakly)
or	μ	=	w-lim	μn	,	if	n→∞		n→∞		f	dμn	−→	f	dμ	for	all	f	∈	Cb	(E).	be	measurable	with	fn	≥	f	a.e.	for	all	n	∈	N.	+	E[Xn	]	=	Sm	.	The	next	step	is	to	show	convergence	of	finite-dimensional	distributions.	,	ωn	]	and	P	=	((1	−	p)δ−1	+	pδ1	)⊗N	is	the	product	measure.	,	lk	)	is	of	particular	importance.	(ii)	The	following	equivalences	hold:	q	1	z↑1	⇐⇒	∞		kpk	>	1.
Proof	As	B(Ω	)	=	σ	(τ		)	and	by	Theorem	1.81,	it	is	sufficient	to	show	that	f	−1	(A	)	∈	σ	(τ	)	for	all	A	∈	τ		.	For	n	∈	N,	let		μn	=	λ	.	D	Assume	PYn	=	N0,1/n	for	all	n	∈	N.		First	assume	that	C	⊂	R	is	closed.	Let	μ	be	a	probability	measure	on	Σ	with	μ({x})	>	0	for	any	x	∈	Σ.	Substituting	x	=	t,	we	obtain		∞		n	'	(	E	Yn2	=	2x	P[|Yn	|	>	x]	dx	≤	2x	P[|X1	|	>	x]	dx.
Proof	We	carry	out	the	proof	by	induction	on	n	∈	N0	.	Using	the	Cramér–Wold	device	(Theorem	15.57),	this	implies	)	*	n→∞	)	*	Lx	Z˜	tn1	,	Z˜	tn2	−→	Lx	Yt1	,	Yt2	.	Let	A	:=	n=1	An	.	Reflection	The	proof	of	the	previous	theorem	made	use	of	the	fact	that	(Xn+	)n∈N	and	(Xn−	)n∈N	are	uncorrelated	families.	1	−	(1	−	p)z	(3.6)	88	3	Generating	Functions
By	the	generalized	binomial	theorem	(see	Lemma	3.5	with	α	=	−n),	Theorem	3.3	and	(3.6),	we	have	pn	(1	−	(1	−	p)z)n			∞		−n	=	pn	(−1)k	(1	−	p)k	zk	k	ψY	(z)	=	ψX1	(z)n	=	k=0	=	∞		−	bn,p	({k})	zk	.	(9.2)	m=1	If	X	is	a	martingale,	then	H	·X	is	also	called	the	martingale	transform	of	X.	For	example,	let	μ	=	N0,1	be	the	standard	normal	distribution	on	R
and	let	ν	be	the	Lebesgue	measure	on	R.	(iii)	For	the	Moran	model	(Example	17.22),	use	the	explicit	form	(17.12)	of	the	square	variation	process	to	compute	the	transition	matrix.	Indeed,	we	show	that	Pp	[N	≥	3]	=	0.	“Separable”	means	that	there	exists	a	countable	dense	subset.	Consequently,	Yn	:=	YˆSn	+	Xˇ	n−Sn	,	n	∈	N,	is	also	a	random	walk
with	transition	matrix	p.	158	6	Convergence	Theorems	“(iii)	⇒	(i)”	Let	f	be	the	limit	in	measure	of	the	sequence	(fn	)n∈N	.	+	Xn	)	−→	Y	almost	surely	for	some	random	variable	Y	.	Proof	We	only	have	to	show	the	triangle	inequality.	For	one	coordinate,	however,	which	moves	only	with	probability	1/D	and	thus	has	variance	1/D,	the	probability	of	being
back	at	the	origin	at	time	2n	is	approximately	(n	π/D)−1/2	.	Then	PX	is	uniquely	determined	by	the	distributions	of	either	of	the	families		(If1	,	.	densities);	hence	we	have	P[T∞	∞	Now	let	r	Rt	:=	sup	n	∈	N	:	T1r	+	.	We	give	a	probabilistic	proof	for	this	formula.	In	this	case,	in	general,	the	total	mass	μ(Ω)	is	not	uniquely	determined	by	the	values	μ(E),	E
∈	E;	see	Example	1.45(ii).	Conclude	D	that	(X1	,	X2	)	=	(Y1	,	Y2	)	and	thus	PX	=	PY	.	Having	defined	Wn	,	we	choose	a	relatively	open	set	Ln	⊃	Wn	and	define	Wn+1	:=	Ln	∪	Un+1	.	1.1.	σ-algebra	σ-∪-stable	Ω∈A	σ-ring	algebra	Ω∈A	σ-∪-stable	ring	∪-stable	semiring	Fig.	Assume	ψ	is	periodic	with	period	π.	Then	Sn	/n	should	be	close	to	3.5	for	large	n	-
but	close	in	which	sense?	A	set	A	⊂	E	is	called	totally	bounded	if,	for	any	n		ε	>	0,	there	exist	finitely	many	points	x1	,	.	In	the	next	theorem,	we	collect	the	characteristic	functions	for	some	of	the	most	important	distributions.	Let	L	=	maxe∈E	l(e).	23.3	Sanov’s	Theorem	599	Recall	that	the	entropy	of	μ	is	defined	by			H	(μ)	:=	−	log	μ({x})	μ(dx).	Then	|f
|p	≤	f	∞	almost	everywhere;	hence				p	p	|f	|p	dμ	≤	f	∞	dμ	=	f	∞	·	μ(Ω)	<	∞.	The	stochastic	order	belongs	to	the	class	of	so-called	integral	orders	that	are	defined	by	the	requirement	that	the	integrals	with	respect	to	a	certain	class	of	functions	(here:	monotone	increasing	and	bounded)	are	ordered.	(17.10)	z∈E	Definition	17.16	A	matrix	(p(x,	y))x,y∈E
with	nonnegative	entries	and	with		p(x,	y)	=	1	for	all	x	∈	E	y∈E	is	called	a	stochastic	matrix	on	E.	For	a	survey	on	different	orders	of	probability	measures,	see,	e.g.,	[120].	Clearly,	Zk	is	a	πsystem	and	σ	(Zk	)	=	σ	(Xj	,	j	∈	Ik	).	The	preceding	theorem	says,	in	particular,	that	we	cannot	find	any	locally	bounded	gambling	strategy	that	transforms	a
martingale	(or,	if	we	are	bound	to	nonnegative	gambling	strategies,	as	we	are	in	real	life,	a	supermartingale)	into	a	submartingale.	Exercise	21.2.1	Let	B	be	a	Brownian	motion	and	let	λ	be	the	Lebesgue	measure	on	[0,	∞).	,		(21.31)	We	now	define	S¯	n	as		S	n	but	linearly	interpolated:	1	S¯tn	=	√	σ	2n	nt	!		Yi	+	i=1	tn	−	tn!	Y	√	σ	2n	nt	!+1	.	1	−	2−γ
Analogously,	we	obtain	|Xs	(ω)	−	Xu	(ω)|	≤	2−γ	n	(1	−	2−γ	)−1	,	and	thus	|Xt	(ω)	−	Xs	(ω)|	≤	2	2−γ	n	.	That	is,	(18.12)	holds.	Applying	the	continuity	lemma	(Theorem	6.27)	yields	that	ϕ	(k)	is	continuous.	Exercise	17.6.1	Consider	the	Markov	chain	from	Fig.	♦	Reflection	If	X	is	a	martingale	with	respect	to	some	filtration	F,	then	X	is	adapted	to	any
larger	filtration	F	⊃	F	but	it	is	not	necessarily	an	F	-martingale.	,	Xn−1	=	N	+n−1	Inductively,	for	x1	,	.	5.3	Strong	Law	of	Large	Numbers	.	be	independent	and	identically	distributed	with	E[X1	]	=	0,	E[X12	]	=	σ	2	∈	(0,	∞)	and	γ	:=	E[|X1	|3	]	<	∞.	The	reader	will	profit	from	a	solid	knowledge	of	point	set	topology.	Two	such	vertices	are	connected	by
exactly	one	edge;	that	is,	by	the	edge	in	E	that	separates	the	two	faces.	It	follows	D	that	(XTt	)t	≥0	=	(Yt	)t	≥0.	Examples	include	the	Gamma	distribution	νt	=	Γθ,t	(for	fixed	parameter	θ	>	0),	the	Poisson	−	distribution	νt	=	Poit	,	the	negative	binomial	distribution	νt	=	bt,p	(for	fixed	p	∈	(0,	1]),	the	Cauchy	distribution	νt	=	Caut	and	others	(compare
Theorem	15.13	and	Corollary	15.14).	In	this	case,	f	2	=	ϕ2	/(2π)d/2	.	Hence,	if	we	define	qe	:=	2−l(e)	,	then	(note	that	#CL	(e)	=	2L−l(e)	)		qe	=	2−L	e∈E	By	Lemma	5.26,	we	have	Lp	(C)	=		#CL	(e)	≤	1.	♣	Exercise	13.2.15	Let	(E,	d)	be	a	metric	space	and	let	μ,	μ1	,	μ2	,	.	♣	15.4	Characteristic	Functions	and	Moments	We	want	to	study	the	connection
between	the	moments	of	a	real	random	variable	X	and	the	derivatives	of	its	characteristic	function	ϕX	.	,	ωk	]	∩	Cn,in	=	∅	for	infinitely	many	k	∈	N.	Furthermore,	αk	=	E[Xk	]	=	x	νk	(dx)	for	k	≥	1.	We	collect	some	simple	properties	of	characteristic	functions.	Theorem	9.16	Let	I	be	countable.	Then	δω	is	a	probability	measure	on	any	σ	-algebra	A	⊂	2Ω
.	Hence	F	=	{r,	1}	and	q	=	min	F	=	r.	31	Cauchy’s	principal	value	of	the	integral	−1	f	(x)dx	is	defined	as		lim	n→∞	−1/n	−1	1	dx	+	x		1	1/n	1	dx	x		=	0.	“Uniqueness”	Let	)x,	f	*	=	)x,	g*	for	all	x	∈	V	.	♦	Example	11.16	(Voter	model,	due	to	[28,	75])	Consider	a	simple	model	that	describes	the	behavior	of	opportunistic	voters	who	are	capable	of	only	one
out	of	two	opinions,	say	0	and	1.	Then		|f	(t)	−	f	(s)|	≤	2f	∞	|t	−	s|		γ	≤	C	|t	−	s|γ	.	fct.	On	the	other	hand,	we	have	τ	∧t	≤	s	for	s	>	t.	4	8	11	486	19	Markov	Chains	and	Electrical	Networks	Generate	the	matrix	p	of	the	chain	that	is	killed	at	3	and	at	5	and	compute	G	=	(I	−	p)−1	.	However,	the	converse	is	also	true.	♣	17.7	Stochastic	Ordering	and
Coupling	In	many	situations,	for	the	comparison	of	two	distributions,	it	is	helpful	to	construct	a	product	space	such	that	the	two	distributions	are	the	marginal	distributions	but	are	not	necessarily	independent.	84	2	Independence	0	Fig.	♦	Theorem	9.32	(i)	X	is	a	supermartingale	if	and	only	if	(−X)	is	a	submartingale.	If	Ω		is	uncountably	infinite,	this	is
wrong	in	general.	j	∈J	This	is	obvious	since	{x}	:	x	∈	E	∪	{∅}	is	a	π-system	that	generates	2E	,	thus	−1	Xi	({xi	})	:	xi	∈	E	∪	{∅}	is	a	π-system	that	generates	σ	(Xi	)	(Theorem	1.81).	498	20	Ergodic	Theory	Lemma	20.13	(Hopf’s	maximal-ergodic	lemma)	Let	X0	∈	L1	(P).		x∈V	Nx	is	a	P-null	set	and	(8.8)	holds	for	every	8.2	Conditional	Expectations	201
The	map	x	→	D	+	ϕ(x)	is	right	continuous	(by	Theorem	7.7(iv)).		Now	let	p,	p	∈	[1,	∞)	with	p	<	p	and	let	f	∈	Lp	(μ).	Then	ϕ		(t)	<	0	for	every	t	∈	R	and		=	lim	ϕ(t)	=	P[X1	=	0].	2	Remark	15.39	If	we	prefer	to	avoid	the	continuity	theorem,	we	could	argue	as	∗	∗	2	follows:	For	every	K	>	0	and	n	∈	N,	we	have	P[|Sn	|	>	K]	≤	Var[Sn	]/K	=	2	1/K	;	hence	the
sequence	PSn∗	is	tight.	In	the	definition	of	p,	the	distribution	π	appears	only	in	terms	of	the	quotients	π(y)/π(x).	If	we	denote	A	=	{X	∈	B}	for		∈	S(n),	then	En	=	{A	:	A	=	A	for	all		∈	S(n)}.	A	measurable	map	f	:	E	→	R	is	called	uniformly	integrable	with	respect	to	(μn	)n∈N	,	if		inf	sup	a>0	n∈N	{|f	|>a}	|f	|	dμn	=	0.	.,	state	that	the		n→∞	sequence	of
averages	converges	a.s.	to	the	expected	value,	n−1	ni=1	Xi	−→	E[X1	].	♠♠	Example	1.54	(Lebesgue	measure,	continuation	of	Example	1.39)	We	aim	at		extending	the	volume	μ((a,	b])	=	ni=1	(bi	−	ai	)	that	was	defined	on	the	class	of	rectangles	A	=	{(a,	b]	:	a,	b	∈	Rn	,	a	≤	b}	to	the	Borel	σ	-algebra	B(Rn	).	310	14	Probability	Measures	on	Product
Spaces	Finally,	for	pairwise	disjoint	sets	A1	,	A2	,	.	Hence,	instead	of	giving	a	proof,	we	refer	to	the	textbooks	on	measure	theory	(e.g.,	[37]).	We	draw	n	of	these	balls	without	replacement	but	respecting	the	order.	First,	consider	the	case	where	p(0,	x)	=	3−d	for	all	x	∈	{−1,	0,	1}d	.	Proof	Without	loss	of	generality,	we	can	do	the	computation	with	b	=
e;	that	is,	with	the	natural	logarithm.	Its	distribution	function	is	FX	(x)	=	⎧	⎨	0,	1	−	p,	⎩	1,	if	x	<	0,	if	x	∈	[0,	1),	if	x	≥	1.	Lemma	21.3	Let	I	⊂	R	and	let	f	:	I	→	R	be	locally	Hölder-continuous	of	order	γ	∈	(0,	1].	Show	that,	as	claimed	in	Remark	17.51,	the	invariant	measure	is	unique	up	to	constant	multiples.	Takeaways	A	random	measure	is	a	random
variable	taking	values	in	the	space	of	Radon	measures	on	a	set	E.	Proof	This	follows	directly	from	Theorem	17.36.	As	α	approaches	1/2,	the	distribution	μα	has	less	and	less	moments.	10.1	Doob	Decomposition	and	Square	Variation	.	26.1	Strong	Solutions	.	Define	Zn	:=	a.s.	supk≥n	|Xk	−	X|.	<	tm	=	1.	In	the	following,	let	(E,	τ	)	be	a	Polish	space	with
Borel	σ	-algebra	E.	be	i.i.d.	random	variables	with	values	in	Σ	and	distribution	*	)	PX1	=	μ.	Takeaways	For	ergodic	dynamical	systems,	averages	over	ω	and	averages	over	trajectories	coincide	(ergodic	theorems).	Let	En	:=	ni=1	Ωi	,	n	∈	N,	and	E0	=	∅.	Hence	we	can	define	u	:=	z/F	(z)	∈	W	⊥	.	Further,	we	defined	the	spaces	of	functions	where	these
expressions	are	finite:	Lp	(Ω,	A,	μ)	=	Lp	(A,	μ)	=	Lp	(μ)	=	{f	:	Ω	→	R	measurable	and	f	p	<	∞}.	e	∈	E.	♦	(21.14)	Theorem	21.14	Let	(Bt	)t	≥0	be	a	Brownian	motion	and	Xt	=	tB1/t	,	if	t	>	0,	0,	if	t	=	0.	If	A1	,	.	,	FN	∈	F	such	that	P[A		(F1	∪	.	13.2	Weak	and	Vague	Convergence	285	3	3	We	let	ε	→	0	and	obtain	lim	sup	f	dμn	≤	f	dμ.	for	all	n.	Ω	is	called	the
product	of	the	spaces	(Ωi	,	i	∈	I	),	or	briefly	the	product	space.	In	Exercise	18.2.4,	an	example	is	studied	that	shows	that	spacial	homogeneity	cannot	easily	be	dropped	if	we	want	to	have	a	successful	coupling.	Show		that	a	probability	measure	π	on	E	is	an	invariant	distribution	for	X	if	and	only	if	x∈E	π({x})q(x,	y)	=	0	for	all	y	∈	E.	Then	μ	is	a	Radon
measure	if	and	only	if	μ(K)	<	∞	for	any	compact	K	⊂	E.	Define	Xi	=	#{k	≤	n	:	Yk	≤	pi	},	i	=	1,	2.	♣	21.9	Pathwise	Convergence	of	Branching	Processes∗	In	this	section,	we	investigate	the	convergence	of	rescaled	Galton–Watson	processes	(branching	processes).	Then,	by	Sanov’s	theorem	for	open	U	⊂	Rd	,	lim	inf	n→∞		1	1	log	PSn	/n	(U	)	=	lim	inf	log
Pξn	(X)	m−1	(U	)	n→∞	n	n		≥	−	inf	Iμ	m−1	(U	)	=	−	inf	I˜(U	).	This	makes	the	notion	quite	a	bit	more	flexible.	As	each	An	could	still	contain	“portions	with	n→∞	negative	mass”,	we	cannot	simply	choose	Ω	+	=	A.	+	θn	.	Show	that	n→∞	Fn−1	(u)	−→	F	−1	(u)	at	every	point	of	continuity	u	of	F	−1	.	Evidently,	supn∈N	)X*τK	∧n	≤	K	almost	surely.	If	A	∈	G



and	f	=	1Ω1	×Ω2	\A	,	then	clearly		ωi	→	f	(ω1	,	ω2	)	μ3−i	(dω3−i	)		=	μ3−i	(Ω3−i	)	−	1A	(ω1	,	ω2	)	μ3−i	(dω3−i	)	is	Ai	-measurable,	for	i	=	1,	2.	(17.22)	If	we	had	φ(t)	=	1	for	some	t	∈	(−2π,	2π)D	\	{0},	then	we	would	have	φ	n	(t)	=	1	for	every	n	∈	N	and	hence,	by	Exercise	15.2.1,	P0	[)Xn	,	t/(2π)*	∈	Z]	=	1.	By	Nμ	we	denote	the	class	of	all	subsets	of	μ-
null	sets.	Lemma	1.50	M(μ∗	)	is	an	algebra.	♣			be	the	Exercise	13.2.3	Let	E	=	R	and	μn	=	n1	nk=0	δk/n	.	Show	that	με	:=	PεXλ/ε	satisfies	an	LDP	with	good	rate	function	I	(x)	=	x	log(x/λ)	+	λ	−	x	for	x	≥	0	(and	=	∞	otherwise).	By	Remark	8.26,	it	suffices	to	check	this	for	rectangular	cylinders	with	a	finite	base	A	∈	Z	R	since	Z	R	is	a	π-system	that
generates	B(E)⊗I.	If	f	≥	0	or	f	∈	L1	(μ	⊗	κ),	then				Ω1	×Ω2		f	d(μ	⊗	κ)	=	f	(ω1	,	ω2	)	κ(ω1	,	dω2	)	Ω1	μ(dω1	).	17.6	Invariant	Distributions	427	)	*	Hence,	for	every	n	∈	N0	(since	Py	τx1	<	∞	=	1	for	all	y	∈	E),	1=	n		)	)	*	*	Pπ	σxn	=	k	+	Pπ	σxn	=	−∞	k=0	=	π({x})	n		'	'	(	(	Px	τx1	≥	n	−	k	+	1	+	Pπ	τx1	≥	n	+	1	k=0	n→∞	−→	π({x})	∞		'	'	(	(	Px	τx1	≥	k	=
π({x})	Ex	τx1	.	♦	n−1		f	◦	τk	k=0	1	n−1	n	k=0	⎧	⎪	⎨	f	dP	P	-a.s.,	n→∞		−→	⎪	⎩	f	dQ	Q-a.s.	n→∞	f	◦	τ	k	−→	3	f	dP	,	then	P	(A)	=	1	and	Q(A)	=	0.	,	pn	∈	[0,	1].	Here	equality	of	events	(mod	P)	means	that	the	events	differ	at	most	by	a	P-null	set	(see	Definition	1.68(iii)).	y∈E	If	we	define	p(x,	y)	:=	π({x})	=	C(x).	Hence	it	suffices	to	show	that	for	fixed	ω0	∈
Ω,	the	map	ω	→	d(ω0	,	ω)	is	A-measurable.	If	we	know	that	B	has	occurred,	it	is	plausible	to	assume	the	uniform	distribution	on	the	remaining	possible	outcomes;	that	is,	on	{1,	2,	3}.	It	could	be	objected	that	this	argument	works	only	for	probability	measures.	Example	13.22	If	F	is	the	distribution	function	of	a	probability	measure	on	R	and	Fn	(x)	:=	F
(x	+n)	for	x	∈	R,	then	(Fn	)n∈N	converges	pointwise	to	1.	Equality	holds	if	and	only	if	there	are	a,	b,	c	∈	R	with	|a|	+	|b|	+	|c|	>	0	and	such	that	aX	+	bY	+	c	=	0	a.s.	Proof	The	Cauchy–Schwarz	inequality	holds	for	any	positive	semidefinite	bilinear	form	and	hence	in	particular	for	the	covariance	map.	The	(time-homogeneous)	Markov	property	of	a
process	means	that,	for	fixed	time	t,	the	future	(after	t)	depends	on	the	past	(before	t)	only	via	the	present	(that	is,	via	the	value	Xt	).	(i)	Show	that	pc	≥	1/2.	Hence	we	have	to	compute	the	spectrum	of	p.	(ii)	If	n	∈	N	and	X	∈	Ln	(P),	then	the	quantities	'	(	mk	:=	E	Xk	,	'	(	Mk	:=	E	|X|k	for	any	k	=	1,	.	(6.6)	Here	we	define	f	−	fnk	1	=	∞	if	f	∈	L1	(μ).	Hence
the	random	variables	p	Yn	:=	(Xτ	n	(e)	)e∈E0	,	n	∈	Z,	are	independent	and	identically	distributed	(with	values	in	{0,	1}E0	).Define	Y	=	(Yn	)n∈Z	and	τ	(Y	)	=	(Yn+1	)n∈Z	.	If	A	is	an	algebra,	then	in	(ii)	for	any	A	∈	σ	(A),	we	even	have	infB∈A	μ(A		B)	=	0.	We	start	with	some	preparatory	lemmas.	This	measure	μ	is	called	the	uniform	distribution	on	A	and
will	be	denoted	by	UA	:=	μ.	i=1	Then	ST	∈	L1	(P)	and	E[ST	]	=	E[T	]	E[X1	].	Rather,	the	observations	are	aspects	of	the	single	experiments	that	are	coded	as	measurable	maps	from	Ω	to	a	space	of	possible	observations.	Corollary	14.27	Let	n	∈	N	and	let	(Ωi	,	Ai	),	i	=	0,	.	Hence,	)t,	x*	−	Λ(t)	≤	inf	H	(ν	|μ)	ν∈Ex	with	equality	if	νt	∈	Ex	.	611	611	616	627
25	The	Itô	Integral	.	For	details,	see,	e.g.,	[90].	♦	Definition	1.73	Let	(Ω,	A,	μ)	be	a	measure	space	and	Ω		∈	A.	≤	tn	.	∈	A,	•	\-closed	(closed	under	differences)	if	A	\	B	∈	A	whenever	A,	B	∈	A,	and	•	closed	under	complements	if	Ac	:=	Ω	\	A	∈	A	for	any	set	A	∈	A.	Finally,	we	have	shown	that	the	results	for	i.i.d.	random	variables	that	we	had	already	fit	in
this	framework.	(ii)	Let	Jn	be	the	number	of	connected	subgraphs	of	T	that	contain	0.	∨	gn	.	Example	9.36	(See	Example	9.4)	Symmetric	simple	random	walk	X	on	Z	is	a	square	integrable	martingale.	Rather,	the	number	of	balls	that	we	add	varies	from	time	to	time.	20.3	Examples	501	Now	let	A	∈	I	be	invariant.	If	we	let	s	=	e−λ	,	then	we	get	the
Laplace	transform	of	Zn	,	Ei	[e−λZn	]	=	ψ	(n)	(e−λ	)i	.	Proof	Without	loss	of	generality,	assume	I	=	N.	(15.9)	15.5	The	Central	Limit	Theorem	363	n→∞	In	particular,	Tn	:=	(Y1	+	.	(vi)	Let	E	be	a	finite	nonempty	set	and	let	Ω	:=	E	N	be	the	set	of	all	E-valued	sequences	ω	=	(ωn	)n∈N	.	This	gives	a	good	candidate	for		μ.	Theorem	2.19	Let	E	be	a	finite	set
and	let	(pe	)e∈E	be	a	probability	vector	on	E.	For	ω	∈	N,	define	F˜	(	·,	ω)	=	F0	,	where	F0	is	an	arbitrary	but	fixed	distribution	function.	,	N	−1}	and	the	transition	matrix	given	by	p(k,	k	+	1(mod	N))	=	1	for	all	k.	Verbally,	each	step	of	the	chain	with	transition	matrix	p	can	be	described	by	the	following	instructions.	Proof	The	statements	follow	from	the
elementary	theory	of	power	series.	The	computer	time	needed	for	this	is	at	least	of	the	order	of	the	size	of	the	space	E.	The	closer	Fn	and	FΦ	are,	the	closer	lie	the	points	(FΦ−1	(t),	Fn−1	(t))	on	the	diagonal	{(x,	x)	:	x	∈	R}.	Then	Yn	↑	Y	and	n→∞	hence,	by	monotone	convergence,	E[X](An	)	=	E[Yn	]	−→	E[Y	]	=	E[X](A).	(This	generalizes	the	notion	of	a
random	walk	on	ZD	.)	Use	Theorem	17.52	to	show	that	X	is	positive	recurrent	if	and	only	if	G	is	finite.	−1/2	1	Here	Cx	is	a	normalising	constant	and	μx	=	μ1	+	σ12	(x	−	μ1	−	μ2	)	2	and	σ12	+	σ2	σx2	=	σ12	σ22	σ12	+	σ22	.	Now	[aε	,	b]	is	compact	and	∞		(a(k),	bε	(k))	⊃	k=1	∞		(a(k),	b(k)]	⊃	(a,	b]	⊃	[aε	,	b],	k=1		0	whence	there	exists	a	K0	such	that	K
k=1	(a(k),	bε	(k))	⊃	(aε	,	b].	It	is	called	stable	if	each	of	the	summands	has	the	same	distribution	as	bn	+	X/an	for	some	sequences	(an	)	and	(bn	).	k	i∈I	Define	CN,ε	1	0	1	N	for	all	k	∈	N	.	(iv)	If	X,	Y	∈	L2	(P),	then	we	define	the	covariance	of	X	and	Y	by	)		*	Cov[X,	Y	]	:=	E	X	−	E[X]	Y	−	E[Y	]	.	We	define		:=	)z,	w*/w2	and	get	y+w	∈	W	;	hence	c2	≤	x	−	(y	+
	w)2	=	z2	+	2	w2	+	2	)z,	w*	=	c2	−	2	w2	.	Let	Ω	=	Ω	+	Ω	−	be	a	Hahn	decomposition	with	respect	to	ϕ	:=	ϕ1	+	ϕ2	and	let	Ω	=	Ωi+	Ωi−	be	a	Hahn	decomposition	with	respect	to	ϕi	,	i	=	1,	2.	Clearly,	there	is	an	n	∈	N	such	that	F1	,	.	n→∞	490	19	Markov	Chains	and	Electrical	Networks	Proof	(i)	Let	τN	:=	inf	n	∈	N0	:	Xn	∈	{−N,	N}	.	=	E	Y	−	E[X	|F	]	For
the	case	E[E[X	|F	]2]	<	∞,	we	are	done.	Similarly,	we	define	locally	Hölder-γ	-continuous	paths	and	so	on.	Let	F	−1	(u)	=	inf{x	∈	R	:	F	(x)	≥	u},	u	∈	(0,	1),	be	the	left	continuous	inverse	of	F	(see	the	proof	of	Theorem	1.104).	How	quick	is	the	convergence	in	(18.11)?	For	finite	families,	this	is	not	true.	(1.1)		Hence	A	:=	∞	n=0	An	is	a	semiring	but	is	not	a
ring	(if	#E	>	1).	n=1	By	assumption,	A	∩	E	∈	E	if	A,	E	∈	E;	thus	E	⊂	DE	if	E	∈	E.	,	k	(with	the	restriction	b1	+	.	10.1	Doob	Decomposition	and	Square	Variation	Let	X	=	(Xn	)n∈N0	be	an	adapted	process	with	E[|Xn	|]	<	∞	for	all	n	∈	N0	.	n→∞	In	other	words,	limes	inferior	is	the	event	where	eventually	all	of	the	An	occur.	For	any	ε	>	0	and	n	∈	N,	define
the	set	Bnε	=	{fn	≥	(1	−	ε)	g}.	(For	example,	choose	the	ε-balls	centered	at	the	points	of	a	countable	subset	and	let	ε	run	through	the	positive	rational	numbers.)	A	compact	metric	space	is	always	separable	(simply	choose	foreach	n	∈	N	a	finite	cover	Un	⊂	τ	comprising	balls	of	radius	n1	and	then	take	U	:=	n∈N	Un	).	18.4	Computer	simulation	of	the
magnetization	curve	of	the	Ising	model	on	a	1000	×	1000	grid.	−	;	hence	indeed	b	−	=	CPoi	.	Example	2.4	Let	E	be	a	finite	set	(the	set	of	possible	outcomes	of	the	individual	experiment)	and	let	(pe	)e∈E	be	a	probability	vector	on	E.	Remark	12.2	Clearly,	the	following	are	equivalent.	Proof	W∞	exists	since	W	≥	0	is	a	martingale.	be	exchangeable,
integrable	random	variables.	♦	Corollary	8.17	(Conditional	expectation	as	projection)	Let	F	⊂	A	be	a	σ	algebra	and	let	X	be	a	random	variable	with	E[X2	]	<	∞.	124	5	Moments	and	Laws	of	Large	Numbers	We	present	a	probabilistic	proof	of	this	theorem.	Further,	show	that	strict	inequality	can	hold	in	the	upper	bound	(LDP	2).	,	xn	)	∈	Rn	,	for	some
integrable	function	f	:	Rn	→	[0,	∞),	then	f	is	called	the	density	of	the	distribution.	n=1	Hence	A	∈	DE	.	.)	∈	Ω.	We	have	D	−	ϕ(x)	=	D	+	ϕ(x)	at	all	points	of	continuity	of	D	−	ϕ	and	D	+	ϕ.	Definition	15.40	For	every	n	∈	N,	let	kn	∈	N	and	let	Xn,1	,	.	-.	Theorem	18.15	Assume	that	q	is	irreducible	and	that	for	any	x,	y	∈	E,	we	have	q(x,	y)	>	0	if	and	only	if	q(y,
x)	>	0.	If	she	wins,	then	she	does	not	bet	any	money	in	the	subsequent	games;	that	is,	Hn	=	0	for	all	n	≥	2	if	D1	=	1.	,	Xn	]	−→	Pπ	[X	∈	Aσ	(X0	,	X1	,	.	to	be	sent	by	e-mail	to	[email	protected]	.	,	E[Xn	]	.	For	simplicity,	as	the	time	interval	we	take	[0,	1]	instead	of	[0,	∞).	This	is	reflected	by	the	above	calculation	that	shows	that,	for	t	≥	θ	,	the	exponential
moments	are	infinite.	Proof	Let	D	=	J	−	I	≡	0	be	the	difference	of	the	flows.	6	δe	e∈{1,...,6}	Furthermore,	let	An	=	{ω	∈	Ω	:	ωn	=	6}	be	the	event	where	the	nth	roll	shows	a	six.	Use	the	star-triangle	transformation	to	remove	the	lower	left	node	(left	1	=	δ/R1	=	5,	in	Fig.	Show	that	X	is	in	if	and	only	if	there	exists	a	C	<	∞	such	that	|E[XY	]|	≤	C	Y	q	for
any	bounded	random	variable	Y	.	By	Remark	2.15,	the	random	variables	Sn	and	1{T	=n}	are	independent	for	any	n	∈	N	and	thus	uncorrelated.	However,	for	high	temperatures	(small	β),	we	can	approximate	mβ,h	using	the	approximation	tanh(β(m	+	h))	≈	β(m	+	h).	We	have	also	reformulated	the	elementary	conditional	expectation	and	highlighted
those	of	its	properties	that	allow	for	a	generalisation	to	conditional	expectations	given	σ	-algebras.	6.3	Exchanging	Integral	and	Differentiation	..	At	the	other	end	of	the	spectrum	is	the	case	where	X	and	F	are	independent;	that	is,	where	knowledge	of	F	does	not	give	any	information	on	X.	It	follows	that	E[XY	]	=		z	P[XY	=	z]	z∈R\{0}	=			x	z∈R\{0}
x∈R\{0}	=			z	P[X	=	x,	Y	=	z/x]	x	xy	P[X	=	x]	P[Y	=	y]	y∈R\{0}	x∈R\{0}	=		x	P[X	=	x]			x∈R		y	P[Y	=	y]	y∈R	=	E[X]	E[Y	].	We	assume	P[L	>	−∞]	=	1	and	construct	a	contradiction.	Show	that,	for	any	two	starting	points,	the	independent	coalescent	coupling	is	successful.	Proof	By	Kolmogorov’s	0-1	law	(Theorem	2.37),	T	is	trivial.	,	k}	is	finite.	l=0			Define
AN,n	=	ni=1	AN,n,i	,	AN	=	lim	infn→∞	AN,n	and	A	=	∞	N=1	AN	.	♦	Takeaways	A	Markov	processes	in	continuous	time	and	with	discrete	state	space	can	be	described	by	its	jump	rates	(q-matrix).	Let	p	be	the	transition	matrix	of	the	random	walk	on	E	that	stays	put	with	probability	ε	>	0	and	that	with	probability	1	−	ε	makes	a	jump	to	a	randomly
(uniformly)	chosen	neighboring	site.	Manifestly,	S1	=	X0	and	Mn	◦	τ	≥	0	and	hence	also	(for	k	=	0)	X0	≥	S1	−	Mn	◦	τ	.	Theorem	19.20	(Conservation	of	energy)	Let	A	=	A0	∪A1	,	and	let	I	be	a	flow	on	E	\	A	(but	not	necessarily	a	current	flow;	that	is,	Kirchhoff’s	rule	holds	but	Ohm’s	rule	need	not).	(ii)	Let	n	∈	N	and	assume	i1	,	.	Mathematically,	we	say
that	a	family	of	random	variables	is	exchangeable	if	the	joint	distribution	does	not	change	under	finite	permutations.	Then	X	is	adapted	s=1	220	9	Martingales		and	integrable,	and	E[Yr		Fs	]	=	0	for	r	>	s.	For	n	≥	m0	,	we	thus	have	p	˜	Y˜	)	into	the	diagonal	Now	define	the	stopping	time	τ	of	the	first	entrance	of	(X,	D	:=	{(x,	x)	:	x	∈	E}	by	τ	:=	inf	n	∈
N0	:	X˜	n	=	Y˜n	.	In	order	to	describe	such	processes	formally,	we	introduce	the	following	notion.	(In	a	more	general	framework,	the	Gibbs	sampler	and	the	Metropolis	algorithm	can	be	understood	as	special	cases	of	one	and	the	same	method.)	For	states	x	and	y	that	differ	only	in	the	ith	coordinate,	we	have	(since	x−i	=	y−i	)	π(x)	p(x,	y)	=	π(x)	qi	π(y)
π(x)	=	π(y)	qi	=	π(y)	p(y,	x).	=	sup	α(C)	:	C	∈	C	with	C	⊂	i=1	i=1	13.3	Prohorov’s	Theorem	299	Step	3	(σ	-subadditivity	of	μ∗	).	Then	u	≤	s	<	u	+	2−n	and	u	≤	t	<	u	+	21−n	and	hence	bi	(t	−	u)	=	bi	(s	−	u)	=	0	for	i	<	n.	Hence,	it	is	assumed	that	each	individual	of	the	new	generation	chooses	independently	and	uniformly	at	random	one	individual	of	the
preceding	generation	as	ancestor	and	becomes	a	perfect	clone	of	that.	(17.16)	x∈E	Then	q	is	the	Q-matrix	of	a	unique	Markov	process	X.	By	Weierstraß’s	approximation	theorem,	there	exist	polynomials	fn	of	degree	at	most	n	such	that	n→∞	fn	−	f	∞	−→	0,	where	f	∞	:=	sup{|f	(x)|	:	x	∈	[0,	1]}	denotes	the	supremum	norm	of	f	∈	C([0,	1])	(the	space	of
continuous	functions	[0,	1]	→	R).	(iv)	The	set	of	all	finite	measures	on	(Ω,	A)	is	denoted	by	Mf	(Ω)	:=	Mf	(Ω,	A).	(21.1)	ϕ	is	called	locally	Hölder-continuous	of	order	γ	if,	for	every	t	∈	E,	there	exist	ε	>	0	and	C	=	C(t,	ε)	>	0	such	that,	for	all	s,	r	∈	E	with	d(s,	t)	<	ε	and	d(r,	t)	<	ε,	the	inequality	(21.1)	holds.	Assume	that	f1	and	f2	are	harmonic	on	E	\	A.
Hence,	the	map	g(x	˜	+	2KZd	)	=	g(x)	g˜	:	E	→	C,	is	well-defined,	continuous	and	bounded.	Hint:	Use	the	regularity	of	Lebesgue	measure	(Remark	1.67).	As	an	alternative	to	the	Metropolis	chain,	we	consider	a	different	procedure	to	establish	a	Markov	chain	with	a	given	invariant	distribution.	Theorem	15.52	(Berry–Esseen)	Let	X1	,	X2	,	.	To	this	end
we	need	a	table	of	the	Morse	code	as	well	as	the	frequencies	of	the	letters	in	a	typical	text.	The	distribution	PY	of	Y	:=	2X	−	1	is	sometimes	called	the	Rademacher	distribution	with	parameter	p;	formally	Radp	=	(1	−	p)	δ−1	+	p	δ+1	.	n→∞	n→∞	(viii)	μ	=	v-lim	μn	and	μ(E)	≥	lim	sup	μn	(E).	Define	Y	=	max(X,	a).	(iv)	The	class	of	finite	unions	of	bounded
intervals	is	a	ring	on	Ω	=	R	(but	is	not	an	algebra).	Indeed,	the	sets	(−∞,	y],	y	∈	Rn	form	an	∩-stable	generator	of	B(Rn	)	and	x	→	κ(x,	(−∞,	y])	=	μ((−∞,	y	−	x])	is	left	continuous	and	hence	measurable.	Recall	that	the	support	of	a	real	function	f	is	f	−1	(R	\	{0}).	Proof	See,	for	example,	the	book	of	Grimmett	[63,	pages	287ff].	Then	there	exists	a	unique
probability	measure	μ	on	σ	(A)	=	B(Ω)	such	that	μ([ω1	,	.	Let	F	=	(Fn	)n∈N0	=	σ	((Xn	)n∈N	)	be	the	filtration	generated	by	X	=	(Xn	)n∈N	.	a,b∈Q	a	0,	let	τK	:=	inf{n	∈	N	:	)X*n+1	≥	K}.	Show	that	3	P[A|F	]	dP	P[B	|A]	=	3B	.	If	in	addition	Ω	is	finite,	then	A	is	finite.	♦	We	introduce	some	further	terms.	Proof	As	μ∗	is	subadditive,	the	other	inequality	is
trivial.	For	every	interior	point	x	∈	I	,	let	D	+	ϕ(x)	be	the	maximal	slope	of	a	tangent	of	ϕ	at	x;	i.e.,	the	maximal	number	t	with	ϕ(y)	≥	(y	−	x)t	+	ϕ(x)	for	all	y	∈	I	(see	Theorem	7.7).	We	denote	by	B(Ω,	τ	)	=	σ	(τ	)	the	Borel	σ	-algebra	on	(Ω,	τ	).	80	2	Independence	The	cases	p	=	1	and	θ	(p)	=	0	(hence	in	particular	the	case	p	=	0)	are	trivial.	(ii)	There	is	an
α	∈	{0,	1}I	such	that	the	family	(Biαi	)i∈I	is	independent.	,	Yn	be	independent	random	variables	that	are	uniformly	distributed	on	[0,	1].	(If	X	is	i.i.d.,	then	S	is	a	Markov	chain,	and	this	implies	immediately	that	0	is	recurrent.	This	representation	of	X	is	called	the	Doob	decomposition.	Then	P[X	≥	n]	=	P[[ω10	,	.	Then	ϕT	V	:=	sup	ϕ(A)	−	ϕ(Ω	\	A)	:	A	∈	A
=	ϕ(Ω	+	)	−	ϕ(Ω	−	)	=	ϕ	+	(Ω)	+	ϕ	−	(Ω)	defines	a	norm	on	M±	(Ω,	A),	the	so-called	total	variation	norm.	This	example	suggests	that	we	also	have	to	make	sure	that	no	mass	“vanishes	at	infinity”.	k=1		In	particular,	if	A	=	A1	A2	,	one	similarly	gets	μ(A)	˜	=	μ(A	˜	1	)	+	μ(A	˜	2	).	.}	⊂	E	be	dense.	Theorem	15.58	(Central	limit	theorem	in	Rd	)	Let	(Xn
)n∈N	be	i.i.d.	random	vectors	with	E[Xn,i	]	=	0	and	E[Xn,i	Xn,j	]	=	Cij	,	i,	j	=	1,	.	with	In	∼	UΛ	and	Un	∼	U[0,1]	.	be	events	and	define	A∗	=	lim	sup	An	.	Denote	by	λ	the	Lebesgue	measure	on	R.	A	map	ϕ	:	G	→	R	is	called	convex	if	for	any	two	points	x,	y	∈	G	and	any	λ	∈	[0,	1],	we	have		ϕ	λx	+	(1	−	λ)y	≤	λ	ϕ(x)	+	(1	−	λ)	ϕ(y).	By	n→∞	assumption,	ϕPnk
−→	fk	pointwise	for	some	function	fk	that	is	continuous	at	0.	Clearly,	(18.5)	holds.	Since	sup	S	=	T∞	∞	r	s	P[T∞	=	T∞	]	=	0.	The	paths	of	B	are	a.s.	locally	Hölder-γ	-continuous	for	every	γ	<	12	.	The	opposite	implications	hold	only	under	an	additional	condition	of	summability	(see	Theorem	6.12).	In	this		case,	the	process	X	of	partial	sums	Xn	=	Y1	+	.	In
this	chapter,	we	first	lay	the	foundations	for	the	treatment	of	general	stochastic	processes.	Let	+	Rw	:=	∞		Rw	(i,	i	+	1)	=	i=0	∞		i=0	∞		i		1	=	k	Cw	(i,	i	+	1)	i=0	k=0	and	−	Rw	:=	∞		Rw	(−i,	−i	−	1)	=	i=0	∞		i=0	∞		1		1	=	k−1	.	Compute	E[X	|X	+	Y	]	and	P[X	≤	x	|X	+	Y	]	for	x	≥	0.	A	family	(fi	,	i	∈	I	)	of	maps	E	→	R	is	called	uniformly	equicontinuous	if,
for	every	ε	>	0,	there	exists	a	δ	>	0	such	that	|fi	(t)	−	fi	(s)|	<	ε	for	all	i	∈	I	and	all	s,	t	∈	E	with	d(s,	t)	<	δ.	√	ε			2	nσ	nσ	2	(Note	that	|un	−	v	n	|	≤	|u	−	v|	·	n	·	max(|u|,	|v|)n−1	for	all	u,	v	∈	C.)	15.5	The	Central	Limit	Theorem	357	Theorem	15.38	(Central	limit	theorem	(CLT))	Let	X1	,	X2	,	.	Then,	for	any	z	∈	[0,	1],	ψX1	(z)	=	∞		k=0	p(1	−	p)k	zk	=	p	.	♣
Exercise	15.6.2	(Cholesky	factorization)	Let	C	be	a	positive	definite	symmetric	real	d	×d	matrix.	19.14	Graph	with	enumerated	nodes.	However,	we	would	like	to	define	for	every	x	∈	E	a	probability	measure	P[	·	|X	=	x]	such	that	for	any	A	∈	A,	we	have	P[A|X]	=	P[A|X	=	x]	on	{X	=	x}.	Let	(fn	)n∈N	be	a	Cauchy	sequence	in	measure	in	E;	that	is,	for	any
A	∈	A	with	μ(A)	<	∞	and	any	ε	>	0,	we	have		μ	A	∩	{d(fm	,	fn	)	>	ε}	−→	0	for	m,	n	→	∞.	In	order	to	compute	the	latter	quantity,	we	first	determine	the	cardinality	#Pn	.	Clearly,	q	≥	p0	.	Therefore,	lim	s	−1	P[Xt	+s	=	n	+	1|Xt	=	n]	=	n2	s↓0	and		lim	s	−1	P[Xt	+s	=	n|Xt	=	n]	−	1	=	−n2	;	s↓0	17.3	Discrete	Markov	Processes	in	Continuous	Time	407
hence		lim	s	−1	P[Xt	+s	=	m|Xt	=	n]	−	I	(m,	n)	=	q(m,	n)	s↓0	for	all	m,	n	∈	N.	We	consider	two	edges	in	KL	as	equivalent	if	there	exists	a	path	in	BL	along	open	edges	that	does	not	hit	any	trifurcation	point	and	which	joins	at	least	one	endpoint	of	each	of	the	two	edges.	This	is	the	starting	point	for	many	conclusions.	By	Theorem	19.6,	this	implies	f	(x0
)	=	f	(y)	=	0	contradicting	the	assumption.	(iii)	A	map	X	:	Ω	→	Rd	is	A	–	B(Rd	)-measurable	if	and	only	if	X−1	((−∞,	a])	∈	A	for	any	a	∈	Rd	.	♣	Exercise	1.3.2	Let	Ω	be	an	uncountably	infinite	set	and	let	ω0	∈	Ω	be	an	arbitrary	element.	For	n	=	0,	the	claim	is	trivially	true.	TV	We	summarize	the	connection	between	aperiodicity	and	convergence	of
distributions	of	X	in	the	following	theorem.	That	is,	it	is	enough	to	show	that			n		κk	(0,	ϕn	(A1	×	·	·	·	×	An	))	=	P(S1	,...,Sn	)	(ϕn	(A1	×	·	·	·	×	An	))	=	μk	(Ak	).	Hence,	for	A	=	B	=	{X0	=	x},	lim	inf	Pπ	[X0	=	x,	Xn	=	x]	=	lim	inf	π({x})	pn	(x,	x)	n→∞	n→∞	=	0	=	π({x})2	=	Pπ	[X0	=	x]2	.	.)	the	tail	σ	-algebra.	,	Xn	).	The	array	is	called	•	independent	if,	for
every	n	∈	N,	the	family	(Xn,l	)l=1,...,kn	is	independent,	•	centered	if	Xn,l	∈	L1	(P)	and	E[Xn,l	]	=	0	for	all	n	and	l,	and	kn		Var[Xn,l	]	=	1	for	all	n	∈	N.	By	(8.17),	P[Z1	∈	·	|Z1	+	Z2	=	x]	has	the	density	Cx	exp	y→		fY	|X	(x,	y)	=	fX	(x)			(y	−	μx	)2	−	,	2σx2	hence	P[Z1	∈	·	|Z1	+	Z2	=	x]	=	Nμx	,σx2	for	almost	all	x	∈	R.	Then	E[W∞	]	=	1	⇐⇒	E[W∞	]	>	0	⇐⇒
E[X1,1	log(X1,1	)+	]	<	∞.	Proof	If	ϕn	is	the	CFP	of	μn	∈	M1	(R),	then	ern(ϕn	−1)	is	the	CFP	of	CPoirnμn	.	Define	B1	=	A1	and	Bk	=	Ak	\	k−1		Ai	=	i=1	k−1		(Ak	\	(Ak	∩	Ai	))	for	k	=	2,	.	,	τ	n−1	(i)	=	i	+	)r*	for	i	=	0,	.	Kirchhoff’s	rule	says	that	the	flow	is	divergence-free	and	that	the	flows	into	and	out	of	the	network	are	equal.	Corollary	14.47	(Measures
via	Markov	semigroups)	Let	(κt	:	t	∈	I	)	be	a	Markov	semigroup	on	the	Polish	space	E.	This	implies	Ln	(ε)	−→	0,	where	Ln	(ε)	=	n	*		)	2	E	Xn,l	1{|Xn,l	|>ε}	is	the	quantity	of	the	Lindeberg	condition	(see	(15.6)).	By	construction,	the	set	A	:=	∞	n=1	An,Nn	is	n	totally	bounded	and	hence	relatively	compact.	n→∞	n	If	x∗	=	−∞,	then	P[X∗	>	−∞]	=	lim	P[X∗
>	−n]	=	0.	For	all	x	∈	E	N	,	;	;	;μn,k	(x)	−	νn,k	(x);	≤	Rn,k	:=	k(k	−	1)	.	Now	let	(μn	)n∈N	be	a	sequence	in	F	.	We	assume	that	P[N	=	m]	=	1	and	show	that	this	leads	to	a	contradiction.	(iii)	Let	X	and	Y	be	supermartingales	and	a,	b	≥	0.	It	is	easy	to	check	that	d(ω,	ω	)	:=	∞		2−i	i=1	di	(ω(i),	ω	(i))	1	+	di	(ω(i),	ω	(i))	(14.2)	is	a	complete	metric	on	Ω	that
induces	τ	.	Since	ϕ	and	ϕn	are	CFPs,	|ϕ|2	and	|ϕn	|2	are	also	CFPs.	Thus,	since	|ϕn	(t)|2n	converges	to	|ϕ(t)|2	pointwise,	Lévy’s	continuity	theorem	implies	uniform	convergence	on	compact	sets.	,	N	and	n	≥	n0	.	Clearly,	any	map	Xn	:	Ω	→	R,	ω	→	n	−	1,	if	ωn	=	1,	∞,	if	ωn	=	0,	2	Warning:	For	some	authors,	the	geometric	distribution	is	shifted	by	one	to
the	right;	that	is,	it	is	a	distribution	on	N.	,	tn	⊂	t0	,	.	s	pt	=	That	is,	we	have	(d/dt)pt	(x,	y)	=	q	pt	(x,	y).	∈	E	be	the	observed	outcomes.	Define	pk	=	ak	(mk+1	−	mk	)	for	k	=	1,	.	If	D	+	ϕ	is	continuous	at	x,	then	D	−	ϕ(x)	=	D	+	ϕ(x).	n	n	i=1	By	Chebyshev’s	inequality	(Theorem	5.11),	for	any	ε	>	0,	)	*	V	n→∞	P	|	Sn	/n|	≥	ε	≤	2	−→	0.	Exercise	13.3.1	Show
that	a	family	F	⊂	Mf	(R)	is	tight	if	and	only	if	there	exists	a	measurable	map	f	:	R	→	[0,	∞)	such	that	f	(x)	→	∞	for	|x|	→	∞	and	3	supμ∈F	f	dμ	<	∞.	s≤t	For	t	<	1/2λ,	this	implies	rt	=	0.	to	be	uncorrelated.	Proof	Let	γ	>	12	.	Show	the	following:	(i)	d	is	a	metric	on	the	set	of	distribution	functions.	21.2	The	processes	X	n	,	n	=	0,	1,	2,	3,	10	of	the	Lévy
construction	of	Brownian	motion.	+	Tn−1	Let	R	:=	{T1r	+	.	Then,	for	every	x	∈	Zd	,	μ({x})	=	(2π)−d		[−π,π)d	e−i)t,x*	ϕμ	(t)	dt.	We	distinguish	two	cases:	Case	1:	t	<	n1	.	Particularly	simple	is	the	case	where	μ	possesses	an	integrable	density	f	:=	dμ	dλ	with	respect	to	ddimensional	Lebesgue	measure	λ.	The	dual	space	V		of	V	is	defined	by	V		:=	{F	:	V
→	R	is	continuous	and	linear}.	Iterating	the	argument,	for	every	k	∈	N	and	0	≤	t1	≤	t2	≤	.	Furthermore,	f	22	=	b02	+	∞	(a	n=1	n	+	bn	).	t	∈R	By	(23.9)	and	the	differentiation	lemma	(Theorem	6.28),	ϕ	is	differentiable	infinitely	often	and	the	first	two	derivatives	are	)	*	ϕ		(t)	=	E	X1	et	X1	and	)	*	ϕ		(t)	=	E	X12	et	X1	.	Let	A	∈	F	.	For	the	multidimensional
situation,	there	are	various	possibilities	for	degeneracy	depending	on	the	size	of	the	kernel	of	C.	As	in	Example	1.11(vi),	we	define	the	set	of	all	sequences	whose	first	n	values	are	ω1	,	.	Lemma	15.12	Let	)X	be	a*	random	variable	with	values	in	Rd	and	characteristic	function	ϕX	(t)	=	E	ei)t,X*	.	This	Springer	imprint	is	published	by	the	registered
company	Springer	Nature	Switzerland	AG.	Since	ϕ	is	convex,	for	y	∈	I	◦	such	that	y	>	x,	we	have	ϕ(y)	≥	ϕ(x)	+	(ii)	(iii)	(iv)	(v)	(vi)		y−x	ϕ(x)	−	ϕ(x	−	h)	h	for	all	h	>	0	with	x	−	h	∈	I	◦	.	n→∞	n→∞	The	additional	statement	is	trivial	as	E˜	:=	E	∪	{Ω}	is	a	π-system	that	generates	A,	and	the	value	μ(Ω)	=	1	is	given.	(In	fact,	using	Exercise	21.4.2,	it	can	even
be	shown	that	(Wt	)t	≥0	converges	to	W	almost	surely	and	in	L1	.)	♣	Exercise	17.3.2	Let	r,	s,	R,	S	∈	N.	Theorem	16.6	Let	(ϕn	)n∈N	be	a	sequence	of	CFPs.	Then	the	following	are	equivalent.	Exercise	23.2.1	Let	E	=	R.	Thus	we	obtain	a	tree-shaped	network:	For	any	n	∈	N0	,	after	2n	steps	each	path	splits	into	three	(see	Fig.	Although	it	might	seem	that
these	two	events	are	entangled	in	some	way,	they	are	stochastically	independent.	Example	23.4	If	PX1	=	N0,1	,	then				∞	)	*	1	t2	2	Λ(t)	=	log	E	et	X1	=	log	√	et	x	e−x	/2	dx	=	.	3	Recall	from	Theorem	4.19	that	f¯	dμ	is	well-defined	if	f	∈	Lp	(μ)	and	if	μ	is	finite	but	it	need	not	be	if	μ	is	infinite.	Hence,	by	(7.8),	also	A	(1	−	g)	d(μ	+	ν)	=	0.	Hence	ϕl	(tl	)	=
exp(μ(Al	)(eitl	−	1)).	k=i	By	assumption	and	using	Fubini’s	theorem,	we	get			fl−1	(ωl−1	)	=		E	κjl−1	,jl	(ωl−1	,	dωl	)	=	Ajl+1	Ajl+1	κjl	,jl+1	(ωl	,	dωl+1	)	fl+1	(ωl+1	)	κjl−1	,jl+1	(ωl−1	,	dωl+1	)	fl+1	(ωl+1	).	Ω1	Theorem	14.29	If	we	denote	by	π2	:	Ω1	×	Ω2	→	Ω2	the	projection	to	the	second	coordinate,	then		(κ1	·	κ2	)(ω0	,	A2	)	=	(κ1	⊗	κ2	)	ω0	,	π2−1
(A2	)	for	all	A2	∈	A2	.	.,	such	that	Y1	,	Y2	,	.	Our	graph	(V	,	E)	is	the	starting	point	for	a	stochastic	model	of	a	porous	medium.	n	n	n	Hence	μ(Nn	)	=	0	for	any	n	∈	N	and	thus	μ(N)	=	0.	By	Corollary	11.11,	the	stopped	process	XτK	converges	almost	surely	τK	(and	in	L2	)	to	a	random	variable	that	we	denote	by	X∞	.	In	functional	analysis,	τw	corresponds
to	the	so-called	weak∗	-topology.	If	h	=	0,	then	F	β	does	not	have	a	minimum	at	m	=	0.	On	the	other	hand,	1(0,1)	:	R	→	R	is	lower	semicontinuous	but	not	continuous.)	An	equivalent	condition	for	lower	semicontinuity	is	that	limε↓0	inf	f	(Bε	(x))	=	f	(x)	for	all	x	∈	E.	Of	course,	the	behavior	over	small	periods	of	time	is	determined	by	the	perils	of
randomness.	In	this	case,	we	give	a	representation	theorem	and	use	it	to	discuss	the	fair	price	for	a	European	call	option	in	the	stock	market	model	of	Cox–	Ross–Rubinstein.	n=m	Example	2.8	We	throw	a	die	again	and	again	and	ask	for	the	probability	of	seeing	a	six	infinitely	often.	For	any	n	∈	N,	let	fn	:	E	→	R	be	a	bounded	measurable	map.	We
compute	P[Ns	=	k,	Nt	−	Ns	=	l]	=	P[Tk	≤	s	<	Tk+1	,	Tk+l	≤	t	<	Tk+l+1	]		∞		∞	···	dx1	·	·	·	dxk+l+1	=	0	0	α	k+l+1	−αSk+l+1	(x)	e	1{Sk	(x)≤s	0	and	let	X1	,	X2	,	.	Then		F{i}	(x)	=	0	x	θi	e−θi	t	dt	=	1	−	e−θi	x	for	x	≥	0	2.2	Independent	Random	Variables	65	and	hence	n				F{1,...,n}	(x1	,	.	(ii)	μ	is	monotone.	If	E	is	locally	compact,	it	is	enough	to
consider	f	with	compact	support.	,	m}	∩	{L	=	n}	)	*	=	P	{Mn,1	=	k1	,	.	Klenke,	Probability	Theory,	Universitext,	435	436	18	Convergence	of	Markov	Chains	eigenvalue	of	p.	1	−	2−γ	(21.8)	21.1	Continuous	Versions	521	Define	C0	=	21+γ	(1	−	2−γ	)−1	<	∞.	Thus,	for	large	n,	the	Boltzmann	distribution	is	concentrated	on	those	x	that	minimize	the	free
energy.	P[C]	252	11	Martingale	Convergence	Theorems	and	Their	Applications	Clearly,	X	is	adapted	to	F.	ϕ(t)	15.2	Characteristic	Functions:	Examples	337	338	15	Characteristic	Functions	and	the	Central	Limit	Theorem	Proof	(i)	(Normal	distribution)	By	Lemma	15.12,	it	is	enough	to	consider	the	case	μ	=	0	and	σ	2	=	1.	♣	5.3	Strong	Law	of	Large
Numbers	We	show	Etemadi’s	version	[47]	of	the	strong	law	of	large	numbers	for	identically	distributed,	pairwise	independent	random	variables.	Then	each	of	the	families	(Yn	(x))n∈N	and	(Zn	(x))n∈N	is	independent.	Optimal	couplings	can	be	used	also	for	the	definitions	of	a	metric	on	probability	measures	such	as	the	Wasserstein	metric,	for	example.
∪	An	)	=	n		(−1)k−1	μ(Ai1	∩	.	For	x	∈	E	N	,	let	1	n	ξn	(x)	=	n	i=1	δxi	∈	M1	(E).	We	will	show	that	for	any	two	finite	sets	J	and	J		with	J	⊂	J		⊂	I	,	P	+	i∈J		,	Ei	=		P[Ei	]	for	any	choice	i∈J		Ei	∈	σ	(Ei	),	Ei	∈	Ei	,	if	i	∈	J,	if	i	∈	J		\	J.	7.4	Lebesgue’s	Decomposition	Theorem	175	(iv)	W	=	L2	([0,	1],	λ).	As	soon	as	we	know	the	value	of	X,	we	toss	n	times	a	coin	that
has	probability	X	for	a	success.	Definition	14.4	(Product-σ	-algebra)	Let	(Ωi	,	Ai	),	i	∈	I	,	be	measurable	spaces.	Compute	the	⎛	0	3/4	1/4	invariant	distribution	and	the	exponential	rate	of	convergence.	<	jn	from	I	,	and	letting	J	:=	{j0	,	.	♣	Exercise	21.1.3	(Optional	sampling/	stopping)	Let	F	be	a	filtration	and	let	(Xt	)t	≥0	be	an	F-supermartingale	with
right	continuous	paths.	However,	all	complex	Nth	roots	of	unity	e2πik/N	,	k	=	0,	.	Thus,	in	order	to	show	(23.11),	it	is	enough	to	show	lim	inf	n→∞	'	(	1	ˆ	log	E	e−τ	Sn	1{Sˆn	≥0}	≥	0.	If	the	occurrence	of	the	event	does	not	change	when	we	change	finitely	many	values	of	the	random	variables,	then	the	event	is	called	terminal.	Hence	the	generated
filtration	is	the	smallest	filtration	to	which	the	process	is	adapted.	If	fn	−	f	p	−→	0,	Lp	then	we	say	that	(fn	)n∈N	converges	to	f	in	Lp	(μ)	and	we	write	fn	−→	f.	Hence	)√	√	*	t	|X|	)	*	=	P	Y	2	≤	t	(X2	+	Y	2	)		∞		∞	1	2	2	=	dx	dy	e−(x	+y	)/2	1{y	2	≤t	(x	2	+y	2	)}	.	k=0	We	conclude	+	RW	=	n	∞			n=0	k=0	k	≥	n+	n	0	−1			n=0	k=0	k	+	∞		ecn/2	=	∞	a.s.	n=n+
0	n→∞	Now,	by	Theorem	19.33,	we	get	Xn	−→	−∞	almost	surely.	For	measurable	f,	g	:	Ω	→	E,	let	˜	g)	:=	d(f,	∞		N=1	2−N	1	+	μ(AN	)			1	∧	d(f	(ω),	g(ω))	μ(dω).	>	X(n)	.	Indeed,	μ	ω∈Ω	{ω}	=	μ(Ω)	=	∞,	but	ω∈Ω	μ	({ω})	=	0.	14.1	Product	Spaces	.	(17.29)	17.7	Stochastic	Ordering	and	Coupling	431	In	fact,	we	can	also	give	a	definition	for	the	total
variation	in	terms	of	a	coupling:	Let	D	:=	{(x,	x)	:	x	∈	E}	be	the	diagonal	in	E	×	E.	We	conclude	that		ρC,ε	dμ1	=	ε−1		(ερC,ε	)	dμ1	=	ε−1			(ερC,ε	)	dμ2	=	ρC,ε	dμ2	.	Then	the	following	holds:	A	map	Y	:	Ω	→	Ω		is	A	–	A	-measurable	if	and	only	if	Xi	◦	Y	is	A	–	Ai	-measurable	for	all	i	∈	I	.	The	regular	conditional	distribution	of	Y	given	X	has	density	P[Y	∈	dy
|X	=	x]	f	(x,	y)	=	fY	|X	(x,	y)	:=	for	PX	[dx]-a.a.	x	∈	R.	Mainz	March	2013	Achim	Klenke	vii	Preface	to	the	First	Edition	This	book	is	based	on	two	four-hour	courses	on	advanced	probability	theory	that	I	have	held	in	recent	years	at	the	universities	of	Cologne	and	Mainz.	Then	E[X	+	Y	|Y	]	=	E[X	|Y	]	+	E[Y	|Y	]	=	E[X]	+	Y.	,	Y1D	)	has	covariance	matrix	Ci,j
:=	E[Y1i	·	Y1	]	=	D2	1{i=j	}	.	23.4	Weiss	ferromagnet:	magnetization	mβ,h	as	a	function	of	β.	In	this	case,	for	the	time	being	it	suffices	to	get	acquainted	with	the	definitions	of	weak	convergence	and	tightness	(Definitions	13.12	and	13.26),	as	well	as	with	the	statements	of	the	Portemanteau	theorem	(Theorem	13.16)	and	Prohorov’s	theorem	(Theorem
13.29).	To	put	it	differently,	there	must	be	a	function	Fn	:	{−1,	1}n−1	→	N	such	that	Hn	=	Fn	(D1	,	.	Then	A1	and	A2	are	semirings	but	A1	∩A2	=	{∅,	Ω,	{1}}	is	not.	k=1	y:	|y/	k|≤L/N	By	the	weak	law	of	large	numbers,	we	have	lim	infk→∞	every	ε	>	0.	n→∞	n	n→∞	n	n→∞	n	log	Pn	((−x,	∞))	=	lim	n→∞	The	main	work	has	been	done	by	showing	that	the
family	(Pn	)n∈N	satisfies	conditions	(LDP	1)	and	(LDP	2)	at	least	for	unbounded	intervals.	23.2	Large	Deviations	Principle	595	Often	(LDP	1)	and	(LDP	2)	are	referred	to	as	lower	bound	and	upper	bound.	♣	Exercise	11.2.7	(Conditional	Borel–Cantelli	lemma)	Let	(Fn	)n∈N0	be	a	filtration	and	∞let	(An	)n∈N	be	events	with	A∗n	∈	Fn	for	all	n	∈	N.	Putting
things	together,	we	infer	infz∈F	(d(x,	z)	+	d(z,	y))	=	d(x,	y).	By	definition,	κn	(yn−1	,	yn−1	+	An	)	=	μn	(An	).	2	(1	−	z)(1	+	z)	1−z	Therefore,	z	1	1	z	log(1	+	z)	−	log(1	−	z)	+	log(1	−	z)	+	log(1	+	z)	2	2	2	2	1+z	1−z	=	log(1	+	z)	+	log(1	−	z).	(ii)	An	element	μ	of	M	is	called	extremal	if	μ	=	λμ1	+	(1	−	λ)μ2	for	some	μ1	,	μ2	∈	M	and	λ	∈	(0,	1)	implies	μ	=	μ1
=	μ2	.	♦	Example	8.27	(i)	Let	(Ω1	,	A1	)	and	(Ω2	,	A2	)	be	discrete	measurable	spaces	and	let	(Kij	)	i∈Ω1	be	a	matrix	with	nonnegative	entries	and	finite	row	sums		Kij	<	∞	for	i	∈	Ω1	.	Theorem	18.9	Let	X	be	a	Markov	chain	on	E	with	transition	matrix	p.	Now	assume	that	I	⊂	R	is	closed	under	addition.	,	N.	♣	8.2	Conditional	Expectations	Let	X	be	a
random	variable	that	is	uniformly	distributed	on	[0,	1].	,	d	−	1}	such	that	nd	+	Lx,y	∈	N(x,	y)	for	all	n	≥	nx,y	.	M	Choose	a	countable	basis	U	of	the	topology	consisting	of	relatively	compact	sets.	(ii)	This	is	similar	to	(i).	257	257	263	266	13	Convergence	of	Measures	..	♠	In	the	following	section,	we	will	need	the	representation	theorem	for	the	space	L2
(μ),	which,	unlike	L2	(μ),	is	not	a	Hilbert	space.	Hence,	let	l	≥	1.	Exercise	6.1.1	Let	Ω	be	countable.	Consider	first	the	one-dimensional	simple	random	walk	that	with	probability	p	jumps	one	step	to	the	right	and	with	probability	1	−	p	jumps	one	step	to	the	left.	Theorem	)	1	2	*	2.45	For	d	=	1,	we	have	pc	=	1.	However,	if	#Ω	=	∞,	then	A	is	not	a	σ	-
algebra.	Note	that	each	point	x	∈	TL	has	exactly	three	neighbors	which	are	in	UL	.	Ω	Let	Ω	be	an	(at	most)	countable	nonempty	set	and	let	A	=	2	.	Then	An	=	n				E[|Xi	|		Fi−1	]	−	|Xi−1	|	.	In	particular,	an	F-(sub-,	super-)	martingale	X	is	always	a	(sub-,	super-)	martingale	with	respect	to	its	own	filtration	σ	(X).	“(ii)	⇒	(iii)”	This	works	as	in	the	proof	of
Theorem	6.25.	By	Theorem	1.96,	there	are	g1	,	g2	,	.	Hint:	Consider	E	=	[0,	1].	Markov	chains	with	discrete	state	spaces	give	rise	to	many	interesting	probabilistic	examples.	Then	there	exist	an	ε	>	0	and	sets	An	∈	A	with	μ(An	)	<	2−n	but	ν(An	)	≥	ε	for	all	n	∈	N.	Definition	1.69	A	measure	space	(Ω,	A,	μ)	is	called	complete	if	Nμ	⊂	A.	Define	μ	:	A	→	[0,
∞)	by	μ	(a,	b]	∩	Q	=	b	−	a.	be	i.i.d.	random	variables			with	continuous	distribution	function	F	.	,	XtnN	is	normally	distributed	and	centered.	Theorem	1.3	If	A	is	closed	under	complements,	then	we	have	the	equivalences	A	is	∩	-closed	⇐⇒	A	is	∪	-closed,	A	is	σ	-	∩	-closed	⇐⇒	A	is	σ	-	∪	-closed.	Letting	ε	↓	0,	we	get	C	=	Cb	(E;	R).	Hence,	by	the	residue
theorem	for	0	<	b	<	c	<	∞,			c	x	b	r−1	exp(−x)	dx	=	zr−1	exp(−z)	dz	γb,c,t			+	z	δb,t	r−1	exp(−z)	dz	+	zr−1	exp(−z)	dz.	Hence,	G	is	stable	under	complements.	∞	Therefore,	'	P	X	−	X	n	n−1	∞	>	2	−n/4	(	≤	n−1	2	(	'	P	|ξn,k	|	>	2(n+2)/4	k=1		∞	2	2	=	2n−1	√	e−x	/2	dx	2π	2(n+2)/4			≤	2n	exp	−2n/2	.	For	any	π	∈	Π0,m	,	the	probability	that	π	uses	only
open	edges	is	P[π	is	open]	=	pm	.	,	Uzn	of	E	consisting	of	such	neighborhoods	and	define	gx	=	min(hz1	,	.	Hence,	we	have	P[Xt	>	n]	=	P[Sn+1	≤	t]	=	P[Z1	≤	t]n	=	(1	−	e−t	)n	.	♣	Exercise	11.2.9	Let	f	∈	L1	(λ),	where	λ	is	the	restriction	of	the	Lebesgue	measure	to	[0,	1].	The	measure	extension	theorem	yields	an	abstract	statement	of	existence	and
uniqueness	for	measures	on	σ	(A)	that	were	first	defined	on	a	semiring	A	only.	Theorem	15.25	(Pólya)	Let	f	:	R	→	[0,	1]	be	continuous	and	even	with	f	(0)	=	1.	are	i.i.d.	random	maps	E	→	E	with	P[F	(x)	=	y]	=	p(x,	y)	for	all	x,	y	∈	E.	Theorem	21.37	Weak	convergence	in	M1	(Ω,	d)	implies	fdd-convergence:	n→∞	Pn	−→	P	⇒	n→∞	Pn	−→	P	.	♣	13.3	Prohorov’s
Theorem	In	the	following,	let	E	be	a	Polish	space	with	Borel	σ	-algebra	E.	Definition	19.34	The	process	X	is	called	a	random	walk	in	the	random	environment	W	.	Proof	This	is	left	as	an	exercise!	Example	9.17	Let	I	=	N0	(or,	more	generally,	let	I	⊂	[0,	∞)	be	right-discrete;	that	is,	t	<	inf	I	∩	(t,	∞)	for	all	t	≥	0,	and	hence	I	in	particular	is	countable)	and
let	K	⊂	R	be	measurable.	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	186	3	In	other	words,	(f	+	ε	1A	)	∈	G	and	thus	(f	+	ε	1A	)	dμ	=	γ	+	εμ(A)	>	γ	,	contradicting	the	definition	of	γ	.	8.1	Elementary	Conditional	Probabilities	..	Show	that	G(x,	y)	=	G(x,	y)	for	all	x,	y	∈	E	\	A	and	that	G(x,	y)	=	1{x=y}	if	x	∈	A.	Show	that	dP	(P	,	Q)	≤	dW	(P	,	Q)	for	all	P	,
Q	∈	M1	(E).	10.2	Optional	Sampling	and	Optional	Stopping	235	Now	{σ	<	n}	∩	A	∈	Fσ	∧n	for	A	∈	Fσ	.	It	measures	the	amount	of	new	randomness	added	in	each	step.	Let	P0	=	δ0	and	let	P	be	the	unique	probability	measure	on	Ω	corresponding	to	P0	and	(κt	:	t	≥	0)	according	to	Corollary	14.47.	Such	a	process	is	said	to	be	binary	splitting.	≤	f	(Yn	)	≤	f
n	n	k=0	Hence	E[f	(Yn	)]	≤	1	n	n−1		k=0	E[f	(|Xk	|p	)]	=	C.	In	both	cases,	we	infer	that	bounded	harmonic	functions	are	constant.	We	conclude	that	lim	sup	Xm	−	Xn	∞	=	0	P-almost	surely.	Hence	we	have	to	postulate	λ	=	0.	This	justifies	the	name	“exchangeable	event”.	Hence	(see	Example	12.28)		**	)	*	)	)	E	Z	n	=	E	P	X1	=	·	·	·	=	Xn	=	1		Z	=	P	[Sn	=
n]	=	(N	−	1)!	(M	+	n	−	1)!	(M	−	1)!	(N	+	n	−	1)!	for	all	n	∈	N.	A	function	f	:	E	→	F	is	called	Lipschitz	continuous	if	there	exists	a	constant	K	<	∞,	the	so-called	Lipschitz	constant,	with	dF	(f	(x),	f	(y))	≤	K	·	dE	(x,	y)	for	all	x,	y	∈	E.	A	constantly	updated	list	of	errors	can	be	found	at	www.aklenke.de.	♣	Exercise	15.3.4	(Continuity	theorem	for	Laplace
transforms)	Let	(μn	)n∈N	be	a	sequence	of	probability	measures	on	[0,	∞)	and	let		ψn	(t)	=	e−t	x	μn	(dx)	for	t	≥	0,	n∈N	be	the	Laplace	transforms.	Takeaways	Let	us	imagine	the	edges	of	some	graph	as	resistors	in	an	electrical	network.	First	consider	a	general	(discrete	time)	irreducible	random	walk	with	transition		matrix	p	on	ZD	.	N+1	Since	N	is
odd,	|λk	|	is	maximal	(except	for	k	=	0)	for	k	=	N−1	2	and	for	k	=	2	.	Then:	3	3	(i)	(Monotonicity)	If	f	≤	g,	then	f	dμ	≤	g	dμ.	Show	that	the	following	two	statements	are	equivalent:	(i)	There	is	a	Borel	measurable	map	g	:	Ω	→	R	with	f	=	g	everywhere.	If	we	define	X	=	Z1	+	Z2	and	Y	=	Z1	,	then	(X,	Y	)	∼	Nμ,Σ	is	bivariate		2		σ1	+	σ22	σ12	normally
distributed	with	covariance	matrix	Σ	:=	and	with	μ	:=	σ12	σ12			μ1	+	μ2	.	As	typically	the	option	is	exercised	only	if	the	market	price	at	time	T	is	larger	than	K	(and	then	gives	a	profit	of	XT	−K	as	the	stock	could	be	sold	at	price	XT	on	the	market),	the	value	of	the	option	is	indeed	VT	=	(XT	−	K)+	.	,	Xn	be	i.i.d.	exponentially	distributed	random
variables	with	parameter	1.	n→∞	Hence,	f	is	uniformly	continuous.	This	is	the	case	in	particular	if	[0,	1]	is	replaced	by	G	⊂	Rd	for	very	large	d.	n→∞	Letting	ε	↓	0	yields	d˜N	(f,	fn	)	−→	0.	Since	A	∩	B	=	A,	we	obtain	μ(B)	=	μ(A	(B	\	A))	=	μ(A)	+	μ(B	\	A)	if	B	\	A	∈	A.	Thus	let	N	=	{f	is	measurable	and	f	=	0	μ-a.e.}.	Then	(aX	+	bY	)	is	a	supermartingale.
Now	let	Sn	:=	T1	+	.	Hence	μ(E)	=	∞	=	ν(E)	for	all	E	∈	E.	Define	A0	=	ξ0	and	√	2	ξn	An	:=	πn	for	n	∈	N.	Definition	24.3	A	random	measure	on	E	is	a	random	variable	X	on	some		and	with	P[X	∈	M(E)]	=	Q	probability	space	(Ω,	A,	P)	with	values	in	(M(E),	M)	1.	Proof	For	fixed	N	>	0	and	s,	t	∈	[0,	N],	we	have	)	*	)	)	*	*	Ex	(Yt	+s	−	Ys	)4	=	Ex	EYs	[(Yt	−	Y0
)4	]	=	Ex	24Ys	t	3	+	12Ys2	t	2		=	24x	t	3	+	12(2sx	+	x	2	)	t	2	≤	48Nx	+	12x	2	t	2	.	For	t	=	0,	the	claim	holds	trivially.	t	By	the	dominated	convergence	theorem	with	dominating	function	1	∧	x	for	t	≥	1,	we	infer		t	→∞	t	−1	(1	−	e−t	x	)	ν(dx)	−→	0.	Show	that	any	countable	(respectively	finite)	union	of	sets	in	A	can	be	written	as	a	countable	(respectively
finite)	disjoint	union	of	sets	in	A.	{−n,−n+1,...}		P	Then	{−n,	−n	+	1,	.	=	σ	2	.	470	19	Markov	Chains	and	Electrical	Networks	and	so	on,	yielding	u(k)	−	u(0)	=	I	(x1	)	k−1		R(l,	l	+	1).	♣	Chapter	6	Convergence	Theorems	In	the	strong	and	the	weak	laws	of	large	numbers,	we	implicitly	introduced	the	notions	of	almost	sure	convergence	and	convergence
in	probability	of	random	variables.	Its	row	sum	is	denoted	by	Sn	=	Xn,1	+	.	+	Xn	n→∞	√	⇒	N0,1	.	P	Xn	=	1		X1	,	X2	,	.	(i)	⇐⇒	(iii)	⇐⇒	(iv)	This	follows	from	the	elementary	theory	of	power	series.	Let	μ1	=	π,	μ2	,	.	Even	after	a	long	time,	the	computer	simulation	does	not	produce	the	equilibrium	state	but	rather	so-called	metastable	states,	in	which	the
Weiss	domains	are	clearly	visible.	Use	the	star-triangle	transformation	to	remove	the	lower	right	node	(left	1	=	δ/R1	=	19/6,	in	Fig.	Hence	we	show	for	0	<	s	<	t	and	l,	k	∈	N0	that		k	l	−αs	(αs)	−α(t	−s)	(α(t	−	s))	e	.	n=0	k=0	Hence	X	is	positive	recurrent	if	and	only	if	M	<	∞.	254	11	Martingale	Convergence	Theorems	and	Their	Applications	∞	Hint:
Apply	Exercise	11.2.5	to	Xn	=	n=1	(1An	−	P[An	|Fn−1	]).	n	n−1	Yn	≤	k=0	500	20	Ergodic	Theory	Again,	by	Jensen’s	inequality	(now	applied	to	f	),	we	get	that		n−1		n−1	1	1	p	|Xk	|	f	(|Xk	|p	).	A	signed	measure	can	be	written	as	the	difference	of	two	finite	mutually	singular	measures	(Jordan	decomposition).		We	show	that	PSn	/n	n∈N	satisfies	an	LDP
with	rate	n	and	rate	function	Λ∗	.	The	map	Fn	:	R	→	[0,	1],	x	→	n1	1(−∞,x]	(Xi	)	is	called	the	empirical	i=1	distribution	function	of	X1	,	.	7.5	Supplement:	Signed	Measures	179	Let	U	be	a	random	variable	that	is	uniformly	distributed	on	(0,	1]	and	denote	by	μ	:=	PU	◦F	−1	the	distribution	of	F	(U	).	♣	Exercise	12.1.3	Let	X1	,	.	♣	Exercise	2.1.2	Show	that
the	conclusion	of	the	interesting	part	of	the	Borel-Cantelli	lemma	(Theorem	2.7(ii))	still	holds	under	the	following	weaker	condition:	Each	of	the	families	(A1	,	A3	,	A5	,	.	Use	the	Cauchy-Schwarz	inequality	for	X	and	1{X>0}	in	order	to	show	the	PaleyZygmund	inequality	P[X	>	0]	≥	E[X]2	.	For	more	general	measurable	functions,	the	integral	was	then
defined	as	the	limit	of	integrals	of	approximating	elementary	functions.	Lemma	23.9	Let	N	∈	Then	N	and	let	aεi	,	i	lim	sup	ε	log	ε→0	N		=	1,	.	♣	1.5	Random	Variables	The	fundamental	idea	of	modern	probability	theory	is	to	model	one	or	more	random	experiments	as	a	probability	space	(Ω,	A,	P).	n	n	i=1	n→∞	Assuming	f	∈	L1	([0,	1]),	the	strong	law	of
large	numbers	yields	I:n	−→	I	a.s.	Note	that	the	last	theorem	made	no	statement	on	the	speed	of	convergence.	∈	R	and	αn	≥	0	for	all	n	∈	N	such	that	∞	n=1	αn	<	∞.	Therefore,	n(y)	and	i(y)	such	that	pn(y)	d+i(y)(x0	,	y)	>	0;	hence	y	∈	Ei(y)	∩	E	i	for	every	i	=	0,	.	“(ii)	⇒	(i)”	Let	(μn	)n∈N	be	tight	and	let	C	⊂	Cb	(E)	be	a	separating	class	with	(13.9).	n∈N
Show	that	C	=	A+	=	A−	=	F	(mod	P).	1	However,	this	is	the		L	(P)-convergence	in	(8.7).	Then	κ(x,	·	)	=	P[X	+	x	∈	·	]	=	δx	∗	μ	defines	a	stochastic	kernel	from	Rn	to	Rn	.	If,	in	addition,	E	is	Polish,	then	(M(E),	τv	)	is	again	Polish	(see,	e.g.,	[82,	Section	15.7]).	Now	X	jumps	from	n	to	n	+	1	at	rate	n.	Let	P[T	∈	N0	]	=	1	and	let	X1	,	X2	,	.	By	Exercise	∞6.1.4,
since	(iii)	(Y	−E[Y	])	converges	a.s.	As	(ii)	holds,	holds,	the	series	∞	n	n	n=1	n=1	Yn	converges	almost	surely.	In	most	cases,	the	events	of	Ω	are	not	observed	directly.	Definition	3.9	(Zn	)n∈N0	is	called	a	Galton–Watson	process	or	branching	process	with	offspring	distribution	(pk	)k∈N0	.	,	n}	and	τ	:	Ω	→	Ω,	x	→	x	+	r	(mod	n).	Furthermore,	P[Ym	>	k]	=
P[Xm,l	=	0,	l	=	1,	.	In	general,	the	value	of	pc	is	not	known	and	is	extremely	hard	to	determine.	Then	the	following	are	equivalent:	n→∞	(i)	Pn	−→	P	and	(Pn	)n∈N	is	tight.	In	particular,	I	would	like	to	thank	Philipp	Neumann	for	many	helpful	comments.	(23.17)	604	23	Large	Deviations	Then		lim	ε	log	ε→0		eφ(x)/ε	με	(dx)	=	sup	φ(x)	−	I	(x)	.	Let	KL	be	the
set	of	all	edges	which	have	at	least	one	endpoint	in	BL	.	+	Xn	=	k]	zk	k=0	n=0	=	∞			P[T	=	n]	ψX1	(z)n	=	ψT	ψX1	(z)	.	be	independent	real	random	variables	in	L1	(P).	For	the	general	case,	see,	e.g.,	[71,	page	293,	Theorem	33.3].	For	every	n	∈	N,	nY	is	distributed	as	the	sum	of	n2	independent,	standard	normally	distributed	D	random	variables	nY	=	Y1
+	.	Assume	that	any	n	∈	N,	the	partition	t	n+1	is	a	refinement	of	t	n	;	that	is,	for	n+1	n	n+1	n	.	(7.2)	Proof	The	case	p	=	∞	is	trivial.	n	]1/n	<	1,	then	(iv)	If	X	takes	values	in	N0	and	if	β	:=	∞lim	supn→∞	E[X	k	by	Hadamard’s	criterion	ψX	(z)	:=	k=1	P[X	=	k]	z	<	∞	for	|z|	<	1/β.	|f	|	dμ	≤	lim	inf	k→∞	Hence	f	∈	L1	(μ).	Ergodic	theorems	are	laws	of	large
numbers	for	(Sn	)n∈N	.	Proof	We	face	the	problem	that	the	space	[0,	∞)	is	not	compact	by	passing	to	the	one-point	compactification	E	=	[0,	∞].	(i).	Remark	1.24	Any	of	the	classes	E1	,	E2	,	E3	,	E5	,	.	The	left	figure	shows	the	actual	edges	where,	e.g.,	xyy	indicates	that	the	first	step	is	in	direction	x,	the	second	step	is	in	direction	y	and	then	the	third
step	is	necessarily	also	in	direction	y.	Then	X	is	also	adapted	to	F;	however,	in		general,	F		σ	(X).	,	T	})	−	K	bT	,p∗	({A,	.	(iii)	The	family	(δn	)n∈N	of	probability	measures	on	R	is	not	tight.	Reflection	Why	do	we	need	condition	(iii)	in	the	definition	of	the	Poisson	process?	The	sequence	(μn	)	in	X	converges	weakly	to	μ	∈	X,	if	n→∞	Φ(μn	)	−→	Φ(μ)	for	every
Φ	∈	X	.	♦	Theorem	21.50	We	have	Lx	[Z˜	n	]	−→	Lx	[Y	].	As	reference	chain,	we	choose	a	chain	with	transition	probabilities	q(x,	y)	=	if	y	=	x	i	for	some	i	∈	Λ,	1	#Λ	,	0,	else.	For	−∞	≤	a	<	b	≤	+∞,	we	have	lim	P[Sn∗	∈	[a,	b]]	=	√1	2π	3b	e−x	2	/2	dx.	be	independent	random	variables.	=	(−4)	n	n	Takeaways	Generating	functions	determine	a	probability
distribution	on	N0	.	l=1	Concluding,	we	get	P[Ym	=	k]	=	P[Ym	>	k	−	1]	−	P[Ym	>	k]	=	p(1	−	p)k	.	15.3	Lévy’s	Continuity	Theorem	345	As	F	is	tight,	there	exists	an	N	∈	N	with	μ([−N,	N]d	)	>	1	−	ε2	/6	for	all	μ	∈	F	.	For	n	=	1,	.	Then	Xi	∼	bn,pi	and	X1	≤	X2	almost	surely.	Then	there		exists	X−∞	=	lim	X−n	almost	surely	and	in	L1	.	Hence	the	statement
follows	from	Theorem	2.13.	How	must	we	choose	the	sequence	(pn	)n∈N	in	order	that	PXn	/n	converges	weakly	to	the	exponential	distribution	with	parameter	α	>	0?	Lemma	15.46	For	every	n	∈	N	and	t	∈	R,	we	have	kn	2				1	−	ϕn,l	(t)	≤	t	.	♣	Exercise	4.2.6	Let	λ	be	the	Lebesgue	measure	on	R,	p	∈	[1,	∞)	and	let	f	∈	Lp	(λ).	Let	f	∈	Lp	(μ)	and	g	∈	Lq	(μ)
be	nontrivial.	+	Tn−L	n	+1		s	r	r	T	+	.	n→∞	(ii)	μ	=	v-lim	μn	and	μ(E)	=	lim	μn	(E).	The	probability	measure	P(Xj	)j∈J	on	RJ	is	called	the	joint	distribution	of	(Xj	)j	∈J	.	Theorem	2.46	(Kesten	[94])	For	bond	percolation	in	Z2	,	the	critical	value	is	pc	=	1	2	and	θ	(pc	)	=	0.	♣	1.5	Random	Variables	51	Exercise	1.5.5	(i)	Let	F	and	G	be	distribution	functions	on
R.	.}	is	an	independent	family	of	random	variables.	n→∞	Clearly,	the	sequence	(δ1/n	)n∈N	of	probability	measures	on	R	converges	weakly	to	δ0	;	however,	not	in	total	variation	norm.	While	the	(simple)	Markov	property	of	(B,	(Px	)x∈R	)	is	evident,	it	takes	some	work	to	check	the	strong	Markov	property.	In	order	to	illustrate	the	method	of	the	proof	of
Etemadi’s	theorem,	we	first	present	(and	prove)	a	strong	law	of	large	numbers	under	stronger	assumptions.	Let	Y	=	M	+	A	be	the	Doob	decomposition	of	Y	.	We	do	not	strive	for	completeness	but	show	only	a	few	of	the	statements.	Hence,	by	Remark	8.26,	x	→	κ(x,	A)	is	measurable	for	all	A	∈	B(Rn	).	Applying	the	monotone	convergence	theorem	once
more,	we	get			E[f	(X)	1B	]	=	lim	E[gn	(X)	1B	]	=	n→∞	B	f	(x)	κX,F	(ω,	dx)	P[dω].	In	this	case,	N	:=	{v	∈	V	:	)v,	v*	=	0}	and	V0	=	V	/N	:=	{f	+	N	:	f	∈	V	}.	A	i∈J		i∈J		A	Takeaways	We	have	developed	the	notion	of	the	(elementary)	conditional	probability	and	have	established	two	simple	but	important	formulas:	the	summation	formula	and	Bayes’	formula.
If	d	=	1,	then	both	statements	are	equivalent.	In	particular,	F	(x,	x)	is	the	return	probability	(after	the	first	jump)	from	x	to	x.	Hence	M	is	a	bounded	F-martingale	and	thus	converges	almost	surely	and	in	L1	to	a	random	variable	M∞	.	The	claim	follows	by	the	uniqueness	theorem	for	harmonic	functions	(Theorem	19.7).	....	Then	μ1	≤st	μ2	if	and	only	if
there	is	a	coupling	ϕ	of	μ1	and	μ2	with	ϕ(L)	=	1.	∈	L2	(P)	be	pairwise	independent	(that	is,	Xi	and	Xj	are	independent	for	all	i,	j	∈	N	with	i	=	j	)	and	identically	distributed.	♦	Theorem	21.11	Let	X	=	(Xt	)t	∈[0,∞)	be	a	stochastic	process.	♣	)	*	Exercise	23.1.2	Let	X	be	a	real	random	variable	and	let	Λ(t)	:=	log	E	et	X	,	t	∈	R	be	its	logarithmic	moment
generating	function.	(17.23)		Now	consider	symmetric	simple	random	walk.	Let	F	be	the	filtration	F	=	(Fn	)n∈N0	,	where	Fn	=	σ	(Ik	,	Nk	:	k	≤	n)	for	all	n	∈	N0	.	n→∞	In	order	for	μpn	−→	π	to	hold	for	every	μ	∈	M1	(E),	a	certain	contraction	property	of	p	is	necessary.	Hence		∞			An	∩	E	=	n=1	∞	(An	∩	E)	∈	δ(E).	For	general	stochastic	processes,	this	is
false	since	the	supremum	depends	on	more	than	countably	many	coordinates.	,	kn	,	n	∈	N)	be	an	array	of	CFPs	with	the	property	sup	lim	sup	L>0	n→∞	sup	sup	t	∈[−L,L]	l=1,...,kn	|ϕn,l	(t)	−	1|	=	0.	Let	k	=	Lemma	21.45)	(t	+	s)n!.	♣	Exercise	4.2.4	Let	λ	be	the	Lebesgue	measure	on	R	and	let	A	be	a	Borel	set	with	λ(A)	<	∞.	,	in	,	i	∈	E	with	P[Xs1	=	i1	,	.
∈	A	with	An	↑	Ω	and	μ(An	)	<	∞	for	any	n	∈	N.	Theorem	13.18	(Slutzky’s	theorem)	Let	X,	X1	,	X2	,	.	18.6	Ising	model	(150	×	150	grid)	below	the	critical	temperature.	Exercise	20.1.1	Let	G	be	a	finite	group	of	measure-preserving	measurable	maps	on	(Ω,	A,	P)	and	let	A0	:=	{A	∈	A	:	g(A)	=	A	for	all	g	∈	G}.	A⊂2Ω	is	a	σ	-algebra	A⊃E	σ	(E)	is	called	the	σ	-
algebra	generated	by	E.	3	fZ	dμ	=	The	equivalence	of	(ii)	and	(iii)	was	established	in	the	preceding	theorem.	Hence	we	only	show	(iii)	⇒	(i).	Furthermore,	H	(ν	|μ)	=	0	if	and	only	if	ν	=	μ.	,	n}	−→	0.	We	check	that	this	is	indeed	the	case.	n∈N		r,s∈Q	Ar,s		∪		r∈Q	Br		∪	C.	♣	15.3	Lévy’s	Continuity	Theorem	The	main	statement	of	this	section	is	Lévy’s
continuity	theorem	(Theorem	15.24).	If	ν	=	f	μ,	then	ν(A)	=	0	for	all	A	∈	A	with	μ(A)	=	0.	,	tN	since	these	functions	determine	the	distribution	of	(Bt	+τ	)t	≥0.	Then	An	(ϕk−1	)An	(fk	)	=	n	1		1		ϕk−1	(X	)	fk	(Xi	)	n!	n	i=1	∈S(n)	=	1		ϕk	(X	)	+	Rn,k	=	An	(ϕk	)	+	Rn,k	,	n!	∈S(n)	where	n			;		;	;		;	Rn,k		≤	2	;ϕk−1	;	·	;fk	;	·	1	1	1{i∈{(1),...,(k−1)}}	∞	∞	n!	n	∈S(n)
i=1	;	;	;	;	k	−	1	n→∞	=	2	;ϕk−1	;∞	·	;fk	;∞	·	−→	0.	Theorem	17.8	Let	I	⊂	[0,	∞)	be	closed	under	addition	and	let	(κt	)t	∈I	be	a	Markov	semigroup	of	stochastic	kernels	from	E	to	E.	Hence,	for	n→∞	X,	X1	,	X2	,	.	600	23	Large	Deviations	The	random	variable	n	ξn	(Y	)	has	the	multinomial	distribution	with	parameters	(nν({x}))x∈Σ	.	As	the	coordinates	of	Y
are	independent,	we	have		∞	GY	=	0	P0	[Yt1	=	0]D	dt.	Definition	1.76	(Measurable	maps)	(i)	A	map	X	:	Ω	→	Ω		is	called	A	–	A	-measurable	(or,	briefly,	measurable)	if	X−1	(A	)	:=	{X−1	(A	)	:	A	∈	A	}	⊂	A;	that	is,	if	X−1	(A	)	∈	A	for	any	A	∈	A	.	A	recurrent	state	is	called	positive	recurrent	if	the	expected	time	of	return	is	finite;	otherwise	it	is	null	recurrent.
In	order	to	derive	the	formula	for	u(x),	we	make	the	following	observations.	Hence	the	space	of	all	possible	outcomes	of	the	repeated	experiment	is	Ω	=	E	N	.	Since	X	is	irreducible	and	aperiodic,	by	Lemma	18.3(ii),	there	exists	an	N	∈	N,	such	that	the	N-step	transition	matrix	fulfills	pN	(0,	x)	>	0	for	all	x	∈	{−1,	0,	1}d	.	We		assume	that	(iii)	does	not
hold	and	produce	a	contradiction.	For	example,	we	have	×	n	[ai	,	bi	)	=	i=1	∞		×	n	k=1	i=1		1		ai	−	,	bi	∈	σ	(E5	).	If	ϕ	is	twice	continuously	differentiable,	then	ϕ	is	convex	if	and	only	if	the	Hessian	matrix	is	positive	semidefinite.	Independent	random	variables	are	uncorrelated.	We	write	X	∼	μ	if	μ	=	PX	and	say	that	X	has	distribution	μ.	Birkhoff’s
ergodic	theorem	now	implies	that,	for	every	x	∈	E,	1	n→∞	1{Xk	=x}	−→	π({x})	Pπ	-a.s.	n	n−1	k=0	In	this	sense,	π({x})	is	the	average	time	X	spends	in	x	in	the	long	run.	The	strong	Markov	property	of	X	yields	)		*	E0	f	τ,	(Xτ	+m	)m≥0		Fτ	=	ϕ	(τ,	Xτ	)	,	398	17	Markov	Chains	where	ϕ(m,	x)	=	Ex	[f	(m,	X)].	n∈N	N∈N	μ∈F	Then	there	is	an	n	∈	N	such	that
for	any	N	∈	N,	there	is	a	μN	∈	F	with	μN	(Acn,N	)	≥	δ/2.	♦	Theorem	14.19	(Fubini)	Let	(Ωi	,	Ai	,	μi	)	be	σ	-finite	measure	spaces,	i	=	1,	2.	(N	−	1	+	n)!	(M	−	1)!	(N	−	M	−	1)!	The	right-hand	side	depends	on	sn	only	and	not	on	the	order	of	the	x1	,	.	See	Fig.	Then	μ	is	uniquely	determined	by	the	values	μ(A)	for	all	A	∈	Z	E	,R	.	Let	J	⊂	N	be	finite	and	n	:=
max	J	.	♣	Chapter	13	Convergence	of	Measures	One	focus	of	probability	theory	is	distributions	that	are	the	result	of	an	interplay	of	a	large	number	of	random	impacts.	are	i.i.d.	with	distribution	function	F	,	then	almost	surely	for	n	→	∞.		1	min	Sk	n	k=1,...,n			min	Sk	;	hence	k=1,...,n	=	0.	Γ	(r)	(Here	Γ	denotes	the	gamma	function.)	Then	Γθ,r	is	called
the	Gamma	distribution	with	scale	parameter	θ	and	shape	parameter	r.	2π	−∞	−∞	P[ζ	≤	t]	=	P	1	−	t	|Y	|	≤	Passing	to	polar	coordinates,	we	obtain	P[ζ	≤	t]	=	1	2π		∞	0	r	dre−r	2	/2		2π	0	dϕ	1{sin(ϕ)2	≤t	}	=	√		2	arc	sin	t	.	Then,	for	any	A	∈	A	with	P[A]	>	0	and	any	k	∈	I	,	P[Bk	|A]	=		P[A|Bk	]	P[Bk	]	.		#Λ		i∈Λ	If	we	consider	a	very	large	system,	then	we
are	close	to	the	so-called	thermodynamic	limit	m(β)	:=	lim	mΛ	(β).	,	μn	.	Let	μ1	,	μ2	∈	Mf	(E)	be	such	that	f	dμ1	=	f	dμ2	for	all	f	∈	Lip1	(E;	[0,	1]).	Let	m−1	X	:=	ξ0,1	B0,1	+	n	n	2		ξm,k	Bm,k	,	m=1	k=1	and	define	X˜	t	as	the	L2	(P)-limit	X˜	t	=	L2	−	limn→∞	Xtn	.	Hence	we	get	the	bound	#TL	≤	#(BL	\	BL−1	)	and	thus	#(BL	\	BL−1	)	d	L→∞	#TL	≤	≤	−→
0.	Therefore,	it	is	enough	to	consider	the	case	μ(E)	∈	(0,	∞).	A	point	h	with	degHL	(h)	=	1	is	called	a	leaf	of	HL	.	As	the	only	exception,	the	systematic	construction	of	independent	random	variables	is	deferred	to	Chap.	This	model	is	rather	simple	and	describes	an	idealized	market	(no	transaction	costs,	fractional	numbers	of	stocks	tradeable	and	so	on).
What	does	the	result	imply	for	the	convergence	of	PZn	?	,	Xtn−2	∈	An−2	,	Xtn−1	∈	dxn−1	=	An−1	κtn	−tn−1	(xn−1	,	An	);	hence	Px	[Xtn	∈	An	|Ftn−1	]	=	κtn	−tn−1	(Xtn−1	,	An	).	By	Theorem	15.13(i),	this	is	N0,1	.	By	virtue	of	the	Borel–Cantelli	lemma,	show	that	for	any	c	∈	(0,	1)	∞		n=1	e	Xn	c	n	<	∞	a.s.,	if	E[X1	]	<	∞,	=	∞	a.s.,	if	E[X1	]	=	∞.	μ(C)	We
show	that	the	following	three	statements	are	equivalent.	Without	loss	of	generality,	assume	E0	∩	E	i	cyclically	until	this	holds).	That	theorem	thus	makes	a	statement	about	the	length	of	a	binary	prefix	code	needed	to	transmit	a	long	message.	4.1	For	the	Riemann	integral,	the	area	under	the	curve	is	approximated	by	rectangles	of	a	fixed	breadth	(left
hand	side).	Then	E[X2n	]	=	(−1)n	ϕ	(2n)	(0)	<	∞.	Then	there	exists	a	unique	decomposition	X	=	M	+	A,	where	A	is	predictable	with	A0	=	0	and	M	is	a	martingale.	By	Theorem	7.26,	there	is	an	f	+	N	∈	V0	with	F0	(x	+	N	)	=	)x	+	N	,	f	+	N	*0	for	all	x	+	N	∈	V0	.	In	the	following	we	will	assume	for	the	stochastic	integral	that	such	a	continuous	version	is
chosen.	Theorem	2.42	The	map	[0,	1]	→	[0,	1],	p	→	θ	(p)	is	monotone	increasing.	19.4	Recurrence	and	Transience	We	consider	the	situation	where	E	is	countable	and	A1	=	{x1	}	for	some	x1	∈	E.	Proof	Let	x0	∈	I	and	let	(xn	)n∈N	be	a	sequence	in	I	with	xn	=	x0	for	all	n	∈	N	and	such	that	lim	xn	=	x0	.	:=	k!	k	(3.8)	Then	the	generalized	binomial	theorem
holds:	(1	+	x)α	=	∞				α	k=0	k	xk	for	all	x	∈	C	with	|x|	<	1.	Theorem	19.19	(Rayleigh’s	monotonicity	principle)	Let	(E,	C)	and	(E,	C		)	be	electrical	networks	with	C(x,	y)	≥	C		(x,	y)	for	all	x,	y	∈	E.	Examples	of	Polish	spaces	are	countable	discrete	spaces	(however,	not	Q	with	the	usual	topology),	the	Euclidean	spaces	Rn	,	and	the	space	C([0,	1])	of
continuous	functions	[0,	1]	→	R,	equipped	with	the	supremum	norm		·	∞	.	The	points	in	UL	can	be	isolated	(that	is,	without	neighbors)	or	can	be	joined	to	arbitrarily	many	points	in	TL	but	not	in	UL	.	352	15	Characteristic	Functions	and	the	Central	Limit	Theorem	Example	15.34	(i)	Let	X	∼	Nμ,σ	2	.	n	Theorem	21.51	(Lindvall	(1972),	see	[109])	As	n	→	∞,
in	the	sense	of	weak	convergence	in	M1	(C([0,	∞))),	the	rescaled	Galton–Watson	processes	Z¯	n	converge	to	Feller’s	diffusion	Y	:	Lx	[Z¯	n	]	−→	Lx	[Y	].	However,	there	is	a	much	stronger	statement	that	here	we	can	only	quote	(see	[95],	and	see	[111]	for	a	modern	proof).	n−1	(12.6)	For	n	≥	2,	give	a	nontrivial	example	for	equality	in	(12.6).	(16.1)	In
particular,	CPoiμ+ν	=	CPoiμ	∗	CPoiν	;	hence	CPoiν	is	infinitely	divisible.	Then	there	exist	uniquely	determined	finite	measures	ϕ	+	,	ϕ	−	with	ϕ	=	ϕ	+	−	ϕ	−	and	ϕ	+	⊥	ϕ	−	.	−	(it)		≤	|t|	.	t	)t	≥0	is	a	martingale.	We	infer	that	Ig	is	measurable	for	any	simple	function	g.	We	cannot	now	continue	(5.13)	as	above	with	c	>	0.	Proof	This	is	trivial.	For	a	similar
model,	the	Weiss	ferromagnet,	we	will	prove	in	Example	23.20	the	existence	of	such	a	phase	transition.	By	Theorem	1.18,	it	is	enough	to	show	that	δ(E)	is	a	π-system.	We	carry	out	the	proof	of	(2.8)	by	induction	on	#J	.	Let	Sn	=	X1	+	.	Due	to	(13.10),	we	have	f	dμ	−	f	dν		≥	ε;	hence	μ	=	ν.	(ii)	If	t	∗	:=	sup(I	)	∈	I	,	then	E[ϕ(Xt	∗	)+	]	<	∞	implies	(9.1).	A
more	exhaustive	investigation	can	be	found	in	Spitzer’s	book	[159].	,	n;	hence	P	+	n			,	,	+	+	,	n							{Xi	∈	Ai	}		Ξ∞	=	E	P	{Xi	∈	Ai	}		A		Ξ∞	i=1	i=1		+	,		n	n			=E	Ξ∞	(Ai	)		Ξ∞	=	Ξ∞	(Ai	).	After	that,	there	are	seven	more	or	less	independent	parts,	consisting	of	Chaps.	(13.10)	13.3	Prohorov’s	Theorem	295		By	Prohorov’s	theorem,	there	exists	a	ν	∈	M≤1
(E)	and	asubsequence	3	3	(nk	)k∈N	of		(nk	)k∈N	with	μnk	→	ν	weakly.	Hence	Lemma	4.6(i)	implies		μ(A)	=		1A	dμ	≤	1{f	≥n}	dμ	≤	1	n		f	1{f	≥n}	dμ	≤	1	n		n→∞	f	dμ	−→	0.	However,	for	processes	with	continuous	paths,	this	is	true,	as	we	will	show	in	this	section	in	a	somewhat	more	general	framework.	15.3	Lévy’s	Continuity	Theorem	347	Reflection
Find	an	example	of	a	pointwise	convergent	sequence	of	characteristic	functions	(ϕn	)	such	that	the	limiting	function	ϕ	is	not	continuous	(at	0).	Let	X	be	a	martingale.	Let	E0	:=	)(x1	,	.	Let	P[T	∈	N0	]	=	1	and	assume	that	X1	,	X2	,	.	Hence,	it	is	enough	to	show	for	every	δ	>	0	that	lim	sup	l(kn	)−1	max{|Sk	|	:	k	≤	kn	}	≤	δ	almost	surely.	Consider	the	torus
E	:=	Rd	/(2KZd	)	and	define	f˜	:	E	→	R	by		f˜	x	+	2KZd	=	f	(x)	for	x	∈	[−K,	K)d	.	♣	s,p	Exercise	3.1.2	Give	an	example	for	two	different	probability	generating	functions	that	coincide	at	countably	many	points	xi	∈	(0,	1),	i	∈	N.	For	any	ω1	,	.	Then	the	map	Y	:=	X	◦	X	:	Ω	→	Ω		,	ω	→	X	(X(ω))	is	A	–	A	-measurable.	Denote	the	conductances	of	these	wires	by
C1	,	.	,	Xn	(ω)	occurs.	,	1}	with	transition	matrix	⎧	⎪	x(1	−	x),	if	y	=	x	+	1/N,	⎪	⎪	⎪	⎨	x	2	+	(1	−	x)2	,	if	y	=	x,	p(x,	y)	=	⎪	x(1	−	x),	if	y	=	x	−	1/N,	⎪	⎪	⎪	⎩	0,	else.	26	1	Basic	Measure	Theory	By	the	definition	of	the	outer	measure	and	since	μ	is	assumed	to	be	(finitely)	additive,	we	get	μ∗	(E	∩	A)	+	μ∗	(E	∩	Ac	)	≤	∞		μ(Bn	)	+	n=1	=	∞		mn	∞			n=1	k=1	
μ(Bn	)	+	n=1	=	∞		μ(Cnk	)	mn			μ(Cnk	)	k=1	μ(En	)	n=1	≤	μ∗	(E)	+	ε.	218	9	Martingales	Proof	Let	A	be	measurable	and	t	∈	I	.	∈	D	are	pairwise	disjoint	and	A	:=	∞	n=1	An	,	then	I1A	=	∞	I	is	measurable;	hence	A	∈	D.	Show	that	y	is	also	positive	recurrent.	More	precisely,	if	we	let	ε0	:=	(1	−	(2r	−	1)2	)	sin(2π/N)2	,	(1	−	(2r	−	1)2	)	sin(2π/N)2	+	2
cos(2π/N)	then	the	eigenvalue	with	the	second	largest	modulus	has	modulus	γε	=	|λε,N/2	|	=	1	−	2ε,	if	ε	≤	ε0	,	or	γε	=	|λε,1	|	K				2			2	2π	=	(1	−	ε)	cos	2π	+	ε	+	(1	−	ε)(2r	−	1)	sin	,	N	N	if	ε	≥	ε0	.	If,	more	generally,	B	is	measurable	with	μ(B)	=	0,	then	μ(B	\	E)	=	0;	hence,	as	shown	above,	νa	(B)	=	νa	(B	\	E)	=	0.	♣	Exercise	7.1.2	Let	p	∈	(1,	∞),	f	∈	Lp
(λ),	where	λ	is	the	Lebesgue	measure	on	R.	Choose	K	<	∞	large	enough	that	{h≥K}	h	dμ	<	δ/2.	(iii)	In	general,	ϕ	∈	M±	is	not	σ	-subadditive.	Corollary	6.22	If	(Xi	)i∈I	is	a	family	of	square	integrable	random	variables	with	sup{|E[Xi	]|	:	i	∈	I	}	<	∞	then	(Xi	)i∈I	is	uniformly	integrable.	k→∞	Then	gk	−→	0	almost	everywhere	and	g	−	gk	≥	0.	Clearly,
indistinguishable	processes	are	modifications	of	each	other.	For	example,	if	σ	(X)	⊂	F	(that	is,	if	we	know	X	already),	then	E[X	|F	]	=	X,	as	shown	in	(iii).	Proof	(i)	This	has	been	shown	already	in	Example	20.17.	Recall	the	notation	x	≤	y	if	x	i	≤	y	i	for	all	i	=	1,	.	,	n,	♦	This	example	could	still	be	treated	by	elementary	means.	♦	Lemma	9.21	If	σ	and	τ	are
stopping	times	with	σ	≤	τ	,	then	Fσ	⊂	Fτ	.	Further,	let	Ω	=	R[0,∞)	,	A	=	B	⊗[0,∞)	and	let	Xt	be	the	coordinate	map	for	t	∈	[0,	∞).	Denote	by	C	=	{u	+	iv	:	u,	v	∈	R}	the	field	of	complex	numbers.	Definition	17.1	We	say	that	X	has	the	Markov	property	(MP)	if,	for	every	A	∈	B(E)	and	all	s,	t	∈	I	with	s	≤	t,		*		*	)	)	P	Xt	∈	A		Fs	=	P	Xt	∈	A		Xs	.	(iii)	If	d	≥	3,
then	Px0	[τx1	<	τx0	|τx0	∧	τx1	<	∞]	=	12	.	>	yn	=	0	are	given.	However,	the	definition	of	weak	convergence	of	distribution	functions	is	constructed	so	that	no	mass	defect	occurs	in	the	limit.	,	ωn	))		μ1	(dω1	)	·	·	·	μn	(dωn	)	∞		k=1	1Ak	((ω1	,	.	(17.14)	y=x	Finally	we	assume	that	(which	is	equivalent	to	exchangeability	of	the	limit	and	the	sum	over	y	=	x
in	the	display	preceding	(17.13))	lim	t	↓0		1	Px	[Xt	=	y]	−	1{x=y}	=	q(x,	y)	t	for	all	x,	y	∈	E.	Any	property	of	Brownian	motion	that	can	be	checked	arbitrarily	early	after	time	0	has	either	probability	0	or	1.	Show	that	X	∼	Nμ,C	.	,	XT	−1	,	XT±	).	On	the	other	hand,	we	show	that,	for	infinitely	divisible	μ,	the	sequence	νn	=	1R\{0}	nμ∗1/n	does	the	trick.
Proof	Let	X∗	:=	lim	inf	Xn	.	Star–triangle	transformation	(see	Exercise	19.5.1).	As	we	have	shown	already,	the	CRR	model	is	complete.	Define	H0n	=	0	and	Htn	=	Hi2−n	T	if	i2−n	T	<	t	≤	(i	+	1)2−n	T	for	some	i	=	0,	.	We	have	studied	both	in	this	section.	and	Let	a	≥	0.	Such	a	decomposition	Ω	=	Ω	−	Ω	+	is	called	a	Hahn	decomposition	of	Ω	(with
respect	to	ϕ).	Now	let	f	∈	L1	(μ1	⊗	μ2	).	In	fact,	every	point	is	visited	periodically	after	N	steps.	This	is	a	special	case	of	the	situation	where	(V	,	)	·	,	·	*)	is	a	linear	space	with	complete	semi-inner	product.		(iii)	Let	x1	,	x2	,	.	(i)	Show	that	(X	(ii)	Use	Doob’s	inequality	to	show	the	following.	n	The	remaining	part	of	the	proof	is	dedicated	to	verifying	the
reverse	inequality:	lim	inf	n→∞	1	log	P[Sn	≥	0]	≥	log	.	,	n)	is	independent.	Hence	the	current	flow	I	with	respect	to	u	satisfies	−I	(A0	)	=	I	(x1	)	=			I	(x1	,	x)	=	x∈E		u(x1	)	−	u(x)	C(x1	,	x)	x∈E			1	−	u(x)	p(x1	,	x)	=	C(x1	)	x∈E	⎛	=	C(x1	)	⎝		)	*	p(x1	,	x)	Px	τA0	<	τx1	+	x∈A0	∪{x1	}	)	*	=	C(x1	)	Px1	τA0	<	τx1	.	A	set	A	⊂	E	is	called	σ	-compact	if	A	is	a
countable	union	of	compact	sets.	(21.12)		is	locally	Hölder-continuous	of	order	γ	.	Let	μ	and	ν	be	measures	on	(Ω,	A).	Then	Y	:=	(f	(Xn	))n∈N0	is	an	integrable	adapted	process	(since	|f	(Xn	)|	≤	maxx∈{x0	−n,...,x0	+n}	|f	(x)|).	This	also	shows	that	the	expectations	on	the	left	hand	side	never	equal	zero.	♦	Theorem	14.25	Let	(Ωi	,	Ai	),	i	=	0,	1,	2,	be
measurable	spaces.	On	the	other	hand,	the	Xt	generate	B(Ω,	d).	The	domain	of	attraction	Dom(μ)	⊂	M1	(R)	is	the	set	of	all	distributions	PX	with	the	property	that	there	exist	sequences	of	numbers	(an	)n∈N	and	(dn	)n∈N	with	Sn	−	dn	n→∞	⇒	μ.	By	Example	15.16,	every	fn	is	a	n→∞	characteristic	function	of	a	probability	measure	μn	.	,	ik	,	we	get	'	*	)	*	)
E	f1	(X1	)	·	·	·	fk	(Xk	)	=	E	F	(X1	,	.	Hence	the	following	limit	exists	(see	Exercise	20.6.2)	h	:=	h(P,	τ	)	:=	lim	n→∞	1	1	hn	=	inf	hn	.	τ	is	a	stopping	time	if	and	only	if	{τ	=	t}	∈	Ft	for	all	t	∈	I	.	By	Theorem	4.19,	the	canonical	inclusion	i	:	L2	(Ω,	A,	μ	+	ν)	→	L1	(Ω,	A,	μ	+	ν)	is	continuous.	.}.	By	virtue	of	Theorem	2.13(i),	this	implies	that	the	family	(X1	,	.
Then	⎛	μ⎝		C∈Z:	Kμ(C)≤ν(C)	⎞	C⎠	=		C∈Z:	Kμ(C)≤ν(C)	μ(C)	≤	1	ν(Ω)	=	δ		;	K	7.5	Supplement:	Signed	Measures	181	hence	⎛		ν(C)	=	ν	⎝	C∈Z:	Kμ(C)≤ν(C)	⎞		C⎠	0		=	ν(C)	μ(C)	μ(A	∩	C)	0ν(C)		μ(A	∩	C)	Kμ(C)>ν(C)	ν(C)	μ(C)	ε	+	K	μ(A)	<	ε.	Theorem	21.38	Let	(Pn	)n∈N	and	P	be	probability	measures	on	C([0,	∞)).	♣	Exercise	16.2.4	Which	of	the	following
distributions	is	in	the	domain	of	attraction	of	a	stable	distribution	and	for	which	parameter?	As	the	sequence	X1	,	X2	,	.	By	(17.2),	the	finite-dimensional	distributions	of	X	are	uniquely	determined.	♠	Takeaways	Consider	an	arbitrary	product	of	measurable	spaces.	C(x1	)	(19.12)	In	particular,	x1	is	recurrent	⇐⇒	Ceff	(x1	↔	∞)	=	0	⇐⇒	Reff	(x1	↔	∞)	=	∞.
(One	could	choose	D1	as	the	union	of	the	sets	of	a	finite	covering	of	B1	with	balls	of	radius	d(B1	,	Ac1	)/2.	An	event	with	this	property	is	called	invariant	or	shift	invariant.	Let	x	∈	U	∩	[0,	∞)	with	I	(x)	<	∞	(if	such	an	x	exists).	For	two	probability	measures	P	and	Q	on	(E,	B(E)),	denote	by	K(P	,	Q)	⊂	M1	(E	×	E)	the	set	of	all	couplings	of	P	and	Q.	Theorem
15.24	(Lévy’s	continuity	theorem)	Let	P	,	P1	,	P2	,	.	Proof	(i)	P	is	upper	semicontinuous	and	σ	-subadditive;	hence,	by	assumption,	∗	P[A	]	=	lim	P	n→∞	∞		.	Finally,	define	a	stochastic	process	(Xn	)n∈N	by	Xn	:=		C∈Zn	:	P[C]>0	Q(C)	1C	.	(21.3)	21.1	Continuous	Versions	519	Proof	(i)	It	is	enough	to	show	that,	for	any	T	>	0,	the	process	X	on	[0,	T	]	has	a
modification	XT	that	is	locally	Hölder-continuous	of	any	order	γ	∈	(0,	β/α).	21.9	Pathwise	Convergence	of	Branching	Processes	.	Finally,	let	Y1	,	.	The	restriction	that	F	is	countably	generated	can	also	be	dropped.	♦	(17.26)	Example	17.56	Let	(E,	)	be	a	Polish	space.	or	its	affiliates	Table	of	contents	:	Front	Matter	....Pages	i-xiv	Basic	Measure	Theory
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Endre	Süli	University	of	Oxford	Wojbor	A.	All	other	implications	are	incorrect	in	general.	10.2	Optional	Sampling	and	Optional	Stopping	Lemma	10.10	Let	I	⊂	R	be	countable,	let	(Xt	)t	∈I	be	a	martingale,	let	T	∈	I	and		let	τ	be	a	stopping	time	with	τ	≤	T	.	Then,	for	all	ω˜	1	∈	Ω1	and	ω˜	2	∈	Ω2	,	Aω˜	1	:=	{ω2	∈	Ω2	:	(ω˜	1	,	ω2	)	∈	A}	∈	A2	,	Aω˜	2	:=	{ω1
∈	Ω1	:	(ω1	,	ω˜	2	)	∈	A}	∈	A1	,	fω˜	1	:	Ω2	→	R,	ω2	→	f	(ω˜	1	,	ω2	)	is	A2	-measurable,	fω˜	2	:	Ω1	→	R,	ω1	→	f	(ω1	,	ω˜	2	)	is	A1	-measurable.	n	:=		Now	let	X	m=1	1[0,∞)	(Ym	).	There	are	some	really	good	lecture	series	on	YT	for	measure	theory	as	well.	+	TLs	n	+1	<	T1r	+	.	u(1)	The	right	hand	side	is	continuous	and	hence	a	variation	of	Lévy’s	continuity
theorem	for	Laplace	transforms	(compare	Exercise	15.3.4)	yields	that	the	weak	limit	ν˜	:=	w-lim	ν˜n	(in	M1	([0,	∞))	exists	and	is	uniquely	determined	by	u.	,	xd	),	(y1	,	.	298	13	Convergence	of	Measures	Step	1	(Finite	subadditivity	of	β).	For	every	K	>	0,	we	have	√	)	*	P	inf	t	>	0	:	Bt	≥	K	t	=	0	=	1.	85	85	89	91	4	The	Integral	.	∈	[0,	∞).	From	Lemma
4.6(i)	and	(ii),	we	infer		0≤		f	dμ	≤		(∞	·	1N	)	dμ	=	lim	n→∞	n1N	dμ	=	0.	Inductively,	we	get	r	≥	qn	for	all	n	∈	N0	;	that	is,	r	≥	q.	1.1	Inclusions	between	classes	of	sets	A	⊂	2Ω	.	♣	n	log(p)	20.4	Application:	Recurrence	of	Random	Walks	Let	(Xn	)n∈N	be	a	stationary	process	with	values	in	Rd	.	is	exchangeable.	Define	XT±	=	fT	(X1	,	.	By	the	l=1	n→∞
Lindeberg–Feller	theorem,	we	then	get	Sn	:=	Xn,1	+	.	18.1	Periodicity	of	Markov	Chains	.	However,	the	statement	can	also	be	deduced	from	Kolmogorov’s	0–1	law	as	limes	superior	and	limes	inferior	are	in	the	tail	σ	-algebra.	Furthermore,	if	I	⊂	R	is	an	interval	(not	necessarily	open)	and	ϕ	:	I	→	R	is	convex,	then	we	still	have	L(ϕ)	=	∅.	0.95	·	0.02	+	0.1
·	0.98	117	On	the	other	hand,	the	probability	that	a	device	that	was	not	classified	as	defective	is	in	fact	defective	is	P[B	|Ac	]	=	1	0.05	·	0.02	=	≈	0.00113.	Proof	Let	A,	B	∈	M(μ∗	)	with	A	∩	B	=	∅.	If	x∗	=	∞,	then	evidently	P[X∗	<	∞]	=	lim	P[X∗	≤	n]	=	0.	Proof	Let	F	=	σ	(B)	be	the	filtration	generated	by	B	and	let	τ	<	∞	be	an	Fstopping	time.	We	have	to
show	that	P[F	]	=	0.	Show	that	the	fraction	of	black	balls	converges	almost	surely	to	a	random	variable	Z	with	a	Beta	distribution	and	determine	the	parameters.	Finally,	define	the	matrix	p	by	p(x,	y)	=	qy∗x	for	x,	y	∈	N0	.	n→∞	By	Theorem	13.16,	Fn	(x)	=	μn	((−∞,	x])	−→	μ((−∞,	x])	=	F	(x).	By	Exercise	11.1.1,	for	λ	>	0,	we	have	)	*	λ	P	sup{|Xt	|	:	t	∈
Q+	∩	[0,	N]}	>	λ		)		*	=	λ	sup	P	sup{|Xt	|	:	t	∈	I	}	>	λ	:	I	⊂	Q+	∩	[0,	N]	finite	≤	6	E[|X0	|]	+	4	E[|XN	|].	Here	we	present	a	stronger	inequality	that	claims	the	same	bound	but	now	for	the	maximum	over	all	partial	sums	until	a	fixed	time.	Define	a	map	F	:	(0,	1]	→	(0,	1]	by	F	(x)	=	(0,	x1	x1	x2	x2	x3	x3	.	Manifestly,	1	is	the	largest	(absolute	value	of	an)	©
The	Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	A.	This	is	a	specialty	of	dimension	one	that	makes	it	easy	to	check	if	the	random	walk	is	transient	or	recurrent.	Caua	∗	Caub	=	Caua+b	for	a,	b	>	0.	Let	P	=	ni=1	μi	be	the	product	measure	of	the	μi	(see	Theorem	1.61).	As	one	possible
choice	for	the	basis	consists	of	cosine	functions,	this	procedure	is	known	as	frequency	decomposition	of	Brownian	motion.	For	the	case	Ω	=	Rd	,	one	could	take	the	open	balls	with	rational	radii,	centered	at	points	with	rational	coordinates	(compare	Remark	1.24).	♣	Exercise	19.5.2	Consider	a	random	walk	on	the	honeycomb	graph	shown	below.	and	x
=	limn→∞	xn	.	By	Corollary	21.41,	it	is	enough	to	show	that,	for	a	sequence	(Kn	)n∈N	(chosen	later),	the	families	(L[U¯	Kn	,n	],	n	∈	N)	and	(L[T¯	Kn	,n	],	n	∈	N)	are	tight.	It	is	easy	to	check	that	p	has	the	eigenvalues	λk	:=	r	θk	+	(1	−	r)	θ	k	=	cos	2πk		N	+	(2r	−	1)	i	sin	2πk		N	,	k	=	0,	.	,	b	−1	are	admissible.	Let	In,k	=	[k	2−n	,	(k	+	1)	2−n	)	for	n	∈	N	and
k	=	0,	.	For	a	fixed	set	B	∈	A	with	P[B]	>	0,	the	conditional	probability	P[	·	|B]	is	a	probability	measure.	Independence	is	a	pivotal	notion	of	probability	theory,	and	the	computation	of	dependencies	is	one	of	the	theory’s	major	tasks.	−s	+	2	In	order	to	compute	the	iterated	function,	first	consider	general	linear	rational			ab	functions	of	the	form	f	(x)	=
ax+b	.	D	(iii)	Fn	−→	F	.	Proof	By	Ohm’s	rule	and	Kirchhoff’s	rule,	u(x)	−		C(x,	y)		C(x,	y)	1		u(y)	=	(u(x)	−	u(y))	=	I	(x,	y)	=	0.	n=1	i=1	By	construction,	A	is	totally	bounded.	*	(iii)	If	r	∈	{0}	∪	12	,	1	,	then	X	is	transient.	A	map	f	:	E	→	R	=	[−∞,	∞]	is	called	lower	semicontinuous	if,	for	every	a	∈	R,	the	level	set	f	−1	([−∞,	a])	⊂	E	is	closed.	Hence	there	exists
a	countable	base	U	of	the	topology	τ		on	E;	that	is,	E		a	countable	set	U	of	open	sets	such	that	A	=	U	∈U	,	U	⊂A	U	for	any	open	A	⊂	E.	Theorem	21.27	Let	(κt	)t	≥0	be	a	Feller	semigroup	on	the	locally	compact	Polish	space	E.	Then,	for	every	n	∈	N0	,	P[Xn+1	=	1|Sn	]	=	2	Sn	1	+	2	Sn	and	P[Xn+1	=	0|Sn	]	=	2−Sn	.	For	example,	by	xyyxxxxzzzzzzzz.	∗n
(ii)	The	normal	distribution	is	infinitely	divisible	with	Nm,σ	2	=	Nm/n,σ	2	/n	.	If	the	measures	have	Lebesgue	densities,	then	we	obtain	an	explicit	formula	for	the	density	of	the	convolution.	The	analogous	statement	holds	for	rings,	σ	-rings,	algebras	and	λsystems.	n→∞	(i)	If	μ,	μ1	,	μ2	,	.	Then	S	is	a	martingale	by	the	preceding	theorem.	be	i.i.d.	random
variables	that	are	uniformly	distributed	on	[0,	1].	Hence	we	have	n→∞			lim	supE[f	(Yn	)]	−	E[f	(X)]	n→∞					≤	lim	sup	E[f	(X)]	−	E[f	(Xn	)]	+	lim	sup	E[f	(Xn	)	−	f	(Yn	)]	=	0.	Exercise	18.4.1	Show	(18.16).	n∈N	m>n	n∈N	It	is	easy	to	check	that	μ	is	a	lower	semicontinuous	content	and	is	hence	a	measure	(see	Theorem	1.36).	m≥n	Then	gn	↑	lim	inf	fm	as	n
→	∞,	and	hence	by	the	monotone	convergence	theorem	m→∞	3	3	(Lemma	4.6(ii))	and	by	monotonicity,	gn	≤	fn	(thus	gn	dμ	≤	fn	dμ),			lim	inf	fn	dμ	=	lim	n→∞	n→∞		gn	dμ	≤	lim	inf	n→∞	fn	dμ.	C	∈	C	with	Step	2(σ	-subadditivity	of	β).	♣	Exercise	14.2.2	(Hilbert–Schmidt	operator)	Let	(Ωi	,	Ai	,	μi	),	i	=	1,	2,	be	σ	finite	measure	spaces	and	let	a	:	Ω1	×	Ω2	→
R	be	measurable	with			μ1	(dt1	)	μ2	(dt2	)	a(t1	,	t2	)2	<	∞.	Fix	Nn	∈	N	such	that	μ	E	\	B1/n	xin	<	n	.	We	close	with	an	application	to	a	model	from	mathematical	finance.	Definition	12.25	The	random	measure	1	Ξn	:=	ξn	(X)	:=	δ	Xi	n	n	i=1	is	called	the	empirical	distribution	of	X1	,	.	228	9	Martingales	Letting	A	:=	min{i	∈	N0	:	(1	+	b)i	(1	+	a)T	−i	x0	>
K},	we	get	π(VT	)	=	Ep∗	[VT	]	=	T		'	(+	bT	,p∗	({i})	(1	+	b)i	(1	+	a)T	−i	x0	−	K	i=0	=	x0	T			i=A		T	'	(		T	∗	i	∗	T	−i	i	T	−i	(1	+	b)	(1	+	a)	−K	bT	,p∗	({i}).	The	functions	fn	:=	(fn	−	f1	)	1N	c	and	f		:=	(f	−	f1	)	1N	c	are	nonnegative	and	fulfill	3	n→∞	3	fn	↑	f		.	We	saw	that		·	1	is	a	seminorm	on	L1	(μ).	In	particular,	this	holds	if	g	and	h	are	integrable.	This
array	is	independent,	centered	and	normed.	Show	the	following	version	of	Benford’s	law:	For	every	d	∈	{1,	.	Then	a	stochastic	kernel	κt	is	defined	by	κt	(x,	A)	:=	Px	[Xt	∈	A]	for	all	x	∈	E,	A	∈	B(E),	t	∈	I.	Let	3x	2	Sn∗	:=	√	1	2	(X1	+	·	·	·	+	Xn	)	and	let	Φ	:	x	→	√1	−∞	e−t	/2	dt	be	the	distribution	2π	nσ	function	of	the	standard	normal	distribution.	Hint:
Show	that	Y	is	a	continuous	Gaussian	process	with	the	correct	covariance	function.	(iv)	If	I	=	R	and	Ω0	=	R,	then	RR	is	the	set	of	maps	R	→	R.	Hint:	Show	this	first	for	the	normal	distribution	N0,ε	,	ε	>	0.	be	i.i.d.	nonnegative	random	variables.	(ii)	μ	is	called	singular	to	ν	(symbolically	μ	⊥	ν)	if	there	exists	an	A	∈	A	such	that	μ(A)	=	0	and	ν(Ω	\	A)	=	0.
n=1	(ii)	Let	N,	X1	,	X2	,	.	23.4	Varadhan’s	Lemma	and	Free	Energy	605	As	by	assumption	infM>0	FM	=	−∞,	it	is	enough	to	show	that		sup	GM	≤	sup	φ(x)	−	I	(x)	.	By3the	monotone	convergence	theorem,	for	almost	all	ω,	the	inner	integral	converges	to	f	(x)κX,F	(ω,	dx).	Use	Theorem	15.32(i)	to	show	that	for	any	k	∈	N	we	have	)	*	E	Y	2k−1	=	0	and	)	*
(2k)!	E	Y	2k	=	k	.	15.2	Characteristic	Functions:	Examples	339	However,	|zr−1	exp(−z)|	≤	(1	+	t	2	)(r−1)/2	br−1	exp(−b)	for	z	∈	δb,t	.	Use	Hölder’s	inequality	to	show	that	Λ	is	convex	and	is	strictly	convex	in	the	interval	where	it	is	finite	(if	X	is	not	almost	surely	constant).	Assume	that	f	:	Ω1	×	Ω2	→	R	is	measurable	with	respect	to	A1	⊗	A2	.	.+Xn	.
(6.8)	Indeed,	for	ε	>	0	and	I	=	(ε,	∞),	we	have				d		sup		f	(x,	λ)	=	sup	x	e−λx	=	ε−1	e−1	<	∞.	1.3	The	Measure	Extension	Theorem	29	The	argument	of	Example	1.56	yields	the	following	theorem.	Then	Nn	↑	N	and		0=		f	dμ	≥	μ(Nn	)	1	1N	dμ	=	.	3	(ii)	There	is	an	f	∈	L1	(μ)	with	ϕ	=	f	μ;	hence	A	f	dμ	=	ϕ(A)	for	all	A	∈	A.	This	allows	for	greater	freedom	in
the	3	2choice	of	ν	than	in	the	case	of	nonnegative	random	variables.)	Now	Var[X	]	=	x	νk	(dx).	Assume	that	f	:	Ω		→	R	is	μ	integrable.	For	s,	t	∈	I	with	|t	−	s|	<	,	there	is	an	i	∈	{1,	.	,	2n	)	are	i.i.d.,	namely	X	n	(k)	∼	Berpn	,	where	pn	=	P[N2−n	t	≥	1].	n=1	Similarly,	we	infer	the	second	inequality	in	(4.7)	from		f		dμ	=	∞		μ({f		≥	n})	=	n=1	∞		μ({f	>	n	−
1}).	F	∈F	By	Lemma	1.47,	μ∗	is	an	outer	measure	and	μ∗	(A)	=	μ(A)	for	any	A	∈	A.	To	this	end,	we	apply	Kolmogorov’s	moment	criterion	(Theorem	21.42	with	α)	=	4	and	β	=	*	1).	,	Xn	be	independent	random	variables	with	E[Xi	]	=	0	and	Var[Xi	]	<	∞	for	i	=	1,	.	(2.9)	j	∈J	Proof	The	class	of	sets	{(−∞,	b],	b	∈	R}	is	an	∩-stable	generator	of	the	Borel	σ	-
algebra	B(R)	(see	Theorem	1.23).	For	example,	we	can	compute	the	distribution	of	a	sum	of	two	independent	random	variables	by	a	simple	convolution	formula.	Hint:	First	use	the	inclusion-exclusion	formula	(Theorem	1.33)	to	derive	a	criterion	similar	to	that	in	Exercise	1.5.4(iii).	Let	κ1	be	a	finite	transition	kernel	from	(Ω0	,	A0	)	to	(Ω1	,	A1	)	and	let
κ2	be	a	finite	transition	kernel	from	(Ω0	×	Ω1	,	A0	⊗	A1	)	to	(Ω2	,	A2	).	s∈I	∩[0,t	]	Consider	now	the	random	time		τ	:=	sup{t	∈	I	:	Xt	∈	K}	of	the	last	visit	of	X	to	K.	For	general	T	,	the	claim	follows	by	linear	scaling.	Define	the	family	(PJ	:	J	⊂	I	finite,	0	∈	J	)	by	PJ	:=	δx	⊗	k=0	Kolmogorov’s	extension	theorem,	it	is	enough	to	show	that	this	family	is
consistent.	For	square	integrable	random	variables	X,	by	the	best	prediction	for	X	we	will	understand	the	F	-measurable	random	variable	that	minimizes	the	L2	-distance	from	X.	.)	=	∞		n=1	3	xn	4−n	.	9.1	Processes,	Filtrations,	Stopping	Times	217	Before	we	present	the	(simple)	formal	proof,	we	state	that	in	particular	(i)	and	(iii)	are	properties	we
would	expect	of	stopping	times.	Define	β	:=	∞		N=1	N			Xi−1	(Bi	)	:	B1	∈	β1	,	.	Then,	at	any	time,	X	makes	at	most	one	step	to	the	right.	Often	a	useful	approximation	can	be	obtained	by	taking	a	limit	of	such	distributions,	for	example,	a	limit	where	the	number	of	impacts	goes	to	infinity.	♦	Lemma	1.42	yields	uniqueness	in	Carathéodory’s	theorem.	It
remains	to	show	by	some	standard	arguments	(LDP	1)	and	(LDP	2)	for	arbitrary	open	and	closed	sets,	respectively.	Then	the	map	κ1	⊗	κ2	:	Ω0	×	(A1	⊗	A2	)	→	[0,	∞),			(ω0	,	A)	→	κ1	(ω0	,	dω1	)	κ2	((ω0	,	ω1	),	dω2	)	1A	((ω1	,	ω2	))	Ω1	Ω2	14.2	Finite	Products	and	Transition	Kernels	313	is	well-defined	and	is	a	σ	-finite	(but	not	necessarily	a	finite)
transition	kernel	from	(Ω0	,	A0	)	to	(Ω1	×	Ω2	,	A1	⊗	A2	).	Pp	is	that	probability	measure	on	(Ω2	,	A2	)	under	which	the	coordinate	maps	Yi	are	independent	Bernoulli	random	variables	with	success	probability	p.	For	example	(see	[8]),	see	the	following	theorem.	Clearly,	Y	is	adapted.	Proof	“	⇒	”	We	construct	X	as	a	canonical	process.	By	the	uniqueness
theorem	(Lemma	1.42),	we	thus	have	equality	for	all	B	∈	B(R).	In	other	words,	the	Dirichlet	problem	(19.4)	has	a	unique	solution	given	by	(19.3)	(or	equivalently	by	(19.1)).	(i)	Which	p	maximises	the	entropy?	Proof	(i)	The	statement	is	obvious	if	f	=	1A	is	an	indicator	function.	are	independent	and	Ξ	-distributed.	Hence	the	distribution	of	X	is
characterized	by	its	moments.	Metropolis	Algorithm	We	have	seen	already	in	Example	17.19	how	to	simulate	a	Markov	chain	on	a	computer.	By	T	we	denote	the	set	of	trifurcation	points,	and	let	TL	:=	T	∩BL	.	(ii)	Weak	convergence	(as	introduced	in	Definition	13.12)	induces	on	Mf	(E)	the	weak	topology	τw	.	Give	an	example	that	shows	that	the
monotonicity	of	ϕ	is	essential.	In	order	for	the	series	to	converge	almost	surely,	it	is	sufficient	(and	also	necessary,	as	a	simple	application	of	Kolmogorov’s	three-series	theorem	shows)	that	∞		Var[Xk	]	<	∞.	Being	a	limit	of	CFPs	that	is	continuous	at	0,	by	Lévy’s	continuity	theorem,	ϕ	r	=	erψ	=	limn→∞	ern(ϕn	−1)	is	a	CFP.	♣	19.3	Finite	Electrical



Networks	An	electrical	network	(E,	C)	consists	of	a	set	E	of	sites	(the	electrical	contacts)	and	wires	between	pairs	of	sites.	As	the	individual	experiments	ought	to	be	independent,	we	should	have	for	any	choice	ω1	,	.	Then	E[X]	=	θ		∞	0	x	e−θx	dx	=	Var[X]	=	−θ	−2	+	θ		∞	0	1	,	θ	x	2	e−θx	dx	=	θ	−2				∞	2	−x	x	e	dx	=	θ	−2	.	(7.5)	Hence	g	∈	L1	(ν)	if	and
only	if	gf	∈	L1	(μ),	and	in	this	case	(7.5)	holds.	191	191	195	203	9	Martingales	..	Theorem	6.19	For	finite	μ,	F	⊂	L1	(μ)	is	uniformly	integrable	if	and	only	if	there	is	a	measurable	function	H	:	[0,	∞)	→	[0,	∞)	with	limx→∞	H	(x)/x	=	∞	and		sup	f	∈F	H	(|f	|)	dμ	<	∞.	[149,	Theorem	8.5].	be	identically	distributed	could	be	replaced	by	the	condition	that	the
variances	be	bounded	(see	Exercise	5.3.1).	Define	the	local	energy	that	describes	the	energy	level	of	a	single	atom	at	i	∈	Λ	as	a	function	H	i	of	the	state	x	of	the	whole	system,	1	2	H	i	(x)	=		1{x(i)=x(j	)}.	,	Xn	)	has	a	nice	closed	form:	FZ	(x)	=	1	−	P[Z	>	x]	*	)	=	1	−	P	Xi	>	x	for	all	i	=	1,	.	For	general	z,	we	infer	that	d	(Lx,y	+	Ly,z	+	Lz,x	);	hence	(18.3).
i=1	We	interpret	Zn	as	the	size	of	a	population	at	time	n	and	Xn,i	as	the	number	of	offspring	of	the	ith	individual	of	the	nth	generation.	For	any	A	∈	A	and	n	∈	N,	we	thus	get	μ(A	∩	En	)	=	n	n					c	c	μ	(A	∩	Ei−1	)	∩	Ωi	=	ν	(A	∩	Ei−1	)	∩	Ωi	=	ν(A	∩	En	).	(17.8)	m≤n	If	we	have	P[Y1	∈	{−1,	0,	1}]	=	1,	then	for	a	∈	N	equality	holds	in	(17.8).	(7.6)	The
measures	μ	and	ν	are	called	equivalent	(symbolically	μ	≈	ν)	if	ν	0	μ	and	μ	0	ν.	0,	if	θ	(p)	=	0,	Theorem	2.43	For	any	p	∈	[0,	1],	we	have	ψ(p)	=	1,	if	θ	(p)	>	0.	(ix)	(Binomial	distribution)	By	the	binomial	theorem,	ϕ(t)	=	n				n	(1	−	p)n−k	(peit	)k	=	(1	−	p	+	peit	)n	.	The	main	goal	of	this	section	is	to	express	the	probability	1	−	F	(x1	,	x1	)	that	the	random
walk	never	returns	to	x1	in	terms	of	effective	resistances	in	the	network.	These	balls,	as	well	as	their	closures,	are	subsets	of	A1	.)	Let	UD1	:=	{U	∈	U	:	U	⊂	D1	}.	Intuitively,	(17.15)	suggests	that	we	define	pt	=	et	q	in	a	suitable	sense.	♦	For	random	variables	with	infinite	variance,	the	statements	about	the	rate	of	convergence	naturally	get	weaker.	,
Xsn	=	in	]	>	0,	we	have			*	)	*	)	P	Xt	=	i		Xs1	=	i1	,	.	Then	aX	∼	expθ/a	.	Example	1.58	Important	special	cases	for	the	Lebesgue–Stieltjes	measure	are	the	following:	(i)	If	F	(x)	=	x,	then	μF	=	λ1	is	the	Lebesgue	measure	on	R.	(9.5)	This	is	the	discrete	analogue	of	the	celebrated	Black–Scholes	formula	for	option	pricing	in	certain	time-continuous
markets.	(i)	For	any	x	∈	E,	the	map	ω	→	f	(ω,	x)	is	in	L1	(μ).	Finally,	ϕ	is	called	Hölder-continuous	of	order	γ	if	there	exists	a	C	such	that	(21.1)	holds	for	all	s,	r	∈	E.	Hence,	if	Fn	−→	F	,	then	F	(∞)	=	limn→∞	Fn	(∞).	,	Ad−1	are	the	disjoint	coset	classes	of	the	normal	subgroup	)r*		Ω.	The	first	two	derivatives	of	F	are	F		(λ)	=	−E[Xe−λX	]	and	F		(λ)	=
E[(X2	)e−λX	].	t	in	t	∈	Lp	(P)	such	that	Xtn	n→∞	−→	X	Assume	that,	for	every	t	≥	0,	there	exists	an	X	p	L	.	Proof	This	is	trivial!	Theorem	8.6	(Summation	formula)	*	Let	I	be	a	countable	set	and	let	(Bi	)i∈I	be	)	pairwise	disjoint	sets	with	P	i∈I	Bi	=	1.	+	T	s	1	Ln	+1	>	T1	+	.	Whether	or	not	{τ	≤	t}	is	true	can	thus	be	determined	on	the	basis	of	the
information	available	at	time	t.	By	the	law	of	large	numbers,	we	have	Tt1	≈	t/D	for	large	t.	If	it	is	chosen	such	that	as	a	function	of	B	it	is	a	probability	measure	(almost	surely),	then	it	is	called	a	regular	version	of	the	conditional	probabilities.	(iii)	Let	A,	B	∈	A	be	such	that	μ(A		B)	=	0.	We	call	this	coupling	the	independent	coalescent.	3.	We	do	not	strive
for	the	greatest	generality	but	rather	content	ourselves	with	the	key	theorems	for	probability	theory.	∈	DE	be	mutually	disjoint	and	A	=	∞		An	.	Kolmogorov’s	0–1	law	(Theorem	2.37)	implies	that	ψ(p)	=	P[A]	∈	{0,	1}.	Then,	for	every	n	≥	m,	Rn	≤	m	+	#	k	≤	n	−	m	:	Sl	=	Sk	for	all	l	∈	{k	+	1,	.	Theorem	4.20	(Monotone	convergence,	Beppo	Levi	theorem)
Let	f1	,	f2	,	.	(iii)	Assume	that	ϕ	is	differentiable	at	0	and	that	X1	≥	0	almost	surely.	Define	X(A)	=	N		1A	(Yn	)	for	A	∈	B(E).	213	213	218	223	10	Optional	Sampling	Theorems	.	For	any	k	∈	N,	choose	bε	(k)	>	b(k)	such	that	F	(bε	(k))	−	F	(b(k))	<	ε	2−k−1	.	,	Z	i	are	independent	copies	of	our	Galton–Watson	process,	with	Z0	=	i	and	Z01	=	.	(ii)	(Ω,	A,	P,	τ	)
is	ergodic	if	and	only	if	any	I-measurable	f	:	(Ω,	I)	→	(R,	B(R))	is	P-almost	surely	constant.	In	particular,	f	is	strictly	convex	and	hence	assumes	its	p	p	(unique)	minimum	at	x0	=	y	1/(p−1).	Using	Markov’s	inequality	(Theorem	5.11),	we	estimate	)	*	)	*	P[Sn	≥	0]	=	P	eτ	Sn	≥	1	≤	E	eτ	Sn	=	ϕ(τ	)n	=	n	.	3	Let	ε	>	0	and	choose	δ	=	δ(ε)	as	in	(ii).	Then	there
exists	an	Aε	∈	A	with	0	<	μ(Aε	)	<	∞	such	that	Aε	⊂	|f	|	>	(1	−	ε)f	∞	.	Furthermore,	and	more	importantly,	we	use	Rayleigh’s	monotonicity	principle	to	show	that	if	a	random	on	a	graph	is	recurrent,	then	it	is	also	recurrent	on	any	subgraph.	That	is,	Px	[limn→∞	Xn	=	1]	=	x	=	1	−Px	[limn→∞	Xn	=	0].	We	first	show	3the	statement	for	nonnegative	f	.
Furthermore,	the	uniform	distribution	UE	is	the	unique	invariant	distribution.	(ii)	Conclude	that	for	any	random	variable	Y	on	[0,	1],	the	distribution	is	uniquely	determined	by	its	moments	mn	:=	E[Y	n	],	n	∈	N.	,	XT	is	called	binary	splitting	or	a	binary	model	if	there	exist	random	variables	D1	,	.	Corollary	12.18	Let	X	=	(Xn	)n∈N	be	exchangeable.	,	T	.
Hence	f	is	B(I	)∗	-measurable.	(ii)	Show	that	(Ω,	A,	δω0	)	is	complete.	It	makes	the	following	assumptions:	•	Atoms	are	placed	at	the	sites	of	a	lattice	Λ	(for	example,	Λ	=	{0,	.	♦	We	want	to	weaken	the	assumption	in	Theorem	15.38	that	the	random	variables	are	identically	distributed.	For	A	⊂	Ω,	define	the	set	of	countable	coverings	F	with	sets	F	∈	A:
U(A)	=	F	⊂	A	:	F	is	at	most	countable	and	A	⊂		F	∈F	Define	∗	μ	(A)	:=	inf		F	∈F		μ(F	)	:	F	∈	U(A)	,		F	.	A	somewhat	more	explicit	representation	can	be	obtained	using	random	variables.	Proof	For	n	=	1,	the	statement	is	true	by	definition.	Taking	the	infimum	over	all	open	sets	A	⊃	G,	it	is	enough	to	show	that	for	every	open	B	and	every	open	A	⊂	E,	μ∗	(B
∩	A)	+	μ∗	(B	c	∩	A)	≤	β(A).	23.1.	Here	we	have	developed	the	abstract	framework	(principle	of	large	deviations)	for	the	description	of	the	speed	of	concentration	for	a	sequence	of	probability	measures.	Here	our	first	goal	is	to	change		·	p	into	a	proper	norm	for	all	p	∈	[1,	∞].	Due	to	the	continuity	of	φ	for	all	ε	>	0,	we	thus	have	inf	|φ(t)	−	1|	:	t	∈	[−π,
π)D	\	(−ε,	ε)D	>	0.	Then	1	n→∞	Xk	−→	E[X0	|I]	in	Lp	(P).	,	Xin	)]	=	L[(Xj1	,	.	(1.9)	20	1	Basic	Measure	Theory	Hence	(Ω,	d)	is	a	compact	metric	space.	Then	Y		is	a	random	walk	with	transition	matrix	pN	.	The	strategy	is	to	define	a	number	μ∗	(E)	for	each	E	∈	2Ω	by	covering	E	with	elements	of	E	and	then	determine	the	total	content.	j	=1	This	lemma
allows	us	to	make	the	following	definition	(since	the	value	of	I	(f	)	does	not	depend	on	the	choice	of	the	normal	representation).	In	order	to	check	the	assumptions	of	Theorem	1.53,	we	have	to	show	that	μ	is	σ	-subadditive.	Definition	9.6	If	X	is	a	random	variable	(or	a	stochastic	process),	we	write	L[X]	=	PX	for	the	distribution	of	X.	The	σ	algebra	B(Ω)
:=	B(Ω,	τ	)	:=	σ	(τ	)	that	is	generated	by	the	open	sets	is	called	the	Borel	σ	-algebra	on	Ω.	Hence,	by	Theorem	2.13(iii),	it	is	enough	to	show	that	(Zk	)k∈K	is	independent.	Let	Gy,x	1,x	2	,x	3	be	the	event	where	in	EL	exactly	those	edges	are	open	that	belong	to	these	three	paths	(that	is,	all	other	edges	in	EL	are	closed).	,	L	−	1}d	for	some	L	∈	N.	,	CN	∈
C	.	On	the	other	hand,	for	all	n	∈	N,	the	difference	Sn	−	Tn	is	deterministic,	contradicting	the	assumption	that	(iii)	does	nothold.	In	this	section,	we	introduce	names	for	classes	of	subsets	of	Ω	that	are	stable	under	certain	set	operations	and	we	establish	simple	relations	between	such	classes.	Reflection	Why	do	we	assume	σ	-finiteness	of	the	measures
in	the	Radon-Nikodym	theorem?	,	tN	)	is	a	strong	Markov	process	(by	Theorem	17.14);	hence	we	have		)		*	)	*	Ex	F	(Bτ	n	+t	)t	≥0		Fτ	n	=	Ex	f	(Bτ	n	+t1	,	.	n=0	Theorem	3.8	If	the	random	variables	X1	,	X2	,	.	(23.14)	Since	the	map	ν	→	Iμ	(ν)	:=	H	(ν	|μ)	is	continuous,	Iμ	is	a	rate	function.	Then	there	exists	a	bounded	predictable	process	H	and	a	v0	∈	R
with	VT	=	v0	+	(H	·X)T	.	,	Xn	be	independent	random	variables	with	Xi	=	Berpi	for	any	i	=	1,	.	(i)	Let	μ,	μ1	,	μ2	,	.	Therefore	x	→	ψω	(x)	is	also	right	continuous.	Theorem	1.33	(Inclusion–exclusion	formula)	Let	A	be	a	ring	and	let	μ	be	a	content	on	A.	n	n	Yn	=	i=1	We	show	that	(Y−n	)n∈N	is	an	F-backwards	martingale.	such	that	Fnl	(ql	)	k∈N	converges
k		for	all	l	∈	N.	n→∞	Proof	We	have	shown	already	the	convergence	of	the	finite-dimensional	distributions.	In	fact,	if	P[|Xn,l	|	>	ε]	<	δ,	then	we	have	|ϕn,l	(t)	−	1|	≤	2ε	+	δ	for	all	t	∈	[−1/ε,	1/ε].	As	in	Theorem	1.23,	it	can	be	shown	that	σ	(A)	=	B(Ω,	d).	M	This	formula	can	be	derived	formally	via	a	small	computation	with	conditional	probabilities.	For	s,	t
∈	I	,	by	assumption,	|t	−s|	n	≤	ε	and	thus				n						f	s	+	(t	−	s)	k	−	f	s	+	(t	−	s)	k	−	1		|f	(t)	−	f	(s)|	≤			n	n	k=1	≤	C(ε)	n1−γ	|t	−	s|γ	=	C	|t	−	s|γ	.	Then	E	is	a	σ	-compact	metric	space	and	therefore	in	particular,	separable.	(i)	Show	that	dH	is	a	metric	that	induces	convergence	in	measure.	By	the	strong	law	of	large	numbers,	there	is	an	n−	0	=	n0	(ω)	with
1		k−1		=	exp	−	k=−n	1			log(k	)	for	all	n	≥	n−	0.	By	Exercise	8.2.2,	we	have	E[X	|F	]	∈	I	a.s.,	hence	ϕ(E[X	|F	])	is	well-defined.	For	every	ε	>	0,	there	exists	an	N	∈	N	and	a	A˜	ε	∈	E	{0,...,N}	such	that,	letting	Aε	=	A˜	ε	×	E	{N+1,N+2,...}	,	we	have	P[A		Aε	]	<	ε.	♦	Example	20.26	Let	I	=	N0	or	I	=	Z,	and	let	(Xn	)n∈I	be	an	i.i.d.	sequence	with	values	in
the	measurable	space	(E,	E).	Then	p	is	a	stochastic	matrix	and	q	=	λ(p	−	I	).	Takeaways	A	branching	process	dies	out	eventually	if	the	mean	number	of	offspring	is	no	larger	than	1.	We	use	this	to	infer	uniqueness	of	the	electrical	current.	Determine	the	average	code	length	of	a	letter	and	compare	it	with	the	entropy	H3	in	order	to	check	the	efficiency
of	the	Morse	code.	Later	we	will	see	that	the	following	theorem	is	valid	in	greater	generality.	Remark	7.31	Clearly,	μ	⊥	ν	Example	7.32	⇐⇒	ν	⊥	μ.	If	now	F	(x,	x)	=	1,	then	also	F	(y,	x)	=	1.	Example	8.31	Let	X	and	Y	be	real	random	variables	with	joint	density	f	(with	respect	to	Lebesgue	measure	λ2	on	R2	).	In	particular,	it	has	to	be	shown	that	limt	↑1
Yt	=	0	almost	surely.	6	and	7.	The	corresponding	Markov	chain	X˜	is	transient,	and	Δ	is	the	only	absorbing	state.	Indeed,	let	N	>	0	be	such	that	λn	(A)	−	λn	(A	∩	[−N,	N]n	)	<	ε/2.	♦	Theorem	21.24	(Doob’s	regularization)	Let	F	be	a	filtration	that	satisfies	the	usual	conditions	and	let	X	=	(Xt	)t	≥0	be	an	F-supermartingale	such	that	t	→		of	X	with	RCLL
paths.	Further,	show	that	strict	inequality	can	hold	in	the	lower	bound	(LDP	1).	,	n	−	1,	let		n−1	fi	(ωi	)	=		κjk	,jk+1	(ωi	,	Aji+1	×	·	·	·	×	Ajn	).	Lemma	13.10	Let	(E,	d)	be	a	metric	space.	If	λ({f	=	0})	>	0,	then	(since	μ({f	=	0})	=	0)	λ	0	μ.	,	|fnε	|}	is	an	ε-bound	for	(fn	)n∈N	(as	in	(6.4)).	Then	A∗	=	lim	sup	An	is	the	event	where	we	see	a	six	infinitely	often
(see	n→∞	2.1	Independence	of	Events	59	Remark	1.14).	A	stochastic	process	X	=	(Xt	)t	∈I	is	called	a	time-homogeneous	Markov	process	with	distributions	(Px	)x∈E	on	the	space	(Ω,	A)	if:	(i)	For	every	x	∈	E,	X	is	a	stochastic	process	on	the	probability	space	(Ω,	A,	Px	)	with	Px	[X0	=	x]	=	1.	(ii)	For	any	subsequence	of	(fn	)n∈N	,	there	exists	a	sub-
subsequence	that	converges	to	f	almost	everywhere.	Which	of	the	functions	f	(x)	=	1{0}	(x),	g(x)	=	1R\Z	(x),	h(x)	=	sin(1/x)	for	x	=	0	and	h(0)	=	−1,	are	lower	semicontinuous?	“(i)	⇒	(ii)”	By	Prohorov’s	theorem,	(Pn	)n∈N	is	relatively	sequentially	compact.	That	is,	a	sequence	(μn	)n∈N	in	M1	(E)	converges	weakly	to	a	μ	∈	M1	(E)	if	and	only	3	n→∞	3	if	f
dμn	−→	f	dμ	for	any	bounded	continuous	function	f	:	E	→	R.	By	the	Markov	property,	for	every	n	≥	N,	'	(	)	*	Pπ	Aε	∩	τ	−n	(B)	=	Pπ	(X0	,	.	Note,	however,	that	this	does	not	exclude	the	n→∞	possibility	that	Sn	−→	∞	with	positive	probability;	for	instance,	if	Sn	grows	like	√	n.	Then	Xτ	=	a	if	τ	≤	n.	♦	202	8	Conditional	Expectations	Takeaways	The
conditional	expectation	of	a	random	variable	X	given	a	σ	algebra	F	is	the	best	prediction	on	X	that	can	be	made	given	the	information	coded	in	F	(at	least	if	X	has	a	second	moment).	19.15.	However,	what	is	the	probability	that	A	occurs	if	we	already	know	that	B	occurs?	However,	often	there	is	a	version	with	right	continuous	paths	that	have	left-sided
limits.	Then	(Yn	)n∈N	variables	with	E[|X0	|p	]	<	∞.	E[Xt	]	is	right	continuous.	f	∈F	(ii)	There	is	a	function	0	≤	h	∈	L1	(μ)	such	that	for	any	ε	>	0,	there	is	a	δ(ε)	>	0	with			sup	|f	|	dμ	≤	ε	for	all	A	∈	A	such	that	h	dμ	<	δ(ε).	Indeed,	for	the	closed	set	(−∞,	0],	we	have	limn→∞	δ1/n	((−∞,	0])	=	0	<	1	=	δ0	((−∞,	0]).	.,	the	following	strengthening	holds,	lim	sup
2	n→∞	|Sn	|	2n	Var[X1	]	log(log(n))	=	1	almost	surely.	By	Example	18.7,	we	can	construct	independent	successful	couplings	(X(i)	,	Y	(i)	),	i	=	1,	.	For	further	reading,	see,	for	example	[103]	or	[88].	Remark	21.10	The	covariance	function	determines	the	finite-dimensional	distributions	of	a	centered	Gaussian	process	since	a	multidimensional	normal
distribution	is	determined	by	the	vector	of	expectations	and	by	the	covariance	matrix.	21.4	Supplement:	Feller	Processes	.	250	11	Martingale	Convergence	Theorems	and	Their	Applications	Fig.	Takeaways	Consider	an	exchangeable	family	X1	,	X2	,	.	(9.3)	By	construction,	XT+	−	XT−	=	0	if	VT+	−	VT−	=	0.	♣	Exercise	5.1.5	Let	X1	,	X2	,	.	Then:	(i)	σ	∨
τ	and	σ	∧	τ	are	stopping	times.	∈	R	such	that	μ	=	n=1	δxn	is	a	σ	-finite	measure.	(ii)	Let	X	∼	expθ	and	a	>	0.	Clearly,	Q	0	P	if	dν	ν	0	μ.	n=0	Theorem	19.6	(Maximum	principle)	Let	f	be	a	harmonic	function	on	E	\	A.	Definition	6.2	We	say	that	(fn	)n∈N	converges	to	f	meas	(i)	in	μ-measure	(or,	briefly,	in	measure),	symbolically	fn	−→	f	,	if	n→∞	μ({d(f,	fn	)
>	ε}	∩	A)	−→	0	for	all	ε	>	0	and	all	A	∈	A	with	μ(A)	<	∞,	and	a.e.	(ii)	μ-almost	everywhere	(a.e.),	symbolically	fn	−→	f	,	if	there	exists	a	μ-null	set	N	∈	A	such	that	n→∞	d(f	(ω),	fn	(ω))	−→	0	for	any	ω	∈	Ω	\	N.	381	17	Markov	Chains	.	Thus,	a	time-homogeneous	Markov	process	is	simply	a	stochastic	process	with	the	Markov	property	and	for	which	the
transition	probabilities	are	time-homogeneous.	We	are	now	interested	in	properties	of	this	process	X	that	cannot	be	described	in	terms	of	finite-dimensional	distributions	but	reflect	the	whole	path	t	→	Xt	.	(5.15)	n=1			n				−1			Then	lim	sup	an	Xk		=	0	almost	surely.	,	ωn	.	Then	we	come	to	finite	products	of	measure	spaces	and	product	measures	with
transition	kernels.	A	stochastic	kernel	κY,F	from	(Ω,	F	)	to	(E,	E)	is	called	a	regular	conditional	distribution	of	Y	given	F	if	κY,F	(ω,	B)	=	P[{Y	∈	B}|F	](ω)	for	P-almost	all	ω	∈	Ω	and	for	all	B	∈	E;	that	is,	if			1B	(Y	)	1A	dP	=	κY,F	(	·	,	B)	1A	dP	for	all	A	∈	F	,	B	∈	E.	,	Wd	are	independent	and	N0,1	-distributed.	Definition	4.16	For	measurable	f	:	Ω	→	R,	define	
f	p	:=	1/p	|f	|	dμ	p	,	if	p	∈	[1,	∞),	and	f	∞	:=	inf	K	≥	0	:	μ({|f	|	>	K})	=	0	.	(14.9)	Ω2	Proof	For	f	=	1A1	×A2	with	A1	∈	A1	and	A2	∈	A2	,	the	statement	is	true	by	definition.	The	registered	company	address	is:	Gewerbestrasse	11,	6330	Cham,	Switzerland	Preface	to	the	Third	Edition	New	in	the	third	edition:	the	sections	close	with	a	short	“takeaways”
block	where	highlights	of	the	section	are	summarized	sometimes	on	an	informal	level	without	full	rigor.	,	km	)	∈	Nm	0	with	k1	+	.	In	order	to	do,	criteria	for	relative	compactness	of	probability	measures	on	C([0,	∞))	are	needed.	For	functions	of	exchangeable	random	variables	X1	,	X2	,	.	As	shown	above,	we	have	P[L	=	∞]	=	0.	Then		μ(E)	=	sup	fN	dμ
N∈N		=	sup	lim	N∈N	n→∞	fN	dμn		≤	lim	inf	sup	n→∞	N∈N	fN	dμn	=	lim	inf	μn	(E).	A	102	4	The	Integral	Definition	4.13	Let	μ	be	a	measure	on	(Ω,	A)	and	let	f	:	Ω	→	[0,	∞)	be	a	measurable	map.	As	C	is	compact,	there	exists	an	n	∈	N	with	C	⊂	i=1	Ai	.	2.1	Percolation	on	a	15	×	15	grid,	p	=	0.42.	(Here	Pnk	:=	Pn	◦	πk−1	,	where	πk	:	Rd	→	R	is	the
projection	on	the	kth	coordinate.)	Let	ek	be	the	kth	unit	vector	in	Rd	.	Then	E[Xn	]	=	en	/2	.	However,	this	flaw	can	easily	be	remedied.	Theorem	19.30	Let	C	and	C		be	edge	weights	on	E	with	C		(x,	y)	≤	C(x,	y)	for	all	x,	y	∈	E.	A	map	f	:	Ω	→	R	is	and	let	μ	=	ω∈Ω		|f	(ω)|	αω	<	∞.	Then	X∗	:=	lim	infn→∞	Xn	and	X∗	:=	lim	supn→∞	Xn	are	almost	surely
constant.	Let	Z1	,	Z2	,	.	Let	B	⊂	A	be	measurable	with	λ(B)	>	0.	Further,	let	(pe	)e∈E	be	a	probability	vector.	By	permute	the	E	1	;	hence	y	∈	E1	∩	E	1	.	,	D	and	let	Yt	=	(Yt1	,	.	By	assumption,	P[Nt	]	=	0	for	every	t	∈	I	.	To	do	it,	you	enter	the	house	number	and	street	in	one	search	box	and	the	city	and	state	or	zip	code	in	the	second	search	box	before
running	the	query.	An	elegant	way	to	decouple	the	coordinates	is	to	pass	from	discrete	time	to	continuous	time	in	such	a	way	that	the	individual	coordinates	become	independent	but	such	that	the	Green	function	remains	unchanged.	ε→0	ε→0	We	say	that	a	family	(Pn	)n∈N	of	probability	measures	on	E	satisfies	an	LDP	with	rate	rn	↑	∞	and	rate
function	I	if	(LDP	1)	and	(LDP	2)	hold	with	εn	=	1/rn	and	μ1/rn	=	Pn	.	Hence	the	error	is	at	most	of	order	n−1/2	.	480	19	Markov	Chains	and	Electrical	Networks	Exercise	19.4.1	Consider	the	electrical	network	on	Zd	with	unit	resistors	between	neighboring	points.	,	Zn	}.	Let		p	1	C	(x	)	∩	C	p	(x	2	)	=	∅	∩	#C	p	(x	1	)	=	#Cp	(x	2	)	=	∞	A2L:=	x	1	,x	2	∈BL
\BL−1	2.4	Example:	Percolation	81	be	the	event	where	there	exist	two	points	on	the	boundary	of	BL	that	lie	in	different	infinite	open	clusters.	lim	sup	Fnk	(x)	≤	lim	Fnk	(q	+	)	=	F	k→∞	k→∞	Hence	lim	sup	Fnk	(x)	≤	F	(x).	Example	18.18	(Ising	model)	In	the	Ising	model	described	above,	we	have	x−i	=	{x	i,−1	,	x	i,+1	}.	..	Theorem	20.14	(Individual
ergodic	theorem,	Birkhoff	[16])	Let	f	=	X0	∈	L1	(P).	We	prepare	for	the	proof	of	the	CLT	with	a	lemma.	I	would	like	to	take	the	opportunity	to	thank	all	of	those	who	helped	in	improving	the	first	edition	of	this	book,	in	particular:	Michael	Diether,	Maren	Eckhoff,	Christopher	Grant,	Matthias	Hammer,	Heiko	Hoffmann,	Martin	Hutzenthaler,	Martin	Kolb,
Manuel	Mergens,	Thal	Nowik,	Felix	Schneider,	Wolfgang	Schwarz,	and	Stephan	Tolksdorf.	As	an	excuse	for	presenting	this	section	in	a	chapter	on	Markov	chains,	we	fill	finally	use	a	simple	Markov	chain	in	order	to	prove	a	theorem	on	the	stochastic	order	of	binomial	distributions.	At	that	point	it	was	only	a	small	step	to	show	that	the	Lebesgue
measure	is	regular	in	the	sense	that	the	measure	of	an	arbitrary	measurable	set	can	be	approximated	by	compact	subsets	as	well	as	by	open	supersets.	t	→0	By	Theorem	15.32,	this	implies	E[X2n	]	=	(−1)n	u(2n)	(0)	=	(−1)n	ϕ	(2n)	(0).	Hence	ν˜	:=	hν	is	a	finite	measure	and	ν	=	h−1	ν˜	is	uniquely	defined	by	ν.	(ix)	The	binomial	distribution	bn,p	with
parameters	n	∈	N	and	p	∈	(0,	1)	is	not	infinitely	divisible	(why?).	We	interpret	the	edges	as	tubes	along	which	water	can	flow.	From	this	an	outer	measure	will	be	derived.	Define	R¯	:=	{X	and	Y	are	right	continuous}	and	choose	an	R	∈	A	with	R	⊂	R¯	and	P[R]	=	1.	,	n}	with	conductances	C(k	−	1,	k)	>	0	and	C(k,	l)	=	0	if	|k	−	l|	>	1.	This	map	can	be	one
to	one,	as	with	linear	maps	and	matrices,	or	it	may	map	only	some	properties	uniquely,	as	with	matrices	and	determinants.	(i)	(ii)	(iii)	Since	∅	∈	A,	we	have	{∅}	∈	U(∅);	hence	μ∗	(∅)	=	0.	A	metric	d	on	E	is	called	complete	if	any	Cauchy	sequence	with	respect	to	d	converges	in	E.	Example	7.38	In	the	converse	implication	of	the	theorem,	the
assumption	of	finiteness	is	essential.	More	precisely,	for	any	ε	>	0,	we	have		+	,	1		V				P		Sn		≥	ε	≤	2	for	all	n	∈	N.	0	≤	1	−	Re(ϕX	(2t))	≤	4(1	−	Re(ϕX	(t)))	for	all	t	∈	Rd	.	Let	ξn	,	n	∈	N0	,	be	independent	standard	normally	distributed	random	variables.	Recall	that	we	formalized	the	event	where	infinitely	many	of	a	series	of	events	occur	by	means	of	the
limes	superior	(see	Definition	1.13).	Furthermore,	let	F	:	R	→	R	be	monotone	increasing	and	right	continuous.	For	n	∈	N,	t	∈	N0	and	l	=	1,	.	+	Xn	and	m	:=	E[Sn	].	Proof	Apply	Theorem	14.25	with	κ2	=	κ	and	κ1	(ω0	,	·	)	=	μ.	If	(E,	d)	is	a	metric	space	and	A,	B	⊂	E,	then	we	write	d(A,	B)	=	inf{d(x,	y)	:	x	∈	A,	y	∈	B}	and	d(x,	B)	:=	d({x},	B)	for	x	∈	E.	=	μi
(−∞,	x]	·	j	=i	Hence	indeed	PXi	=	μi	.	If	x	is	a	state	and	i	∈	Λ,	then	define	x−i	:=	{y	∈	E	:	y(j	)	=	x(j	)	for	j	=	i}.		(i)	C	:=	sup	|f	|	dμ	<	∞.	Show	that	Uf	∈	B(Ω1).	♣	Exercise	13.2.10	Let	X,	X1	,	X2	,	.	Then	(Xn	)n=1,...,N	is	exchangeable.	Thus		(	'	'	(	⊗k	=	lim	E	E	F	dΞ∞	f1	dξnl	(X)	·	·	·	fk	dξnl	(X)	l→∞	*	)	=	E	f1	(X1	)	·	·	·	fk	(Xk	)	.	Now	let	f	≥	0	be	measurable
and	let	(fn	)n∈N	be	a	sequence	of	nonnegative	functions	in	L2	(Ω,	A,	μ	+	ν)	with	fn	↑	f	.	≥	0	such	that	gn	:=	n		i=1	n→∞	αi	1Ai	−→	f.	♣	302	13	Convergence	of	Measures	Since	E	is	Polish,	PX1	is	tight.	The	unique	solution	of	this	differential	equation	is	f1	(t)	=	1	−	e−t	.	The	existence	of	the	convolution	semigroup	follows	by	Corollaries	16.8	and	16.7	if
we	define	μr	by	ϕ	r	.	Without	proof,	we	present	the	following	topological	result	(see,	e.g.,	[37,	Theorem	13.1.1]).	♦	200	8	Conditional	Expectations	Example	8.19	Let	X1	,	.	(21.19)	n=−∞	If	f	is	the	density	of	a	probability	distribution	on	R	with	characteristic	function	ϕ	and	supx∈R	x	2	f	(x)	<	∞,	then	the	Poisson	summation	formula	holds,	∞		∞		f	(s	+	n)	=
n=−∞	ϕ(k)	e2πis	for	all	s	∈	R.	,	Xin	)	has	the	n-dimensional	normal	distribution	with	μ	=	μI	:=	(μi1	,	.	1.2	Set	Functions	15	∞		(iv)	Let	A	be	a	ring	and	let	A	=	An	∈	A.	Further,	for	any	p	∈	[1,	∞],	define	the	vector	space			Lp	(μ)	:=	f	:	Ω	→	R	is	measurable	and	f	p	<	∞	.	Then,	find	the	search	box	and	enter	the	name	of	the	person	or	business	you	want	to
call.Results	to	ExpectIf	you’re	searching	in	the	Telkom	directory,	expect	to	find	the	name,	address	and	phone	number	of	the	party	you	want	to	call,	if	they	have	a	listed	number.	Definition	7.1	(Factor	space)	For	any	p	∈	[1,	∞],	define	Lp	(Ω,	A,	μ)	:=	Lp	(Ω,	A,	μ)/N	=	{f¯	:=	f	+	N	:	f	∈	Lp	(μ)}.	Manifestly,	we	can	choose	Htn	=	Ht	1{|Ht	|	(ii)	Compute	fn	dλ
and	determine	f	dλ	as	a	limit	of	integrals.	A	simple	application	of	Jensen’s	inequality	yields	H	(μ)	≥	0	and	H	(ν	|μ)	≥	0	(see	Lemma	5.26	and	Exercise	5.3.3).	By	Example	17.60,	it	is	enough	to	consider	the	smallest	p2	that	fulfills	(17.31).	For	X	∈	L1	(P),	we	disjoint	events	with	i∈I	define	a	map	E[X	|F	]	:	Ω	→	R	by	E[X	|F	](ω)	=	E[X	|Bi	]	⇐⇒	Bi		ω.	We	will
n→∞	come	back	later	to	the	point	that	this	superficially	contrasts	with	Sn	−→	1	a.s.	(see	Example	11.6).	Now	let	E	=	{0,	1}	and	let	X1	,	X2	,	.	(iii)	A	is	closed	under	countable	unions.	Hence	we	are	in	the	situation	of	drawing	colored	balls	without	replacement.	Cramér’s	theorem	says	that	limn→∞	n1	log(Pn	([x,	∞)))	=	−I	(x)	for	x	>	0	and	(by	symmetry)
limn→∞	x	>	0,	1	n	log(Pn	((−∞,	x]))	=	−I	(x)	for	x	<	0.	=	Dn−1	=	−1	and	Dn	=	1	=	p(1	−	p)n−1	.	Then	M	−	M		=	A	−	A	is	a	predictable	martingale;	hence	(see	Exercise	9.2.2)	Mn	−	Mn	=	M0	−	M0	=	0	for	all	n	∈	N0	.	We	say	that	X	has	almost	surely	continuous	paths,	or	briefly	that	X	is	a.s.	continuous,	if	for	almost	all	ω	∈	Ω,	the	path	t	→	Xt	(ω)	is
continuous.	Case	2:	limz↑1	ψ		(z)	>	1.	For	λ-systems	this	is	not	true	in	general.	“(vii)	⇒	(v)”	Let	G	be	open	and	ε	>	0.	In	particular,	this	is	true	if	A	is	a	ring.	In	order	to	compute	u(x),	we	replace	the	network	step	by	step	by	simpler	networks	such	that	the	effective	resistances	between	0,	1,	and	x	remain	unchanged.	n=1	Example	1.30	(Contents,
measures)	(i)	Let	ω	∈	Ω	and	δω	(A)	=	1A	(ω)	(see	(1.2)).	Show	that	f	∈	L1	(μ)	and						fn	−	f		dμ	=	lim	fn	dμ	−	f	dμ.	A	subset	A	⊂	E	is	totally	bounded	with	respect	to	d	if	and	only	if	A	is	relatively	compact.	Hence	DE	=	A.	By	the	Borel–	Cantelli	lemma,	we	get	P[A−	]	=	P[A+	]	=	1.	By	a	standard	result	of	complex	analysis	if	φf	(s)	<	∞	for	an	s	>	1,	then	φf	is
holomorphic	in	{z	∈	C	:	Re(z)	∈	(1,	s)}	(and	is	thus	uniquely	determined	by	the	values	φf	(r),	r	∈	(1,	1	+	ε)	for	any	ε	>	0).	Letting	ε	↓	0,	we	get	equality	of	the	integrals	and	hence	μ1	=	μ2	(by	Theorem	13.11).	In	the	case	of	a	topology	we	get	a	Borel	σ	-algebra,	that	can	also	be	generated	using	simple	sets	such	as	rectangles.	(5.9)	By	the	monotone
convergence	theorem	(Theorem	4.20),	we	have	)	*	n→∞	E[Yn	]	=	E	X1	1{X1	≤n}	−→	E[X1	].	Reflection	An	important	object	in	stochastic	analysis	is	a	random	set	function	ϕ	on	B([0,	1])	with	the	property	that	ϕ(A)	∼	N0,λ(A)	is	normally	distributed	and	ϕ(A)	and	ϕ(B)	are	independent	on	disjoint	sets	A	and	B.	For	further	reading,	we	refer	to	[5].	Theorem
8.20	(Jensen’s	inequality)	Let	I	⊂	R	be	an	interval,	let	ϕ	:	I	→	R	be	convex	and	let	X	be	an	I	-valued	random	variable	on	(Ω,	A,	P).	h→0	However	(by	Lemma	15.31	with	n	=	k	+	1),	Yk	(t,	h,	x)	−→	(ix)k	eit	x	for	all	x	∈	R	and	(by	Lemma	15.31	with	n	=	k)	|Yk	(t,	h,	x)|	≤	|x|k	.	(i)	Let	f	∈	Cb	(E2	).	Var[Yn	]	<	∞.	Euler’s	number)	the	entropy	and	H2	(p)	the	binary
entropy	of	p.	A	market	in	which	every	claim	can	be	replicated	is	called	complete.	Clearly,	it	is	necessary	that	π	be	the	unique	invariant	distribution;	that	is,	up	to	a	factor	π	it	is	the	unique	left	eigenvector	of	p	for	the	eigenvalue	1.	Further,	let	Ω1	=	[0,	1],	let	A1	=	B([0,	1])	be	the	Borel	σ	-algebra	on	Ω1	and	let	μ	=	U[0,1]	be	the	uniform	distribution	on
[0,	1].	On	the	other	hand,	if	a	family	of	stochastic	kernels	κs,t	,	s	<	t,	fulfills	the	a	minimal	consistency	condition	(the	Chapman-Kolmogorov	equation),	then	Kolmogorov’s	extension	theorem	allows	to	construct	a	probability	space	and	a	Markov	process	on	it	that	fits	to	these	kernels.	(For	finite	A,	the	claim	is	trivially	true	even	for	p	=	∞.)	For	example,
let	Ω	=	N,	A	=	2Ω	and	let	μ	be	the	counting	measure.	Now	let	a	=	1,	b	=	θ	and	c	=	−E[X]	−	b	E[Y	].	We	have	to	show	that	there	exists	an	N	∈	A	with	N¯	⊂	N	and	P[N]	=	0.	3	n→∞	3	(iii)	f	dμn	−→	f	dμ	for	all	bounded	measurable	f	with	μ(Uf	)	=	0.	Here	Helly’s	theorem	is	the	tool.	1.5	Random	Variables	47	(ii)	Let	p	∈	[0,	1]	and	n	∈	N,	and	let	X	:	Ω	→	{0,	.
Here	we	have	studied	the	properties	of	this	space	as	a	topological	space	and	as	a	measure	space.	If	this	is	the	case,	then	α	∈	R	and	for	A	⊂	Ω	+	,	A	∈	A,	we	would	have	α	≥	ϕ(Ω	+	\	A)	=	ϕ(Ω	+	)	−	ϕ(A)	=	α	−	ϕ(A);	hence	ϕ(A)	≥	0.	Let	Fn	:=	σ	(Xk,i	:	k	<	n,	i	∈	N).	1	Now	let	q	∈	(1,	∞).	The	time-homogeneous	Markov	property	is	immediate	from	the	fact
that	the	increments	are	independent	and	stationary.	♦	Remark	6.5	Almost	everywhere	convergence	and	convergence	in	measure	determeas	mine	the	limit	up	to	equality	almost	everywhere.	12.1.	Hence	we	shall	show	that	a	countably	infinite	exchangeable	family	of	random	variables	is	an	i.i.d.	family	given	the	exchangeable	σ	-algebra	E.	(ii)	If	τ	is
measure-preserving	and	I	is	P-trivial,	then	(Ω,	A,	P,	τ	)	is	called	ergodic.	If	(Yn	)n=0,1,...,T	is	an	F-martingale,	then	Yn	=	E[YT		Fn	]	for	all	n	≤	T	.	If	we	let	g	=	1	μ(Aε	)	1Aε	,	then	g1	=	1	and	κ(f	)1	≥	fg1	≥	(1	−	ε)f	∞	.	2	Let	E	=	Z	(with	the	discrete	topology)	and	let	Xt	=	t		Yn	for	all	t	∈	N0	.	For	the	so-called	Gibbs	sampler	or	heat	bath	18.3	Markov	Chain
Monte	Carlo	Method	451	algorithm,	the	idea	is	to	adapt	the	state	locally	to	the	stationary	distribution.	k	Then	PX	=:	bn,p	is	called	the	binomial	distribution	with	parameters	n	and	p;	formally	bn,p	n				n	k	=	p	(1	−	p)n−k	δk	.	A	stochastic	process	X	=	(Xn	)n∈N0	is	called	a	backwards	martingale	with	respect	to	F	if	X	=	(X−n	)n∈−N0	is	an	F-martingale.
Since	Z	is	a	tree	(that	is,	it	is	connected	and	contains	no	circles),	we	have	#Z	−	1	=	1	degHL	(h).	Accordingly,	fix	(x1	,	y1	),	(x2	,	y2	)	∈	E	×	E.	(i)	Conclude	the	statement	for	X	with	a	continuous	density.	,	6}2	,	A2	=	{1,	.	By	Theorem	8.37	(with	E	=	{0,	1}n	⊂	Rn	),	a	regular	conditional	distribution	exists:	κY,X	(x,	·	)	=	P[Y	∈	·	|X	=	x]	for	x	∈	[0,	1].
Subtracting	the	differences	for	each	time	step,	we	decompose	a	submartingale	into	a	sum	of	a	martingale	and	a	monotone	increasing	predictable	process.	A	metrizable	space	(E,	τ	)	is	called	separable	if	there	exists	a	countable	dense	subset	of	E.	Hence	(by	Theorem	7.11)		p	p	(	'	E[X]1/p	+	E[Y	]1/p	.	(ii)	For	every	x	∈	E,	we	have	;	;	n→∞	;Lx	[Xn	]	−	π	;
−→	0.	Hint:	Show	that	Θ	and	Φ	are	independent,	and	compute	the	distributions	of	Θ	and	Φ.	s	It	is	easy	to	check	that	lim	s↓0		1	pt	+s	(x,	y)	−	pt	(x,	y)	=	(q	·	pt	)(x,	y).	,	kr	∈	N(x,	x)		with	gcd({k1	,	.	Let	T	:	R	→	R,	x	→	x	+	1.	ϕ	is	called	concave	if	(−ϕ)	is	convex.		)	*	(v)	(Triangle	inequality)	E[X]	≤	E	|X|	.	(iv)	Let	K	be	an	arbitrary	set	and	let	(Ik	)k∈K			be
mutually	disjoint	subsets	of	I	.	25.5	Recurrence	and	Transience	of	Brownian	Motion..	For	such	f	,	define	the	matrix	M	=	.	Now	(f	+	g)p	≤	2p	(f	p	∨	g	p	)	≤	2p	(f	p	+	g	p	);	hence	f	+	g	∈	Lp	(μ).	As	Cc	(E)	is	a	separating	class	for	M≤1	(E)	(see	Theorem	13.11),	(i)	follows	by	Theorem	13.34.	(Here	xk	=	x(x−1)···(x−k+1)	for	x	∈	R	and	k	∈	N	is	the	generalized
k!	binomial	coefficient.)	If	r	∈	N,	then	one	can	show	as	in	the	preceding	example	−	is	the	distribution	of	the	waiting	time	for	the	rth	success	in	a	series	that	br,p	of	random	experiments.	(viii)	Let	X	and	Y	be	independent	with	X	∼	N0,σ	2	and	Y	∼	Γθ,r	,	where	σ	2	,	θ,	r	>	√	0.	By	n→∞	Lemma	15.47,	this	is	equivalent	to	lim	n→∞	kn		l=1	Now	ft	(x)	x	2	+	itx
=	eit	x	−	1	and	(Xn,l	)	is	centered.	Denote	the	results	by	Y1	,	.	Using	the	contraction	principle	this	large	deviations	principle	can	be	reduced	to	functions	of	the	random	variables.	Corollary	1.83	(Trace	of	a	generated	σ	-algebra)	Let	E	⊂	2Ω	and	assume	that					A	⊂	Ω	is	nonempty.	Show	that	then	there	would	be	a	sequence	(Cn	)n∈N	with	Cn	↑	∞	and	0	=
w-lim(Cn	ϕn	).	The	empirical	distributions	converge	to	the	distribution	of	the	random	variables.	They	are	of	different	levels	of	difficulty	indicated	by	the	number	of	clubsuits.	We	have	to	show	that	ϕ	attains	the	maximum	α;	that	is,	there	exists	an	Ω	+	∈	A	with	ϕ(Ω	+	)	=	α.	We	start	with	a	preliminary	lemma.	n	(23.11)	We	use	the	method	of	an
exponential	size-biasing	of	the	distribution	μ	:=	PX1	of	X1	,	which	turns	the	atypical	values	that	are	of	interest	here	into	typical	values.	A	function	f	:	E	→	R	is	called	harmonic	on	E	\	A	if	pf	(x)	=	y∈E	p(x,	y)f	(y)	exists	and	if	pf	(x)	=	f	(x)	for	all	x	∈	E	\	A.	Here	we	follow	the	proof	of	Burton	and	Keane	[23]	as	described	in	[63,	Section	8.2].	Takeaways	A
Riemann	integrable	function	on	a	compact	interval	is	Lebesgue	integrable	and	the	integrals	coincide.	.),	by	the	approximation	theorem	for	measures,	there	exists	a	sequence	of	measurable	sets	(Ak	)k∈N	with	Ak	∈	σ	(X1	,	.	♣	Exercise	7.2.3	Let	X	be	a	real	random	variable	and	let	p,	q	∈	(1,	∞)	with	+	=	1.	That	is,	for	any	finite	J	⊂	I	,		P[Xj	=	1	for	all	j	∈	J	
Y	]	=	Y	#J	.	Then	A0	A1	(w1	−	w0	)I	(A1	)	=	1		(w(x)	−	w(y))	I	(x,	y).	If	we	remove	the	superconductors	from	the	network,	we	end	up		(0	↔	∞)	is	not	smaller	than	that	of	with	the	network	of	Fig.	Let	p	∈	(1,	∞).	Substituting	z	=	(1	−	it)x,	we	get	1	ϕ(t)	=	Γ	(r)		∞	x	r−1	−x	it	x	e	e	0	(1	−	it)−r	dx	=	Γ	(r)	3	Hence,	it	suffices	to	show	that	γ0,∞,t		zr−1	e−z	dz.	♦
Perfect	Sampling	The	MCMC	method	as	described	above	is	based	on	hope:	We	let	the	chain	run	for	a	long	time	and	hope	that	its	distribution	is	close	to	the	invariant	distribution.	15.4	Characteristic	Functions	and	Moments	.	(iii)	lim	n→∞	n	If	the	random	variables	X1	,	X2	,	.	By	the	Markov	property,	we	have	'	'	(	(	1	−	F	(x,	x)	=	Px	τx1	=	∞	≥	Px	X1	=	x1	,
.	Show	that	the	states	6,	7	and	8	are	positive	recurrent	and	compute	the	expected	first	entrance	times	E6	[τ6	]	=	17	,	4	E7	[τ7	]	=	17	5	and	E8	[τ8	]	=	17	.	(7.3)	On	the	other	hand,	for	any	measurable	f	:	Ω	→	[0,	∞),	equation	(7.3)	defines	a	measure	ν	on	(Ω,	A).	If	n	is	sufficiently	large	that	mn	<	12	,	then			k		kn	n										it	Xn,l	log(ϕn,l	(t))	−	ϕn,l	(t)	−	1	
E[e	−	1]	=		log	ϕn	(t)	−					l=1	l=1	≤	kn				ϕn,l	(t)	−	12	l=1	≤	mn	kn				ϕn,l	(t)	−	1	l=1	≤	1	mn	t	2	2	−→	0	(by	Lemma	15.46)	for	n	→	∞.	210	8	Conditional	Expectations	Now,	for	any	n	∈	N	and	B	∈	F	,	E[gn	(X)	1B	]	=	n		αi	P[{X	∈	Ai	}	∩	B]	i=1	=	n			P[{X	∈	Ai	}|F	]	P[dω]	αi	B	i=1	=	n			αi	i=1	=			n	B	i=1	B	κX,F	(ω,	Ai	)	P[dω]	αi	κX,F	(ω,	Ai	)	P[dω]				=	B	gn
(x)	κX,F	(ω,	dx)	P[dω].	These	are	some	of	the	most	important	distributions	in	probability	theory,	and	we	will	come	back	to	these	examples	in	many	places.	,	kr	is	called	the	Frobenius	problem.	It	is	sufficient	to	consider	l	≥	1	since	we	get	the	l	=	0	term	from	the	fact	that	the	probability	measure	has	total	mass	one.	For	this	we	would	have	to	rely	on
prophecy.	Assume	N	takes	values	in	N0	and	has	the	probability	generating	function	fN	.	i=1	Letting	n	→	∞	and	using	the	σ	-subadditivity	of	μ∗	,	we	conclude	μ∗	(E)	≥	∞		μ∗	(E	∩	Ai	)	+	μ∗	(E	∩	Ac	)	≥	μ∗	(E	∩	A)	+	μ∗	(E	∩	Ac	).	We	will	show	(i)	F	is	the	distribution	function	of	a	(sub-)	probability	measure.	Hence	the	edges	of	u	lie	in	an	infinite	open
cluster	of	K	p	and	there	is	at	least	one	edge	k	∈	u	incident	to	a	point	at	the	boundary	BL	\	BL−1	of	BL	.	Every	A	∈	A	is	closed	and	thus	compact.	Evidently,	Xt	−	Xs	=	t	−	s	X1	∼	N0,t	−s	for	all	t	>	s	≥	0.	♠	534	21	Brownian	Motion	Corollary	21.25	Let	(νt	)t	≥0	be	a	continuous	convolution	semigroup	and	assume	3	that	|x|ν1	(dx)	<	∞.	,	N	and	let	0	gk	(x)	=
M	−	sk	,	N	−	M	+	sk	−	k,	if	x	=	1,	if	x	=	0.	Then	ϕ	n	=	|ϕ|n	is	n-fold	divisible;	however,	the	factors	are	not	unique.	Use	the	preceding	theorem	to	show	the	conditional	version	of	Hölder’s	inequality:		*1/p	)	q		*1/q		*	)	)	E	|Y	|		F	E	|XY	|		F	≤	E	|X|p		F	almost	surely.	For	fixed	ω0	,	by	the	monotone	convergence	theorem,	the	map	A	→	κ1	⊗	κ2	(ω0	,	A)	is	σ	-
additive	and	thus	a	measure.	Apply	Hölder’s	inequality	to	f	·	(f	+	g)p−1	and	to	g	·	(f	+	g)p−1	to	get	p		f	+	gp	=		(f	+	g)p	dμ	=		f	(f	+	g)p−1	dμ	+	g(f	+	g)p−1	dμ	≤	f	p	·	(f	+	g)p−1	q	+	gp	·	(f	+	g)p−1	q	p−1	=	(f	p	+	gp	)	·	f	+	gp	.	Let	c	>	0	with	f	:=	dQ	dP	≤	c	P	-almost	surely.	3	Then,	for	any	x	∈	I	,	f		(	·	,	x)	∈	L1	(μ)	and	the	function	F	:	x	→	f	(ω,	x)	μ(dω)	is
differentiable	with	derivative		F	(x)	=		f		(ω,	x)	μ(dω).	Letting	f	:=	sup{fn	:	n	∈	N},	the	monotone	convergence	theorem	yields			f	dμ	=	sup	A	fn	dμ	≤	ν(A)	for	all	A	∈	A	n∈N	A	(that	is,	f	∈	G),	and				f	dμ	=	sup	fn	dμ	≥	sup	gn	dμ	=	γ	.	Definition	9.42	(Binary	model)	A	stochastic	process	X0	,	.	Then	n=1	i=1	it	follows	from	(iii)	that	μ(B)	=	lim	μ(An	)	=	n→∞	∞	
μ(Bi	).	113	113	121	125	135	139	xi	xii	Contents	6	Convergence	Theorems	.	Let	A	⊂	E.	5.4	Speed	of	Convergence	in	the	Strong	LLN	.	This	statement	will	now	be	generalised	to	an	arbitrary	finite	number	of	sets.	We	saw	that,	in	general,	this	is	not	possible	if	the	differences	Xn+1	−	Xn	take	three	(or	more)	different	values.	Assume	that	in	K	(enumerated)
urns	there	are	a	total	of	N	indistinguishable	balls.	For	any	n	∈	N	choose	an	open	set	An	⊃	Gn	with	β(An	)	<	μ∗	(Gn	)	+	ε/2n	.	Since	ψ	is	continuous,	we	infer	ψ(q)	=	ψ			lim	qn	n→∞	=	lim	ψ(qn	)	=	lim	qn+1	=	q.	♦	Reduced	Network	Assume	that	we	have	already	reduced	the	network	to	a	network	with	the	three	points	0,	1	and	x	and	with	resistors
between	these	points	R		(0,	1),	R		(0,	x)	and	R		(1,	x).	We	have	seen	a	formula	for	the	first	and	second	moment	of	a	sum	of	random	variables,	even	if	the	number	of	summands	is	random	itself.	To	this	end,	we	compute	some	of	its	moments	and	then	use	the	Kolmogorov–Chentsov	theorem	(Theorem	21.6).	Let	U	⊂	E	be	open	and	let	C	⊂	E	be	closed.	∈	N
are	parameters	of	the	model.	If	sn	≥	k,	then	n	,n	¯	Kn	,n	=	√tn	Y	Kn	.	More	generally,	the	extinction	probability	is	the	smallest	fixed	point	of	the	generating	function	of	the	offspring	distribution.	1.1	Classes	of	Sets	7	Proof	“⊃”	This	follows	from	Remark	1.17.	(18.1)	1/2	1/2	1	1/2	1/2	1/2	1/2	1	Fig.	Corollary	16.7	If	the	conditions	of	Theorem	16.6	hold,
then	ϕ	r	is	a	CFP	for	every	r	>	0.	19.1	Series	connection	of	six	resistors.	is	called	the	Radon–Nikodym	Proof	One	direction	is	trivial.	n=0	Since	{σ0	=	∞}	=	A,	we	have	P[σ0	<	∞]	=	1.	i=1	By	Theorem	2.5,	the	family	((pN)c	,	p	∈	P)	is	also	independent,	whence	,	+	(pN)c	ζ	(s)−1	=	P[{1}]	=	P	=	lim	P	n→∞	'		p∈P	(pN)c	(	p∈Pn					=	lim	1	−	P[	pN	]	=	1	−	p−s
.	Then	E[X1		T	]	=	E[X1		E]	a.s.	and		1	n→∞	Xi	−→	E[X1		E]	n	n	a.s.	and	in	L1	.	As	shown	above,	β	is	subadditive;	thus	α(C)	≤	β		n		Ai	i=1	≤	∞		β(Ai	).	,	XtN	in	P-probability.	Let	J		:=	{i	∈	J	:	P[Bi	]	>	0}.	In	this	case,	gh	X∞	is	a	version	of	the	Radon–Nikodym	derivative	dμ	.	For	p	=	∞,	note			that	|E[X	|F	]|	≤	E[|X||F	]	≤	E[X∞	F	]	=	X∞	.	♣	Chapter	16
Infinitely	Divisible	Distributions	For	every	n,	the	normal	distribution	Nμ,σ	2	is	the	nth	convolution	power	of	a	probability	measure	(namely,	of	Nμ/n,σ	2	/n	).	(For	the	“a.s.”	notation	see	Definition	1.68.)	Lemma	5.18	For	n	∈	N,	define	Yn	:=	Xn	1{|Xn	|≤n}	and	Tn	=	Y1	+	·	·	·	+	Yn	.	Let	Gn	:	[0,	1]	→	R,	t	→	n−1/2	ni=1	1[0,t	]	(F	(Xi	))	−	t	and	Mn	:=	Gn	∞	.
Consider	now	the	general	case.	Concluding,	X	:=	F	−1	is	the	random	variable	that	we	wanted	to	construct.	In	Theorem	17.8	we	saw	that,	for	the	semigroup	of	kernels	(pn	)n∈N	,	there	exists	a	unique	discrete	Markov	chain	whose	transition	probabilities	are	given	by	p.	,	An	∈	Bb	(E)	pairwise	disjoint	.	n→∞	(i)	If	P	=	w-lim	Pn	,	then	ϕn	−→	ϕ	uniformly	on
compact	sets.		1{Xn−m	=a}	.	n→∞	As	ε	>	0	was	arbitrary,	we	infer	that	fn	−→	f	uniformly	on	K.	that	are	uniformly	distributed	on	[0,	1].	Proof	This	theorem	was	first	proved	by	Aizenman,	Kesten	and	Newman	[2,	3].	As	a	consequence,	we	get	uniqueness	of	the	solution	of	the	Dirichlet	problem.	Case	1:	p	=	1.	n→∞	(8.7)	8.2	Conditional	Expectations	197
Proof	(i)	The	right-hand	side	is	F	-measurable;	hence,	for	A	∈	F	,	*	)	*	*	)	)	E	1A	λE[X	|F	]	+	E[Y	|F	]	=	λE	1A	E[X	|F	]	+	E	1A	E[Y	|F	]	=	λE[1A	X]	+	E[1A	Y	]	)	*	=	E	1A	(λX	+	Y	)	.	Denote	by	Sn	=	2(X1	+	.	Now	M	:=		f	(x0	)	+	F		·X	is	a	martingale	by	Theorem	9.39	since	(and	since		F	is	predictable		n	1		F	is	predictable.	Thus	we	start	with	a	short	overview
of	some	topological	definitions	and	theorems.	This	implies			f	+	dμ	−	f	dμ	=			f	−	dμ	≤	g	+	dμ	−			g	−	dμ	=	g	dμ.	is	the	classical	Pólya’s	urn	model.	Hence	we	can	define	the	expectation	of	X	with	respect	to	P[	·	|A].	Choose	the	partition	P		=	{[0,	1/2),	[1/2,	1)}.	For	σ	-finite	measures,	the	corresponding	statement	does	not	hold	in	this	generality	as	we	saw
in	Example	1.58(iv).	Reflection	Find	an	example	that	shows	that	without	the	tightness	assumption,	we	need	not	have	F	(−∞)	=	0	nor	F	(∞)	=	1.♠	We	come	to	a	first	application	of	Prohorov’s	theorem.	,	k	+	1]	=	k+1		P[Xm,l	=	0]	=	(1	−	p)k+1	.	In	this	case,	the	probability	that	at	time	2n	all	coordinates	are	zero	would	be	the	Dth	power	of	the	probability
that	the	first	coordinate	is	zero.	Hence	{τ	=	s}	∩	Xs−1	(A)	∈	Fs	⊂	Ft	for	all	s	≤	t.	(i)	Normal	distribution:	Nμ1	,σ	2	∗	Nμ2	,σ	2	=	Nμ1	+μ2	,σ	2	+σ	2	for	all	μ1	,	μ2	∈	R	1	2	1	2	and	σ12	,	σ22	>	0.	Hence	averaging	over	one	realization	of	many	random	variables	is	equivalent	to	averaging	over	all	possible	realizations	of	one	random	variable.	,	xn	)	for	x	∈	E
n	and	for	x	∈	E	N	.	.+ck	=	1,	then	Y	is	called	the	moving	average	of	X	(with	weights	c0	,	.	This	coupling	shows	that	bn,p1	≤st	bn,p2	.	n→∞	3	n→∞	3	(ii)	f	dμn	−→	f	dμ	for	all	bounded	Lipschitz	continuous	f	.	In	this	case,	the	derivative	is	ϕ		(x)	=	D	+	ϕ(x).	Let	such	that	μ(W	n	n	n	∞n	)	≤	μ(Cn	)	+	ε	2	−n−1	≤	μ(B)+ε.	Then	n	n	(	'					tl	1Al	(Y1	)	=	1	+	ν(Al	)	ei
tl	−	1	,	ψ(t)	:=	E	exp	i	l=1	t	∈	Rn	,	l=1	is	the	characteristic	function	of	(1A1	(Y1	),	.	,	ωn0	]]	=	(1	−	p)n	.	In	the	general	case,	write	X	=	X+	−	X−	and	Y	=	Y	+	−Y	−	and	exploit	the	linearity	of	the	conditional	expectation.	If	Σ	is	finite	or	is	a	bounded	subset	of	an	Rd	,	then	by	symmetry,	typically	λ	is	the	uniform	distribution	on	Σ.	(ii)	The	map	κ	:	E	×
B(E)⊗I	→	[0,	1],	(x,	B)	→	Px	[X	∈	B]	is	a	stochastic	kernel.	Denote	by	LipK	(E;	F	)	the		space	of	Lipschitz	continuous	functions	with	constant	K	and	by	Lip(E;	F	)	=	K>0	LipK	(E;	F	)	the	space	of	Lipschitz	continuous	functions	on	E.	Possibly	all	martingales	Y	?	That	is,	{Y	∈	Am	}	=	{τ	(Y	)	∈	Am	}.	n→∞	a	(4.6)	n→∞	Theorem	4.23	(Riemann	integral	and
Lebesgue	integral)	Let	f	:	I	→	R	be	Riemann	integrable	on	I	=	[a,	b].	Example	20.36	(Rotation)	We	come	back	to	the	rotation	of	Example	20.9.	Let	Ω	=	[0,	1),	A	=	B(Ω),	P	=	λ	the	Lebesgue	measure,	r	∈	(0,	1)	and	τr	(x)	=	x	+	r	(mod	1).	By	Pólya’s	theorem	(Theorem	17.40),	this	random	walk	is	recurrent.	i=1	Consider	now	the	random	variable	Y	=
max(X1	,	.	μ	λ	=	e−(μ+λ)	n!	n!	m	m=0	Hence	Poiμ	∗	Poiλ	=	Poiμ+λ	.	Clearly,	we	have	fn	(0)	=	0	for	all	n	∈	N.	If	μ	is	a	probability	measure	and	if	every	κi	is	stochastic,	then	k=0	k=0	μi	is	a	probability	measure.	However,	the	qualitative	behaviour	will	be	quite	different.	Then	(Xi	)i∈I	is	exchangeable.	Lower	semicontinuity	follows	from	the	monotone
convergence	theorem	(Theorem	4.20).	Fix	an	arbitrary	x0	∈	E0	∩	E	0	.	♠	Example	9.30	Let	Y1	,	.	Evidently,	the	two-dimensional	integer	lattice	is	isomorphic	to	its	dual	graph.	,	gm	)	starting	and	ending	in	some	point	g0	=	gm	=	u	∈	UL	,	then	(g1	,	g2	,	.	With	(i),	the	interpretation	is	clear.	Consider	the	generalized	version	of	Pólya’s	urn	model	(Xn	)n∈N0
with	rk	=	r	and	sk	=	s	for	all	k	∈	N.	If	E[X]	∈	∂I	,	then	X	=	E[X]	a.s.;	hence	E[ϕ(X)]	=	E[ϕ(E[X])]	=	ϕ(E[X]).	♦	Remark	4.25	An	improperly	Riemann	integrable	function	f	on	a	one-sided	open	interval	I	=	(a,	b]	or	3I	=	[0,	∞)	is	not	necessarily	3	n	Lebesgue	integrable.	The	implication	(i)	⇒	(ii)	was	shown	in	Theorem	18.12.	Definition	17.58	Let	μ1	,	μ2	∈	M1
(Rd	).	One	possibility	is	to	show	the	claim	first	for	measures	on	Rd	.	♣	19.2	Reversible	Markov	Chains	Definition	19.8	The	Markov	chain	X	is	called	reversible	with	respect	to	the	measure	π	if	π({x})	p(x,	y)	=	π({y})	p(y,	x)	for	all	x,	y	∈	E.	15.2	Q-Q-plots	for	S100	abscissa	shows	the	quantiles	of	the	standard	normal	distribution.	An	(open)	path	(of	length
n)	in	this	subgraph	is	a	sequence	π	=	(x0	,	x1	,	.	Hence	X0	+	Mn	◦	τ	≥	X0	+	Sk	◦	τ	=	Sk+1	.	That	is,	each	point	in	T	has	exactly	three	neighbours.	Without	exaggeration,	it	can	be	stated	that	Brownian	motion	is	the	central	object	of	probability	theory.	2	ε	n	σ	ε	n	By	Slutzky’s	theorem	(Theorem	13.18),	we	thus	have	convergence	of	the	finitedimensional
distributions	to	the	Wiener	measure	PW	:	n→∞	PS¯	n	⇒	PW	.	Let	π	be	the	invariant	distribution	of	X.	x	→	D	−	ϕ(x)	is	left	continuous	and	x	→	D	+	ϕ(x)	is	right	continuous.	If	Ω	is	at	most	countably	infinite	and	if	A	=	2Ω	,	then	the	measurable	space	(Ω,	2Ω	)	is	called	discrete.	Definition	7.20	For	f,	g	∈	L2	(μ),	define		)f,	g*	:=	fg	dμ.	Note	that	Re(z)	=	(z	+	z)/2
and	Im(z)	=	(z	−	z)/2i	imply	cos(x)	=	eix	+	e−ix	2	and	sin(x)	=	eix	−	e−ix	2i	for	all	x	∈	R.	,	Yn	)	is	measurable	with	respect	to	σ	(X1	,	.	For	x	∈	E,	define	(see	Corollary	14.46)	on	(Ω,	A)	the	probability	measure	Px	such	that,	for	finitely	many	time	points	0	=	t0	<	t1	<	.	i	,	i	=	0,	.	Proof	By	Theorem	6.19,	there	exists	a	monotone	increasing	convex	function	f
with	the	property	that	f	(x)/x	→	∞,	x	→	∞	and	L	:=	supi∈I	E[f	(|Xi	|)]	<	∞.	Hence	we	have	)	*	P	Nti	−	Nti−1	=	ki	for	i	=	1,	.	Just	before	each	gamble	we	decide	how	much	money	we	bet.	For	example,	we	want	to	compute	the	distribution	of	the	functional	F	(X)	:=	supt	∈[0,1]	Xt	.	(ii)	τU	is	an	F+	-stopping	time	but	in	general	(even	for	continuous	X)	is	not	an
F-stopping	time.	This	clearly	implies	(21.30)	with	δ	=	(η/K)1/γ	.	In	this	case,	we	have	the	Fourier	inversion	formula,		f	(x)	=	(2π)−d	e−i)t,x*	ϕμ	(t)	λ(dt).	z	e	δb,t	Similarly,					z	e	#c,t	(vi)	(Exponential	distribution)	This	follows	from	(v)	since	expθ	=	Γθ,1	.	(Compare	[32,	Exercise	2.1.24],	see	also	[43,	Section	II.7].)	Varadhan’s	lemma	has	various
applications	in	statistical	physics.	327	327	336	344	349	356	365	16	Infinitely	Divisible	Distributions	.	In	particular,	B(Rd	)	=	B(R)⊗d	for	i∈I	d	∈	N.	To	this	end,	we	will	need	(21.5).	Then	A	=	{1,	3,	5}	and	B	=	{1,	2,	3}.	Let	Ck	⊂	E	k	be	measurable	with	Ak	=	{(X1	,	.	f	is	p	q	twice	continuously	differentiable	in	(0,	∞)	with	derivatives	f		(x)	=	x	p−1	−	y	and
f		(x)	=	(p	−	1)x	p−2.	Theorem	15.30	(Bochner)	A	continuous	function	ϕ	:	Rd	→	C	is	the	characteristic	function	of	a	probability	distribution	on	Rd	if	and	only	if	ϕ	is	positive	semidefinite	and	ϕ(0)	=	1.	,	Mn,m	=	km	}	∩	{L	=	n}	)	*	=	P	Mn,1	=	k1	,	.	Hence,	for	m	≥	n	≥	n0	,	we	have			f	d	μ˜	n	=	lim	l→∞	f	1W	n	dμkln		=	lim	l→∞	=	lim	l→∞	f	1W	n	dμklm			f	1W
m	dμklm	=	and	thus			f	d	μ˜	n	=	lim	m→∞	f	dμkmm	.	Proof	Let	p	be	the	transition	matrix	of	X.	♠	Example	18.19	Let	r	∈	(0,	1)	and	N	∈	N,	N	≥	2.	This	probability	should	equal	one.	The	frequencies	for	other	languages	can	be	found	easily,	e.g.,	at	Wikipedia.	Remark	17.26	The	condition	(17.16)	cannot	be	dropped	easily,	as	the	following	example	shows.
Then	ν		F	0	μ	F	(since	F	F	C	C	in	F	there	are	fewer	μ-null	sets);	hence	the	Radon–Nikodym	derivative	fF	:=		@		dν		F	dμ	F	exists.	Consider	the	electrical	network	with	unit	resistors.	Now	consider	the	set	G	⊂	A1	⊗	A2	such	that	A	∈	G	if	and	only	if	(14.6)	and	(14.7)	hold	for	f	=	1A	.	We	show	only	the	existence	of	a	decomposition.	fdd	n→∞	(ii)	Pn	−→	P
weakly.	Further,	for	every	μ	∈	F	,	∞			μ	(	A	)c	≤	μ(Ac	)	≤	μ(Acn,N		)	≤	ε.	(23.13)	μ({x})	Since	μ({x})	>	0	for	all	x	∈	Σ,	the	integrand	ν-a.s.	is	finite	and	hence	the	integral	also	is	finite.	(i)	Let	X	∼	Nμ,σ	2	and	let	a	∈	R	\	{0}	and	b	∈	R.	.)	is	independent	(but	not	necessarily	independent	of	each	other).	The	nth	and	the	(n	+	1)th	superconductors	are
connected	by	4(2n	+	1)	edges.	For	any	x	∈	E,	there	exists	a	relatively	compact	neighborhood	Bx		x.	,	An	∈	B(Rd	)	.	b−a	a,b	a,b	:=	lim	Manifestly,	By	assumption,	we	n→∞	Un	exists.	The	sets	A	∈	A	are	called	measurable	sets.	(iii)	(Linearity)	If	α,	β	∈	[0,	∞],	then				(αf	+	βg)	dμ	=	α	f	dμ	+	β	g	dμ,	where	we	use	the	convention	∞	·	0	:=	0.	Further,	let	Rn	=	#
{S1	,	.	<	tnn	=	b)	that	get	finer	and	finer.	Since	C1	∩	C2	=	∅	and	C1	∪	C2	⊂	A,	we	get	β(A)	≥	α(C1	∪	C2	)	=	α(C1	)	+	α(C2	)	≥	β(A	∩	B	c	)	+	β(A	∩	C1c	)	−	2ε	≥	μ∗	(A	∩	B	c	)	+	μ∗	(A	∩	B)	−	2ε.	Exercise	5.1.1	Let	X	be	a	nonnegative	random	variable	with	finite	second	moment.	Recall	the	definition	of	a	general	coupling	of	two	probability	measures	from
Definition	17.54.	be	i.i.d.	random	variables	and	for	n	∈	N,	let	Sn	=	X1	+	.	We	start	with	a	simple	observation.	Therefore,	defining	S,T	∈N	X˜	t	(ω)	:=	Xtt	(ω),	t	≥	0,	for	ω	∈	Ω	\	Ω∞	,	we	get	that	X˜	is	a	locally	Höldercontinuous	modification	of	X	on	[0,	∞).	(i)	(ii)	(iii)	(iv)	ϕ	is	convex.	Theorem	14.31	(Kernels	and	convolution)	Assume	X1	,	X2	,	.	(i)	E	=	R	and
there	is	a	p	∈	[1,	∞)	with	fn	∈	Lp	(μ)	for	all	n	∈	N	and	there	is	∞		p	an	f	∈	Lp	(μ)	with	fn	−	f	p	<	∞.	f	d	μ˜	m	292	13	Convergence	of	Measures	This	implies	that	for	any	measurable	relatively	compact	set	A	⊂	E,	we	have	μ˜	m	(A)	=	μ˜	N(A)	(A)	for	any	m	≥	N(A).	Define	α(t)	:=	E[Nt	].	If	the	jump	rates	are	bounded,	then	the	process	can	be	constructed	as	a
Markov	chain	at	random	times	given	by	a	Poisson	clock.	We	come	to	the	main	theorem	of	this	section.	In	this	case,	I	(x,	y)	is	called	the	flow	from	x	to	y	and	u(x)	is	called	the	electrical	potential	(or	voltage)	at	x.	In	particular,	this	holds	if	Ee	<	∞	for	some	t	>	0.	Furthermore,	μ˜	is	σ	-finite.	If	p	>	1	and	if	X1	,	X2	,	.	Conclude	that	every	Borel	set	B	∈	B(Rn	)
is	a	Borel	space.	In	either	case,	a	probability	measure	on	the	product	is	uniquely	determined	by	its	values	on	cylinder	sets.	If	m	≤	1,	then	(Zn	)n∈N	converges	a.s.	to	some	random	variable	Z∞	.	with	PTnr	=	PTns	=	expwn−1	.	(Of	course,	the	chain	with	transition	matrix	p(x,	y)	=	π(y)	converges	to	π,	but	this	does	not	help	a	lot.)	This	method	of	producing
(approximately)	π-distributed	samples	and	using	them	to	estimate	expected	values	of	functions	of	interest	is	called	the	Markov	chain	Monte	Carlo	method	or,	briefly,	MCMC	(see	[15,	112,	119]).	n→∞	(21.25)	Proof	By	(21.25),	we	have	Xt	=	X˜	t	a.s.	for	all	t	∈	[0,	1].	.)	∈	B	=		*	)	Eπ	1Aε	1{XN	=x}	1{Xn	=y}	(Xn	,	Xn+1	,	.	,	eN	}	such	that	pe1	≥	pe2	≥	.
Show	that,	analogously	to	the	Radon–Nikodym	theorem,	the	following	two	statements	are	equivalent:	(i)	ϕ(A)	=	0	for	all	A	∈	A	with	μ(A)	=	0.	∈	DE	are	mutually	disjoint.	,	k.	However,	this	is	not	a	distribution	function,	as	1	does	not	converge	to	0	for	x	→	−∞.	l	(N)n	l=1	Here	we	defined	(n)l	:=	n(n	−	1)	·	·	·	(n	−	l	+	1).	By	Lemma	13.5,	there	exists	a
compact	set	K	with	μ(K	c	)	<	ε/2.	Then	f	(x)	:=	G(x,	a)	is	harmonic	on	E	\	{a}:	For	x	=	a,	we	have	pf	(x)	=	p	∞		pn	(x,	a)	=	n=0	∞		pn	(x,	a)	=	G(x,	a)	−	1{a}	(x)	=	G(x,	a).	(2.16)	Accordingly,	let	m	=	2,	3,	.	(18.14)	As	all	eigenvalues	are	real,	the	corresponding	eigenvectors	are	given	by		xkn	=	2	r	1−r	n/2	sin	nπ		N	,	k	=	1,	.	+	T	D	,	Yti	:=	Z	i	i	for	i	=	1,	.	j	♦
(10.5)	Example	10.9	We	want	to	generalize	the	preceding	example	further.	⊂	E	be	relatively	compact	open	sets	covering	E.	The	investigation	of	product	spaces	and	their	σ	-algebras	is,	however,	postponed	to	Chap.	Together	with	the	topological	considerations	in	Sect.	n=1	Euler’s	prime	number	formula	is	a	representation	of	the	Riemann	zeta	function
as	an	infinite	product		−1	ζ	(s)	=	1	−	p−s	,	(2.5)	p∈P	where	P	:=	{p	∈	N	:	p	is	prime}.	♦	456	18	Convergence	of	Markov	Chains	Example	18.20	(Gambler’s	ruin)	We	consider	the	gambler’s	ruin	problem	from	Example	10.19	with	the	probability	of	a	gain	r	∈	(0,	1).	By	the	preceding	example,	we	conclude	the	following	theorem.	This	property	of	λn	is
called	inner	regularity.	Define	h=	∞		2−n	1	+	μ(An	))−1	1An	.	Example	12.21	Any	family		(Ai	)i∈I	of	sub-σ	-algebras	of	F	is	independent	given	F	.	Hence	the	variational	problem	for	Λ∗	(x)	admits	a	unique	maximizer	t	∗	(x).	Counterexample	for	semirings:	Let	Ω	=	{1,	2,	3,	4},	A1	=	{∅,	Ω,	{1},	{2,	3},	{4}}	and	A2	=	{∅,	Ω,	{1},	{2},	{3,	4}}.	As	a	simple
conclusion	of	Lemma	14.44	and	Theorem	14.45,	we	get	the	following	statement	that	we	formulate	separately	because	it	will	play	a	central	role	later.	are	independent	with	distribution	Ξ∞	given	Ξ∞	.	♠	On	the	one	hand,	improperly	Riemann	integrable	functions	need	not	be	Lebesgue	integrable.	(18.2)	Lx,y	is	uniquely	determined,	and	we	have	Lx,y	+
Ly,z	+	Lz,x	=	0	(mod	d)	for	all	x,	y,	z	∈	E.	expectation			(Theorem	8.14(ii)),			for	t	>	s,	we	have		E[Zt	Fs	]	≤	E[Yt	Fs	]	≤	Ys	and				E[Zt	Fs	]	≤	E[Xt	Fs	]	≤	Xs	;	hence		E[Zt	Fs	]	≤	Xs	∧	Ys	=	Zs	.	♦	Takeaways	For	a	submartingale,	the	mean	future	is	better	than	the	present.	Show	that	there	exists	a	probability	space	(Ω,	A,	P)	and	real	random	variables	X,	X1	,
X2	,	.	(20.9)	x,y∈E	♦	Example	20.33	(Integer	rotation)	Consider	the	rotation	of	Example	20.8.	Let	n	∈	N	\	{1},	E	=	Z/(n)	and	let	P	be	the	uniform	distribution	on	Ω.	For	any	ω	∈	Ω	and	n	∈	N,	let	πn	(ω)	:=	n		pXi	(ω)	i=1	be	the	probability	that	the	observed	sequence	X1	(ω),	.	(4.8)	0					3Proof	Define	3	f	=	f	!	and	f	=	"f	#.	,	6},	A	=	2Ω	and	P	is	the	uniform
distribution	on	Ω.	Check	that	X(n)	=	Yn	.*	Show	that	the	conditional	distribution	L	X(1)	−	X(n)	,	.	Inductively,	we	get	E[|Xt	|]	<	∞	for	all	t	∈	N0	.	If	X	is	aperiodic	and	positive	recurrent	with	invariant	distribution	π,	then	we	;	;	n→∞	have	;Lμ	[Xn	]	−	π	;T	V	−→	0	for	all	μ	∈	M1	(E).	For	any	finite	subset	J	⊂	I	,	let	FJ	:=	F(Xj	)j∈J	:	RJ	→	[0,	1],	+	,	*		)	Xj−1	(−∞,
xj	]	.	In	this	case,	we	can	choose	A	=	E	or	A	=	T	.	Hence,	by	Theorem	6.19,	there	exists	a	monotone	increasing	convex	map	f	:	[0,	∞)	→	[0,	∞)	p	with	f	(x)	x	→	∞	for	x	→	∞	and	C	:=	E[f	(|X0	|	)]	<	∞.	6}	such	that	A1	=	A˜	1	×	{1,	.	9.2	Martingales	..	Hence	h(P,	τr	)	=	h(P,	τr	,	P).	,	xn	∈	R,	+	F{1,...,n}	((x1	,	.	By	Theorem	19.7,	u	is	harmonic	and	can	be
written	as	'	(	ux1	,A0	(x)	=	Ex	1{XτA	∪{x	}	=x1	}	0	1	)	*	=	Px	τx1	<	τA0	for	every	x	∈	E	\	(A0	∪	{x1}).	If	M	⊂	N,	then	denote	by	gcd(M)	the	greatest	common	divisor	of	all	n	∈	M.	,	n	=	1−	n			e−θi	x	=	1	−	exp	−	(θ1	+	.	Further,	let	W	be	the	vector	space	of	such	ha,b	.	In	fact,	in	Example	15.5,	we	saw	that	here	the	moments	do	not	determine	the
distribution	of	X.	♣	21.2	Construction	and	Path	Properties	Definition	21.8	A	real-valued	stochastic	process	B	=	(Bt	,	t	∈	[0,	∞))	is	called	a	Brownian	motion	if	21.2	Construction	and	Path	Properties	523	3	2.5	2	1.5	1	0.5	0	0.5	1	1.5	2	Fig.	We	perform	the	proof	by	induction	on	n.	Proof	“(ii)	⇒	(i)”	For	any	f	∈	V	,	by	definition	of	the	inner	product,	the	map	x
→	)x,	f	*	is	linear.	26.3	Weak	Uniqueness	via	Duality	.	(vi)	The	Poisson	distribution	is	infinitely	divisible	with	Poiλ	=	Poi∗n	λ/n	.	n=1	By	Kolmogorov’s	0-1	law	(Theorem	2.37),	T	is	P-trivial.	B∈Pn+	Due	to	the	finite	additivity	of	ϕ,	we	have	ϕ(An	)	=		B∈Pn	B⊂An	ϕ(B)	≤		B∈Pn+	B⊂An	ϕ(B)	≤		B∈Pn+	ϕ(B)	=	ϕ(Cn	).	For	α	∈	[−1,	1],	define	probability
densities	fα	on	(0,	∞)	by		fα	(x)	=	f	(x)	1	+	α	sin(2π	log(x))	.	Then	μ(A)	>	0	and	(ν	−	εμ)(E)	≥	0	for	all	E	⊂	A,	E	∈	A.	By	Fatou’s	lemma	(Theorem	4.21),	we	obtain	n→∞	)	*	)	*	lim	sup	P	Aεn	=	1	−	lim	inf	E	1(Aεn	)c	n→∞	n→∞	+	,	'	(	ε	ε	c	≤	1	−	E	lim	inf	1(An	)	=	E	lim	sup	1An	=	0.	Consider	the	most	prominent	case	E	=	R	equipped	with	the	Euclidean	metric.
The	maximizer	t	∗	=	t	∗	(z)	of	the	variational	problem	for	Λ∗	solves	the	equation	z	=	Λ	(t	∗	)	=	tanh(t	∗	).	(iv)	The	distribution	of	X1	can	be	chosen	such	that	ϕ	is	differentiable	at	0	but	E[|X1	|]	=	∞.	(ii)	For	any	A	∈	F	,	we	have	E[X1A	]	=	E[Y	1A	].	In	fact,	Sn	=	ni=1	(1	−	Di	).	Proof	“	⇒	”	First	assume	μ	is	infinitely	divisible.	Indeed,	without	loss	of
generality,	assume	0	is	the	left	boundary	of	I	and	A	:=	{E[X	|F	]	=	0}.	(i)	I	(αf	)	=	α	I	(f	).	The	full	procedure	is	rather	technical	and	does	not	allow	for	a	smooth	intuitive	description.	Example	12.5		(i)	For	x	∈	RN	,	define	the	nth	arithmetic	mean	by	an	(x)	=	n1	ni=1	xi	.	However,	the	notational	complications	become	overwhelming	for	n	≥	3,	and	the	idea
for	general	n	∈	N	becomes	clear	in	the	case	n	=	2.	π		The	second	largest	modulus	of	an	eigenvalue	is	|λn	|	=	σ	cos	N	if	n	=	1	or	n	=	N	−	1.	This	implies	(	'	(	'					ϕn,l	(t)	−	1	≤	E	eit	Xn,l	−	1	1{|X	|≤ε}	+	E	eit	Xn,l	−	1	1{|X	|>ε}	n,l	n,l	'	(	2	1{|Xn,l	|>ε}	.	Choose	C1	∈	C	with	C1	⊂	A	∩	B	c	and	α(C1	)	>	β(A	∩	B	c	)	−	ε.	Finally,	P[Nε	≥	2]	=	1	−	e−αε	−	α	ε
e−αε	=	f	(0)	−	f	(αε),	where	f	(x)	:=	e−x	+	xe−x	.	(ii)	Since	ϕ	is	convex,	so	is	x	→	ϕ(x)+	.	(i)	What	is	the	probability	that	the	last	person	gets	his	or	her	reserved	seat?	By	Theorem	13.16,		lim	n→∞		f	d	μn	◦	ϕ	−1	=	lim	n→∞		(f	◦	ϕ)	dμn		=		(f	◦	ϕ)	dμ	=		f	d	μ	◦	ϕ	−1	.	,	n}	be	such	that	P[X	=	k]	=			n	k	p	(1	−	p)n−k	.	Next	construct	a	sequence	of	maps	that
approximates	f	uniformly	on	a	suitable	set	C.	♣	Exercise	15.1.2	Let	d	∈	N	and	let	μ	be	a	finite	measure	on	[0,	∞)d	.	Jensen’s	inequality	can	be	extended	to	Rn	.	.)	=	σ	(Y−n	,	Y−n−1	,	Y−n−2	,	.	The	question	is	a	bit	tricky	since	for	every	given	A	∈	A,	the	expression	P[A|X	=	x]	is	defined	for	almost	all	x	only;	that	is,	up	to	x	in	a	null	set	that	may,	however,
depend	on	A.	However,	a	σ	-finite	measure	on	Z	is	not	uniquely	determined	by	the	values	on	E:	Let	μ	be	the	counting	measure	on	Z	and	let	ν	=	2μ.	Takeaways	Mixing	is	a	concept	of	independence	stronger	than	ergodicity	but	weaker	than	stochastic	independence.	(In	particular,	continuous	maps	are	lower	semicontinuous.	♣	Chapter	17	Markov	Chains
In	spite	of	their	simplicity,	Markov	processes	with	countable	state	space	(and	discrete	time)	are	interesting	mathematical	objects	with	which	a	variety	of	realworld	phenomena	can	be	modeled.	(12.7)		Proof	By	Theorem	12.10,	An	(ϕ)	=	E[ϕ(X)		En	].	Y	:=	n=1	(iii)	In	particular,	if	we	let	N	∼	Poiλ	in	(ii),	then	ϕY	(t)	=	exp(λ(ϕX	(t)	−	1)).	,	y	)	∈	R	.	In	order
for	the	measure	extension	to	work,	σ	-additivity	is	decisive.	+	Xn	for	n	∈	N0	.	It	is	maximal	(in	fact,	log(#E))	if	p	is	the	uniform	distribution	on	E.	Show	that	for	any	ε	>	0,	there	exists	a	step	function	h	such	that	f	−	hp	<	ε.	Let	(E,	d)	be	a	metric	space	and	let	F	⊂	M≤1	(E)	be	tight.	138	5	Moments	and	Laws	of	Large	Numbers	Theorem	5.30	(Rademacher–
Menshov)	Let	X1	,	X2	,	.	Left	side:	below	the	critical	temperature	(β	>	βc	);	Right	side:	above	the	critical	temperature.	♠	Theorem	18.11	Let	p	be	the	transition	matrix	of	an	irreducible,	positive	recurrent,	aperiodic	Markov	chain	on	E.	Hence	X	=	(Xn	)n∈N0	is	a	stationary	real-valued	stochastic	process.	15.4	Characteristic	Functions	and	Moments	355
(ii)	Assume	that	for	any	k	∈	N	the	limit	mk	:=	lim	mk	(Xn	)	n→∞	exists	and	is	finite	(note	that	finitely	many	of	the	mk	(Xn	)	may	be	undefined	for	any	k.)	Show	that	there	exists	a	real	random	variable	X	with	mk	=	mk	(X)	for	all	k	∈	N	and	a	subsequence	(Xnl	)l∈N	such	that	l→∞	PXnl	−→	PX	weakly.	Let	f	:	Rd	→	R	be	continuous	with	compact	support	and
let	ε	>	0.	(iii)	Show	the	theorem	of	Fréchet–Shohat:	If	in	(ii)	the	distribution	of	X	is	determined	by	its	moments	mk	(X),	k	∈	N	(see	Corollary	15.33),	then	n→∞	PXn	−→	PX	weakly.	(ii)	For	this	particular	ψ,	all	the	iterates	are	of	a	special	form	and	can	be	computed	explicitly.	Indeed,	{Ym	≤	k}	=	k+1		{Xm,l	=	1}	∈	σ	(Xm,l	,	l	=	1,	.	Clearly,	{τ	≤	t}	⊂	A	for
all	t	∈	I	;	hence	A	∩	{τ	≤	t}	=	{τ	≤	t}	∈	Ft	.	For	r	∈	[0,	1),	define	τr	:	Ω	→	Ω	by	τr	(x)	=	x	+	r	−	x	+	r!	=	x	+	r	(mod	1).	Now	fix	p	∈	[0,	1]	and	let	X1	,	X2	,	.	Definition	21.4	(Path	properties)	Let	I	⊂	R	and	let	X	=	(Xt	,	t	∈	I	)	be	a	stochastic	process	on	some	probability	space	(Ω,	A,	P)	with	values	in	a	metric	space	(E,	d).	Here	as	the	orthonormal	basis	of	L2
([0,	1])	we	use	b0	=	1	and	bn	(x)	=	√	2	cos(nπ	x)	for	n	∈	N.	That	is,	the	new	state	space	is	E˜	=	E	∪	{Δ}	and	the	transition	matrix	is	⎧	p(x,	y),	⎪	⎪	⎨	p(x,	˜	y)	=	0,	⎪	⎪	⎩	1,	if	x	∈	E	\	A,	y	=	Δ,	if	x	∈	E	\	A,	y	=	Δ,	(19.2)	if	x	∈	A	∪	{Δ},	y	=	Δ.	The	core	of	the	weak	law	of	large	numbers	is	Chebyshev’s	inequality.	This	implies	μ1	(C)	=	μ2	(C);	hence	μ1	=	μ2	.		p
Proof	Let	f	∈	L∞	(μ)	and	p	∈	[1,	∞).	n		pk	ϕμk	.	Since	we	will	not	need	these	statements	in	the	following,	we	only	refer	to	the	standard	literature	(e.g.,	[174,	Chapter	VI.2]	or	[54,	Theorem	XV.3.3	and	Equation	(XV.3.8)]).	Let	f	:	Ω1	×	Ω2	→	R	be	measurable	with	respect	to	A1	⊗	A2	.	Klenke,	Probability	Theory,	Universitext,	53	54	2	Independence	(i)	Two
events	A	and	B	should	be	independent,	e.g.,	if	A	depends	only	on	the	outcome	of	the	first	roll	and	B	depends	only	on	the	outcome	of	the	second	roll.	,	ωn	∈	E},	(1.8)		and	let	A	:=	∞	n=0	An	.	The	main	theorem	of	this	section	is	the	functional	central	limit	theorem,	which	goes	back	to	Donsker	[35].	12.3	De	Finetti’s	Theorem	In	this	section,	we	show	the
structural	theorem	for	countably	infinite	exchangeable	families	that	was	heuristically	motivated	at	the	end	of	Sect.	707	Chapter	1	Basic	Measure	Theory	In	this	chapter,	we	introduce	the	classes	of	sets	that	allow	for	a	systematic	treatment	of	events	and	random	observations	in	the	framework	of	probability	theory.	be	maps	E	→	n→∞	R	with	fn	−→	f
pointwise.	Then	lim	ϕSn∗	(t)	=	e−t	2	/2	n→∞	for	all	t	∈	R.	(v)	If	(Xt	)t	∈N0	is	a	supermartingale	and	E[XT	]	≥	E[X0	]	for	some	T	∈	N0	,	then	(Xt	)t	∈{0,...,T	}	is	a	martingale.	Hence,	we	obtain	)	*	n→∞	)	*	Lx	λ1	Z˜	tn1	+	λ2	Z˜	tn2	−→	Lx	λ1	Yt1	+	λ2	Yt2	.	The	claim	is	immediate.	Definition	21.33	Let	P	be	the	probability	measure	on	Ω	=	C([0,	∞))	with
respect	to	which	the	canonical	process	X	is	a	Brownian	motion.	This	implies	that,	for	any	α	∈	R,	the	set			{f	≤	α}	=	{g	≤	α}	∩	{g	=	h}	{f	≤	α}	∩	{g	=	h}	is	the	union	of	a	B(I	)-set	with	a	subset	of	a	null	set	and	is	hence	in	B(I	)∗	(the	Lebesgue	completion	of	B(I	)).	Definition	14.9	(Cylinder	sets)	For	any	i	∈	I	,	let	Ei	⊂	Ai	be	a	subclass	of	the	class	of
measurable	sets.	Define	u(t)	=	Re(ϕ(t)).	A	random	measure	X	with	independent	increments	is	called	a	Poisson	point	process	(PPP)	with	intensity	measure	μ	if,	for	any	A	∈	Bb	(E),	we	have	PX(A)	=	Poiμ(A)	.	With	a	little	effort	it	is	possible	to	construct	ϕ	as	a	(random)	additive	set	function.	However,	then	fnkl	∈	U	for	all	but	finitely	many	l,	which	yields	a
contradiction!	Corollary	6.15	Let	(E,	d)	be	a	separable	complete	metric	space.	k	k=0	(iii)	Let	p	∈	(0,	1]	and	X	:	Ω	→	N0	with	P[X	=	n]	=	p	(1	−	p)n	for	any	n	∈	N0	.	Reflection	Typically,	the	distribution	of	W	cannot	be	computed	explicitly.	Hence,	let	p	∈	(1,	∞).	The	integral	of	an	integrable	function	on	the	product	space	can	be	computed	by	successive
integration	(in	arbitrary	order)	over	the	individual	coordinates	(Fubini’s	theorem).	,	ck	∈	R.	Then	the	map	If	:	Ω1	→	[0,	∞],		ω1	→	f	(ω1	,	ω2	)	κ(ω1	,	dω2	)	is	well-defined	and	A1	-measurable.	Theorem	5.16	Let	X1	,	X2	,	.	Hence	X	is	an	F-martingale.	We	model	the	experiment	on	the	probability	space	(Ω,	A,	P),	where	Ω	=	{1,	.	An	example	are	the	first	rain
drops	you	see	on	the	side	walk.	Hence,	by	Theorem	19.30,	random	walk	on	Z3	is	also	transient.	24.1	for	a	simulation	of	a	Poisson	point	process	on	the	unit	square.	The	bars	show	the	probabilities	for	values	in	[x,	x	+	0.01),	3.3	≤	x	≤	3.7.	0	2000	4000	6000	8000	10000	Fig.	Using	the	strong	Markov	property,	we	show	the	reflection	principle	for
Brownian	motion.	6.1).	We	thus	get	a	random	sequence	(Xn	)n∈N0	of	states	in	{0,	1}Λ	that	represents	the	random	evolution	of	the	opinions	of	the	whole	colony.	+	Definition	21.22		A	filtration	F	=	(Ft	)t	≥0	is	called	right	continuous	if	F	=	F	,	+	where	Ft	=	s>t	Fs	.	n	Then	the	characteristic	function	ϕ	of	X	is	analytic	and	the	distribution	of	X	is	n
uniquely	)	t	|X|	*	determined	by	the	moments	E[X	],	n	∈	N.	,	Xk	=	xk	,	τx1	=	∞	'	(	=	Px	[X1	=	x1	,	.	Hence,	in	terms	of	the	Markov	chain	notation,	we	have	E	=	ZD	and	p(x,	y)	=	1	2D	,	0,	if	|x	−	y|	=	1,	else.	Show	that,	for	every	X	∈	L1	(P),	we	have	E[X	|A0	]	=	1		X	◦	g.	Hence,	for	any	n	∈	N,	f	(x0	)	=	(pA	)n	f	(x0	)	=		n	pA	(x0	,	y)f	(y)	≤	m	n	(x	)	y∈SA	0	with
equality	if	and	only	if	f	(y)	=	m	for	all	y	∈	SAn	(x0	).	We	define	the	conditional	expectation	of	Y	given	X	=	x	by	E[Y	|X	=	x]	:=	ϕ(x),	where	ϕ	is	the	function	from	(8.10)	with	Z	=	E[Y	|X].	The	transition	matrix	is	⎧	⎪	p(x1	,	x2	)	·	p(y1	,	y2	),		⎨	p¯	(x1	,	y1	),	(x2	,	y2	)	=	p(x1	,	x2	),	⎪	⎩	0,	if	x1	=	y1	,	if	x1	=	y1	,	x2	=	y2	,	if	x1	=	y1	,	x2	=	y2	.	Hence	the	claim
follows	from	(vi).	,	ωn	:	[ω1	,	.	Furthermore,	E[X(X	−	1)]	=	n		k(k	−	1)	P[X	=	k]	k=0	=	n		k=0			n	k	k(k	−	1)	p	(1	−	p)n−k	k			n		n	−	1	k−1	=	np	·	(k	−	1)	(1	−	p)(n−1)−(k−1)	p	k−1	k=1	=	n(n	−	1)p2	·		n			n−2	k=2	k−2	pk−2	(1	−	p)(n−2)−(k−2)	=	n(n	−	1)p2	.	F	is	called	a	filtration	if	Fs	⊂	Ft	for	all	s,	t	∈	I	with	s	≤	t.	.,	we	have	D	(X1	,	X2	,	.	Hence,	0.5	0.0
0	1/4	1/2	3/4	−0.5	−1.0	−1.5	Fig.	k	(2.11)	Here					n	n	n!	=	=	k	k1	,	.	(ii)	The	random	walk	goes	to	−∞	at	positive	speed.	This	linear	differential	equation	with	initial	value	ϕ(0)	=	1	has	the	unique	2	solution	ϕ(t)	=	e−t	/2	.	(ii)	Show	that	the	transition	matrix	p	is	uniquely	determined	by	f	and	d.	However,	if	X	is	a	martingale,	then	(H	·	X)	is	a	martingale
with	(H	·	X)0	=	0;	hence	clearly	E[(H	·X)T	]	=	0.	By	the	dominated	convergence	theorem	(Corollary	6.26),	the	limiting	function	f		(	·	,	x0	)	is	in	L1	(μ)	and	F	(xn	)	−	F	(x0	)	lim	=	lim	n→∞	n→∞	xn	−	x0			gn	(ω)	μ(dω)	=	f		(ω,	x0	)	μ(dω).	every	g	∈	Ef	.	We	could	argue	more	formally	to	show	that	only	the	constant	states	are	stable:	Let	)M*	be	the	square
variation	process	of	M.	∩	An	)	=		n			k=1	{i1	,...,ik	}⊂{1,...,n}	(−1)k−1	μ(Ai1	∪	.	Example	14.15	For	i	=	1,	.	♣	Exercise	15.3.2	Show	that	for	any	δ	>	0	and	ε	>	0,	there	is	a	C	<	∞	such	that	for	any	μ	∈	M1	(R)	with	characteristic	function	ϕ,	we	have		ε	μ([−δ,	δ]c	)	≤	C	(1	−	Re(ϕ(t)))	dt.	Now	consider	bond	percolation	on	T	with	probability	p.	Theorem
17.39	If	E	is	finite	and	X	is	irreducible,	then	X	is	recurrent.	♦	Reflection	Check	the	statements	of	the	preceding	remark!	♠	Definition	15.8	For	μ	∈	Mf	(Rd	),	define	the	map	ϕμ	:	Rd	→	C	by		ϕμ	(t)	:=	ei)t,x*	μ(dx).	By	Step	2,	we	have	gx	∈	C.	♣	Exercise	8.2.2	Let	I	⊂	R	be	an	arbitrary	interval	and	let	X	∈	L1	(Ω,	A,	P)	be	a	random	variable	such	that	X	∈	I	a.s.
For	F	⊂	A,	show	that	E[X	|F	]	∈	I	a.s.	Is	this	statement	still	true	if	we	require	only	X−	∈	L1	(Ω,	A,	P)	instead	of	X	∈	L1	(Ω,	A,	P)?	Theorems	of	this	type	are	also	called	invariance	principles	since	the	limiting	distribution	is	the	same	for	all	distributions	Yi	with	expectation	0	and	the	same	variance.	4(2n	+	1)	19.4	Recurrence	and	Transience	0	1	4	edges
477	2	n	12	edges	n+1	4(2n	+	1)	edges	Fig.	Let	B	∈	Fn	and	m	≥	n.	By	Theorem	5.4,	Y1	·	Y2	is	integrable.	“≤”	This	follows	from	Hölder’s	inequality.	♣	Exercise	6.1.3	(Egorov’s	theorem	(1911))	Let	(Ω,	A,	μ)	be	a	finite	measure	space	and	let	f1	,	f2	,	.	17.4,	in	particular,	Definitions	17.29	and	17.34.	♣	n→∞	Exercise	11.2.5	Show	the	following	converse	of
Theorem	11.14.	Show	that	for	any	ε	>	0,	there	is	a	continuous	function	h	:	R	→	R	such	that	f	−	hp	<	ε.	In	practice,	it	is	often	not	possible	to	check	if	a	map	X	is	measurable	by	checking	if	all	preimages	X−1	(A	),	A	∈	A	are	measurable.	Takeaways	In	this	section,	we	have	compiled	a	wish	list	of	the	properties	that	a	probability	assignment	should	have:	σ	-
additivity	and	normalization	(Definition	1.28).	Hence,	clearly,	N→∞	d(fN	,	g)	−→	0,	and	thus	d	is	complete.	If	A	∈	I,	then	1A	is	I-measurable	and	hence	P-a.s.	equals	either	0	or	1.	A	map	h	:	R	→	R	is	called	a	step	function	ifthere	exist	n	∈	N	and	numbers	t0	<	t1	<	.	By	virtue	of	the	Borel–Cantelli	lemma,	show	that	1	lim	sup	Xn	=	n→∞	n	0	a.s.,	if	E[X1	]	<
∞,	∞	a.s.,	if	E[X1	]	=	∞.	Define	2	i=1	i=1	A	:=	Nn	∞				B1/n	xin	.	Klenke,	Probability	Theory,	Universitext,	367	368	16	Infinitely	Divisible	Distributions	choose	a	real-valued	CFP	ϕ	for	which	|ϕ|	=	ϕ	is	also	a	CFP	(see	Examples	15.17	and	15.18).	Hence	we	have	Ai	∈	I	for	i	=	0,	.	(b)	For	α	≥	0,	we	have			αf	dμ	=	αf	+	dμ	−		αf	−	dμ	=	α		f	+	dμ	−	α		f	−	dμ	=	α
	f	dμ.	Theorem	1.81	(Measurability	on	a	generator)	Let	E		⊂	A	be	a	class	of	A	measurable	sets.	334	15	Characteristic	Functions	and	the	Central	Limit	Theorem	Exercise	15.1.1	Show	that,	in	the	Stone–Weierstraß	theorem,	compactness	of	E	is	essential.	(ii)	Consider	an	urn	with	N	balls,	M	of	which	are	black.	,	n	−	1,	changes	its	value	exactly	twice.	n!
(3.4)	Hence	X	+	Y	has	probability	generating	function	ψPoiλ	(z)	·	ψPoiμ	(z)	=	eλ(z−1)	eμ(z−1)	=	ψPoiλ+μ	(z).	By	symmetry,	we	have	C(x,	y)	=	C(y,	x)	for	all	x	and	y.	If	r	is	irrational,	this	implies	cn	=	0	for	n	=	0,	and	thus	f	is	almost	surely	constant.	Theorem	1.53	(Extension	theorem	for	measures)	Let	A	be	a	semiring	and	let	μ	:	A	→	[0,	∞]	be	an	additive,
σ	-subadditive	and	σ	-finite	set	function	with	μ(∅)	=	0.	Lemma	19.24	For	any	decreasing	sequence	An0	↓	∅	such	that	|E	\	An0	|	<	∞	and	x1	∈	An0	for	all	n	∈	N,	we	have	Ceff	(x1	↔	∞)	=	lim	Ceff	(x1	↔	An0	).	If	θ	(p)	>	0,	then	ψ(p)	≥	θ	(p)	implies	ψ(p)	=	1.	If	f	∈	C,	then	by	assumption	Re(f	)	=	(f	+	f¯)/2	and	Im(f	)	=	(f	−	f¯)/2i	are	in	C.	(iii)	Conclude	that	a
suitable	continuous	version	of	Gn	converges	weakly	to	B.	Other	information	that	may	be	included	if	you’re	looking	up	a	business	is	the	company	profile	and	a	link	to	the	company	website.	The	situation	changes	when	the	numbers	rk	grow	quickly	as	k	→	∞.	,	ωk	]	⊂	Cn,in	.	Proof	Let	x	∈	V	and	c	:=	inf{x	−	w	:	w	∈	W	}.	Let	τ0	=	0	and	inductively	define
τn+1	=	τn	+	στn	for	n	∈	N0	.	Theorem	7.3	says	that	this	norm	is	complete	(i.e.,	every	Cauchy	sequence	converges).	be	i.i.d.	random	variables	with	values	in	Σ	and	with	distribution	PY1	=	ν.	1	By	“countable”	we	always	mean	either	finite	or	countably	infinite.	Theorem	2.21	A	family	(Xi	)i∈I	of	real	random	variables	is	independent	if	and	only	if,	for	every
finite	J	⊂	I	and	every	x	=	(xj	)j	∈J	∈	RJ	,	FJ	(x)	=		F{j	}	(xj	).	Then	clearly	f	is	not	Riemann	integrable	since	Ln	(f	)	=	0	and	U3n	(f	)	=	1	for	all	n	∈	N.	Fix	δ	>	0	and	choose	N	∈	N	large	enough	that	μ(B	\	AN	)	<	δ.	Use	Exercise	1.5.4	to	show	that	(x,	y)	→	F	(x)	∧	G(y)	is	a	distribution	function	on	R2	.	,	Y1	+	Y2	+	.	Then	C	is	dense	in	Cb	(E;	K)	with	respect	to
the	supremum	norm.	Let	0	1,	if	un	∈	S,	Xn	=	0,	else.	9.1	Processes,	Filtrations,	Stopping	Times..	For	example,	for	nearest	neighbour	random	walk	on	the	integers,	every	state	has	period	d	=	2.	Theorem	9.35	Let	X	be	a	martingale	and	let	ϕ	:	R	→	R	be	a	convex	function.	The	Rn	that	we	introduced	in	the	explicit	construction	are	given	by	Rn	(x)	:=	x	+	Zn
.	=	√	x	2π	x	In	particular,	∞		)	*	P	sup	B[n,n+1]	−	Bn	>	nε	<	∞	for	every	ε	>	0.	In	the	first	case,	the	chain	would	be	called	reducible,	and	in	the	second	case,	it	would	be	periodic.	How	about	P[Y1	=	.	Theorem	20.23	(Ω,	A,	P,	τ	)	is	ergodic	if	and	only	if,	for	all	A,	B	∈	A,	(	1	'	P	A	∩	τ	−k	(B)	=	P[A]	P[B].	(E,	τ	)	is	called	completely	metrizable	if	there	exists	a
complete	metric	on	E	that	induces	τ	.	Takeaways	Consider	an	event	that	is	described	by	the	values	of	infinitely	many	random	variables.	♣	Exercise	21.4.5	Show	the	statement	of	Remark	21.23.	In	order	to	obtain	the	density	of	νa	with	respect	to	μ,	we	define	f	:=	g	1Ω\E	.	(5.16)	k=1	(	'	Hence	P	Nt	=	lim	Ntn	=	1.	To	be	more	specific,	the	question	is:	In
the	long	run,	will	there	be	a	consensus	of	all	individuals	or	will	competing	opinions	persist?	We	have	to	show	that,	for	every	bounded	measurable	F	:	R[0,∞)	→	R,	we	have:	)		*	Ex	F	(Bt	+τ	)t	≥0		Fτ	=	EBτ	[F	(B)].	/	Proof	Let	Ω	=	Rn	and	A	=	B(Rn	).	be	subsets	of	Ω.	n=1	Thus	A	is	σ	-∪-closed.	Let	A	be	the	ring	of	finite	unions	of	intervals	(a,	b]	⊂	R.	Since
E[Xn,l	]	=	0,	kn	kn									it	Xn,l	ϕn,l	(t)	−	1	=	−	1]	E[e	l=1	l=1	≤	kn		*			)	E	eit	Xn,l	−	itXn,l	−	1	+	E[itXn,l	]	l=1	≤	kn	2		t	l=1	2	2	E[Xn,l	]=	t2	.	(Note	that	in	the	argument	we	used	the	notion	of	the	expected	value	Ep	[#TL	]	that	will	be	formally	introduced	only	in	Chap.	The	following	theorem	describes	a	very	useful	criterion	for	uniform	integrability.
Clearly,	pε	is	irreducible	and	aperiodic.	n→∞	16.1	Lévy–Khinchin	Formula	371	Inductively,	we	get	|ϕ(t)|	≥	2−(4	)	for	|t|	≤	2k	ε.	34	1	Basic	Measure	Theory	Remark	1.70	(Completion	of	a	measure	space)	Let	(Ω,	A,	μ)	be	a	σ	-finite	measure	space.	As	{x}	∈	B(Rn	)	for	all	x	∈	Rn	,	we	would	get	the	contradiction	V	=	x∈V	{x}	∈	B(Rn	).	♦	If	A	is	a	ring	an	μ	is
a	content	on	A,	then	by	Lemma	1.31,	for	A,	B	∈	E	such	that	μ(A),	μ(B)	<	∞,	we	have	μ(A	∪	B)	=	μ(A)	+	μ(B)	−	μ(A	∩	B).	Then,	for	every	probability		n→∞	n	measure	μ	=	α1	μ1	+	.	Since	all	continuous	versions	of	a	process	are	equivalent,	B	is	locally	Hölder-γ	-continuous	for	every	γ	∈	(0,	n−1	2n	)	and	every	n	≥	2	and	hence	for	every	γ	∈	(0,	12	).	♦
Theorem	1.78	(Generated	σ	-algebra)	Let	(Ω		,	A	)	be	a	measurable	space	and	let	Ω	be	a	nonempty	set.	Then	P	−	QT	V	=	inf	ϕ((E	×	E)	\	D)	:	ϕ	∈	K(P	,	Q)	.	We	thus	obtain	the	Metropolis	transition	matrix	'	(	⎧			1	1	⎪	1	∧	exp	2β	(1	−	)	,	if	y	=	x	i	for	some	i	∈	Λ,	{x(j	)	=	x(i)}	⎪	2	⎨	#Λ	j	:	j	∼i		p(x,	y)	=	1	−	i∈Λ	p(x,	x	i	),	if	x	=	y,	⎪	⎪	⎩	0,	else.	Hence	(Pn	)n∈N
is	tight.	Many	people	have	helped	in	correcting	errors	or	improving	the	exposition	by	asking	questions	and	I	thank	all	of	them.	Example	9.40	(Petersburg	game)	We	continue	Example	9.14	(see	also	Example	4.22).	Without	using	the	equivalence	of	the	Lebesgue	integral	and	the	Riemann	integral,	show	that	31	0	f	(x)	dx	>	0.	332	15	Characteristic
Functions	and	the	Central	Limit	Theorem	For	m	∈	Zd	define		x	→	exp	i)πm/K,	x*	.	For	T	≥	0,	let	|X|∗T	=	sup	|Xt	|.	Let	ξn	(X)	be	the	empirical	measure	of	X1	,	.	♦	In	fact,	the	condition	Λ(t)	<	∞	for	all	t	∈	R	can	be	dropped.	♦	Example	9.5	The	Poisson	process	X	=	(Xt	)t	≥0	with	intensity	α	>	0	(see	Sect.	15.2	Characteristic	Functions:	Examples..	Further,
let	f0	≡	1.	(2.13)	2.4	Example:	Percolation	75	Lemma	2.40	Let	x,	y	∈	Zd	.	l=1	Thus	X(A1	),	.	E	(Xt	−	Xs	)2n	=	E	t	−	s	X1	Now	let	n	≥	2	and	γ	∈	(0,	n−1	2n	).	We	single	out	an	arbitrary	point	of	T	and	name	it	0.	Cw	(i)	i	+	1	and	Hence	the	transition	probabilities	pw	are	indeed	described	by	the	Cw	.	As	a	first	step,	we	enumerate	E	=	{e1	,	.	Ai	for	all	n	∈	N.
3	3	Proof	Let	μ1	,	μ2	∈	Mf	(E)	with	g	dμ1	=	g	dμ2	for	all	g	∈	C.	=	lim	n→∞	n	Therefore,	lim	inf	n→∞	1	1	log	Pn	(U	)	≥	lim	inf	log	Pn	((x	−	ε,	x	+	ε))	n→∞	n	n			1	=	lim	inf	log	Pn	(x	−	ε,	∞)	−	Pn	[x	+	ε,	∞)	n→∞	n		1	=	lim	inf	log	Pn	(x	−	ε,	∞)	≥	−I	(x).	Let	τ	be	the	product	topology	on	Ω	=	×	Ωi	and	i∈I	B	=	σ	(τ	).	Hence	p(x,	y)	=	p(x,	y)	1x∈E\A	.	As	T	is	a
Poisson	process	with	rate	1,	(XTt	)t	≥0	is	also	a	Markov	process	with	Q-matrix	q.	Then	(fg)	∈	L1	(μ)	and	1	p	+	1	q	=	1	and	f	∈	fg1	≤	f	p	·	gq	.	This	generalizes	the	Lebesgue	integral	that	can	be	found	in	textbooks	on	calculus.	11.2	Martingale	Convergence	Theorems	251	This	implies	M∞	∈	{0,	Ld	}.	Similarly,	we	get	(7.7)	for	all	measurable	h	≥	0.
Example	23.14	Let	Σ	=	{−1,	1}	and	let	μ	=	12	δ−1	+	12	δ1	be	the	uniform	distribution	on	Σ.	Exercise	6.3.1	Let	X	be	a	random	variable	on	(Ω,	A,	P)	and	let	)	*	Λ(t)	:=	log	E	et	X	for	all	t	∈	R.	Example	15.5	(due	to	[73])	In	the	preceding	theorem,	we	cannot	simply	drop	the	assumption	that	X	is	bounded	without	making	other	assumptions	(see	Corollary
15.33).	∈	Mf	(Rd	)	and	let	p1	,	p2	,	.	,	Yn	)	be	independent	and	Berx	-distributed.	The	rate	function	that	shows	up	here	is	the	analogue	to	the	free	energy	of	thermodynamics.	,	jn	},	we	have		κ(x,	·	)	◦	XJ−1	n−1	=	δx	⊗		(14.16)	κjk	,jk+1	.	Then		1	∗	P[A	n	]	=	∞;	however,	P[A	]	=	P[A1	]	=	6	.	18.2	Here	N(8,	8)	=	{6,	10,	12,	14,	16,	.	If	x	>	K	is	a	point	of
continuity	of	F	,	then	lim	supk→∞	Fnk	(∞)	≤	lim	supk→∞	Fnk	(x)	+	ε	=	F	(x)	+	ε	≤	F	(∞)	+	ε.	(5.8)	n=n0	The	aim	is	to	employ	Lemma	5.20	to	refine	the	estimate	(5.7)	for	(Yn	)n∈N	and	(Tn	)n∈N	.	Takeaways	Loosely	speaking,	a	family	of	functions	is	uniformly	integrable	if	the	main	contributions	to	the	integrals	of	those	functions	do	not	come	from
extremely	large	values	of	the	functions.	(iii)	If	X	∈	L2	(P),	then	X	is	called	square	integrable	and	'	(	Var[X]	:=	E	X2	−	E[X]2	©	The	Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	A.	Hence	equation	(13.12)	holds.	For	a	countable	product	of	Polish	spaces,	the	Borel	σ	-algebra	of	the	product	is
the	product	of	the	Borel	σ	-algebras.	♦	Example	15.18	Define	the	function	ψ	:	R	→	[0,	1]	for	t	∈	[−π/2,	π/2)	by	ψ(t)	=	1	−2|t|/π.	,	d	−	1.	♦	Takeaways	A	random	variable	X	is	a	measurable	map	from	a	probability	space	to	some	measurable	space.	Assume	(ii).	A	By	construction,	νa	0	μ	is	a	finite3measure	with	density	f	with	respect	to	μ.	Here	again	C(x,	y)
=	1{|x−y|=1}	.	independent	real	random	variables	with	E[|Xn	|]	=	∞	for	all	n	∈	N	but	such	that	X1	+	.	i=1	Proof	Let	z	∈	[0,	1)	and	write	ψX1	(z)	ψX2	(z)	as	a	Cauchy	product	∞		∞				n	n	ψX1	(z)	ψX2	(z)	=	P[X1	=	n]	z	P[X2	=	n]	z	n=0	=	∞		z	n	n=0	=	∞		n=0	=	∞		n=0		n			P[X1	=	m]	P[X2	=	n	−	m]	m=0	zn	n		P[X1	=	m,	X2	=	n	−	m]	m=0	P[X1	+	X2	=	n]	zn
=	ψX1	+X2	(z).	Every	terminal	event	is	symmetric.	For	instance,	let	A	be	the	event	where	the	sum	of	the	two	rolls	is	odd,	A	=	(ω1	,	ω2	)	∈	Ω	:	ω1	+	ω2	∈	{3,	5,	7,	9,	11}	,	and	let	B	be	the	event	where	the	first	roll	gives	at	most	a	three	B	=	{(ω1	,	ω2	)	∈	Ω	:	ω1	∈	{1,	2,	3}	.	∈	E		be	a	sequence	such	that	∞	μ(Ωn	)	<	∞	n=1	Ωn	=	Ω	and	c	for	all	n	∈	N.	“(ii)
⇒	(i)”	Let	f	∈	Lip1	(R;	[0,	1]).	(Recall	that	Ex	denotes	the	expectation	for	X	if	X0	=	x.)	Due	to	the	symmetry	of	Yi	,	we	have	⎧	1	≥	,	⎪	⎪	⎨	2	ϕ(m,	x)	=	12	,	⎪	⎪	⎩	=	0,	if	m	≤	n	and	x	≥	a,	if	m	≤	n	and	x	=	a,	if	m	>	n.	Let	x,	y	∈	E	with	x	=	y	and	deduce	by	induction	that	π({y})	=	)	Pπ	τx1	*	≥	n,	X0	=	x,	Xn	=	y	+	n		*	)	Pπ	τx1	≥	k,	X0	=	x,	Xk	=	y	.	Hence	Mf	(E)
⊂	Cb	(E)	.	Let	A	=	A−	∩	A+	.	4.1	Construction	and	Simple	Properties	101	(c)	We	have				+	(−f	)	dμ	−	(−f	)	dμ	=		=	f	−	dμ	−		(−f	)−	dμ	f	+	dμ	=	−		f	dμ.	n!	n−1	∈S(n)	Now	replace	F	by	the	smaller	filtration	G	=	(Gn	)n∈−N	that	is	defined	by	G−n	=	σ	(Y−n	,	Xn+1	,	Xn+2	,	.	By	the	Bolzano–Weierstraß		(Fn	(q1	))n∈N	has	a	convergent	subsequence	Fn1	(q1
)	k∈N	.	♦	Example	1.86	Let	d(x,	y)	=	x	−	y2	be	the	usual	Euclidean	distance	on	Rn	and	let	B(Rn	,	d)	=	B(Rn	)	be	the	Borel	σ	-algebra	with	respect	to	the	topology	generated		by	d.	We	denote	by	q	:=	lim	P[Zn	=	0]	n→∞	the	extinction	probability;	that	is,	the	probability	that	the	population	will	eventually	die	out.	“	⇐	”	Now	let	X	be	i.i.d.	given	A	for	a
suitable	σ	-algebra	A	⊂	F	.	Originally	we	were	also	interested	in	the	situation	where	Y	takes	values	in	Rn	or	in	even	more	general	spaces.	Define	the	events	An	:=	{Xτn	+1	<	−2ε},	n	∈	N.	The	pair	(Ω,	τ	)	is	called	a	topological	space.	<	an	and	1	=	y0	>	y1	>	.	Again	it	suffices	to	assume	that	f	is	an	indicator	function	of	the	type	f	(x)	=	1B1	×···×Bn+1	(xt1
,	.	Hence	Rw,eff	(0	↔	∞)	=	1	1	Rω−	+	1	Rω+	−	<	∞	or	R	+	<	∞.	This	implies	μ(An	)	−	μ(A)	=	n→∞	μ(Bn	)	−→	0.	Takeaways	A	Galton-Watson	branching	process	(Zn	)	with	mean	offspring	number	m	>	1	has	a	positive	chance	to	survive	and	in	this	case	grows	indefinitely.	,	N,	define	Fn	:=	σ	(X1	,	.	Show	that	for	any	k	∈	N	∩	(0,	r)	and	s	∈	(0,	r)	we	have	Ms
(X)	<	∞	as	well	as	l→∞	Ms	(Xnl	)	−→	Ms	(X)	and	l→∞	mk	(Xnl	)	−→	mk	(X).	μ	is	σ	-subadditive.	Show	that	με	:=	N0,ε	satisfies	an	LDP	with	good	rate	function	I	(x)	=	x	2	/2.	To	put	it	differently,	the	first	derivative	ϕ		of	a	convex	function	is	a	monotone	increasing	function.	,	n}	≥	t	≤	Var[Sn	]	.	(iii)	In	particular,	if	p	≥	1	and	E[|Xt	|p	]	<	∞	for	all	t	∈	I	,	then



(|Xt	|p	)t	∈I	is	a	submartingale.	(ii)	In	particular,	to	any	stochastic	matrix	p,	there	corresponds	a	unique	discrete	Markov	chain	X	with	transition	probabilities	p.	Thus	H	·	X	is	a	martingale.	7.4.	At	first	reading,	some	readers	might	wish	to	skip	some	of	the	more	analytic	parts	of	this	chapter.	“(ii)	⇒	(iv)”	It	is	enough	to	show	that	for	any	ε	>	0,	there	is	a
compact	set	K	⊂	E	with	lim	supn→∞	μn	(E	\	K)	≤	ε.	8.2	Conditional	Expectations	..	Then	*	)	F	(λ)	=	E	e−λX	is	infinitely	often	differentiable	in	(0,	∞).	Note	that	the	order	of	quantifiers	is	subtle.	Γ	(r)Γ	(s)	Then	βr,s	is	called	the	Beta	distribution	with	parameters	r	and	s.	∈	A	and	A	⊂	there	exists	an	N	∈	N	such	that	∞	n=1	An	.	We	can	model	this	on	a
probability	space	(Ω,	A,	P)	where	Ω	=	{−1,	1}N,	A	=	(2{−1,1}	)⊗N	is	the	σ	-algebra	generated	by	the	cylinder	sets	[ω1	,	.	(7.10)	n=1	The	set	of	all	signed	measures	will	be	denoted	by	M±	=	M±	(Ω,	A).	Furthermore,	due	to	the	lack	of	memory	of	the	exponential	distribution	(see	Exercise	8.1.1),	P[Xt	+s	≥	n	+	1|Xt	=	n]	=	P[Sn+1	≤	t	+	s	|Sn	≤	t,	Sn+1	>
t]	=	P[Tn	≤	s	+	t	−	Sn	|Sn	≤	t,	Tn	>	t	−	Sn	]	=	P[Tn	≤	s]	=	1	−	exp(−n2	s).	r−1	−z			dz	≤	cr	e−c	(1	+	t	2	)r/2	−→	0	for	c	→	∞.	Klenke,	Probability	Theory,	Universitext,	95	96	4	The	Integral	m	Lemma	4.1	If	f	=	i=1	αi	1Ai	and	f	representations	of	f	∈	E+	,	then	m		n		αi	μ(Ai	)	=	=	n	j	=1	βj	1Bj	are	two	normal	βj	μ(Bj	).	If	X	is	a	martingale,	then	equality	holds
in	each	case.	Define	C	:=	max	C(t1	),	.	Show	that,	for	any	ε	>	0,	the	distribution	PX	is	characterized	by	the	values	mX	(s)	(respectively	mX	(−s)),	s	∈	[0,	ε].	This	implies	Pπ	[X	∈	A]	∈	{0,	1}.	The	second	step	is	to	check	that	μ∗	is	a	measure	at	least	on	σ	(E).	♦	Example	1.75	(Uniform	distribution)	Let	A	∈	B(Rn	)	be	a	measurable	set	with	ndimensional
Lebesgue	measure	λn	(A)	∈	(0,	∞).	(ii)	As	X	is	irreducible,	by	Theorem	17.52,	we	have	π({x})	>	0	for	every	x	∈	E.	Furthermore,	f,	g	∈	G	implies	f	∨	g	∈	G.	A	stochastic	matrix	is	essentially	a	stochastic	kernel	from	E	to	E.	Then	there	exists	a	Markov	process	X	with	RCLL	paths	and	with	independent	stationary	increments	PXt	−Xs	=	νt	−s	for	all	t	>	s.	A
finite	market	is	thus	arbitrage-free	if	and	only	if	there	exists	an	equivalent	martingale	(to	be	defined	below).	We	have	μ	p	=	μ.	k=0	Here,	for	r	∈	(0,	∞)	and	p	∈	(0,	1],	−	br,p		∞			−r	(−1)k	pr	(1	−	p)k	δk	=	k	(3.7)	k=0	is	the	negative	binomial	distribution	with	parameters	r	and	p.	be	independent		random	variables	with	PXk	=	CPoi(ν	|	)	for	k	=	0,	1,	.
x,y∈E	n→∞	By	Theorem	18.13,	we	have	pn−N	(x,	y)	−→	π({y})	for	all	x,	y	∈	E.	with	Var[Xn	]	=	1	for	all	n	∈	N	such	that			n				−1			Xk		=	∞	almost	surely.	A	family	ν	=	(νt	:	t	∈	I	)	of	probability	distributions	on	Rd	is	called	a	convolution	semigroup	if	νs+t	=	νs	∗	νt	holds	for	all	s,	t	∈	I	.	We	will	use	it	in	many	places.	Example	1.56	(Lebesgue–Stieltjes
measure)	Let	Ω	=	R	and	A	=	{(a,	b]	:	a,	b	∈	R,	a	≤	b}.	.,	whose	square	is	a	divisor	of	p)	and	let	q	∈	{2,	3,	.	Hence	E[Xτ	1A	]	=		E[Xt	1{τ	=t	}∩A	]	=	t	≤T	=			)		*	E	E[XT		Ft	]	1{τ	=t	}∩A	t	≤T	E[XT	1A	1{τ	=t	}	]	=	E[XT	1A	].	Clearly,	Ntn+1	−	Ntn	≥	0.	Further,	let	(wn	)n∈N	be	a	n→∞	sequence	in	W	with	x	−	wn		−→	c.	,	N},	where	the	order	does	not
change	the	probability.	15.1	Separating	Classes	of	Functions	Let	(E,	d)	be	a	metric	space	with	Borel	σ	-algebra	E	=	B(E).	Here	the	values	+∞and	−∞,	respectively,	are	possible.	A	map	F	:	Rd	→	R	is	called	monotone	increasing	if	F	(x)	≤	F	(y)	whenever	x	≤	y.	We	define	hn	(P,	τ	;	P)	=	−		P[A]	log(P[A]).	9.4	Discrete	Martingale	Representation	Theorem
and	the	CRR	Model	By	virtue	of	the	stochastic	integral,	we	have	transformed	a	martingale	X	via	a	gambling	strategy	H	into	a	new	martingale	H	·X.	be	real	random	variables.	However,	by	Corollary	14.27,	i	the	following	map	is	measurable,			n−1	x→		Px	[A]	=	δx	⊗	κti	,ti+1	×	n		Bi	.	Hence		*		*	)	)	E[ϕ(X)]	=	E	E[ϕ(X)		A]	=	E	E[ϕ(X	)		A]	=	E[ϕ(X	)],	whence
X	is	exchangeable.	At	the	first	stage,	we	manipulate	a	coin	at	random	such	that	the	probability	of	a	success	(i.e.,	“head”)	is	X.	Use	a	contour	argument	similarly	as	in	Theorem	2.45	to	show	that	pc	≤	34	.	♣	160	6	Convergence	Theorems	6.3	Exchanging	Integral	and	Differentiation	We	study	how	properties	such	as	continuity	and	differentiability	of
functions	of	two	variables	behave	under	integration	with	respect	to	one	of	the	variables.	For	ω	∈	B,	define	f	(ω)	=	0.	n→∞	If	τ	is	ergodic,	then	E[X0	|I]	=	E[X0	].	Fix	N	∈	N	and	choose	N	+	1	points	of	continuity	y0	<	y1	<	.	However,	we	want	the	medium	not	to	have	a	homogeneous	structure,	such	as	Zd	,	but	an	amorphous	structure.	Convex	functions	of
martingales	are	submartingales.	(ii)	X	is	a	continuous	centered	Gaussian	process	with	Cov[Xs	,	Xt	]	=	s	∧	t	for	all	s,	t	≥	0.	By	assumption,	we	have	|f	(t)	−	f	(s)|	≤	C(ti	)	|t	−	s|γ	≤	C	|t	−	s|γ	.	Then	there	exists	a	kernel	κ	from	(E,	B(E))	to	(E	I	,	B(E)⊗I	)	such	that,	for	all	x	∈	E	and	for	any	choice	of	finitely	many	numbers	0	=	j0	<	j1	<	j2	<	.	(iv)	Let	X	and	Y
be	supermartingales.	,	Yt	)	and	Xt	:=	Ys	.	Show	that,	for	any	δ	>	0,	the	following	two	estimates	hold:	)	*	P	Sn	≥	(1	+	δ)m	≤		eδ	(1	+	δ)1+δ	m	5.3	Strong	Law	of	Large	Numbers	125	and		2		δ	m	P	Sn	≤	(1	−	δ)m	≤	exp	−	.	Proof	We	check	properties	(i)–(iii)	of	an	algebra	from	Theorem	1.7.	(i)	Ω	∈	M(μ∗	)	is	evident.	The	opposite	is	true	for	open	sets:
limn→∞	δ1/n	((0,	∞))	=	1	>	0	=	δ0	((0,	∞)).	Remark	1.66	(iii)	implies	that	(i)	and	(ii)	also	hold	for	A	∈	M(μ∗	)	(with	μ∗	instead	of	μ).	Hence,	the	claim	follows	by	Lemma	1.42.	Hence	(X,	Y	)	has	the	density	(see	Example	1.105(ix))	0	σ2		;		;2		;	;	x	−	(μ	+	μ	)	1	2	;	B	f	(x,	y)	=	det(2π	Σ)	exp	−	2	2	;	;	;	y	−	μ1	2σ1	σ2			2	2	2	−1/2	σ12	(y	−	(x	−	μ2	))2	+	σ22	(y	−
μ1	)2	=	4π	σ1	σ2	exp	−	2σ12	σ22		=	Cx	exp	−	(y	−	μx	)2	/2σx2	.	Definition	4.4	(Integral)	If	f	:	Ω	→	[0,	∞]	is	measurable,	then	we	define	the	integral	of	f	with	respect	to	μ	by		f	dμ	:=	sup	I	(g)	:	g	∈	E+	,	g	≤	f	.	If	ν(Ω)	<	∞,	then	the	converse	also	holds.	(18.15)	The	solution	is	(check	this!)		χN	(x)	=	(−1)N−1	(σ/2)N−1	(1	−	x)2	UN−1	x/σ	,	(18.16)	where		
m/2!		k	m−k	Um	(x)	:=	(−1)	(2x)m−2k	k	k=0	denotes	the	so-called	mth	Chebyshev	polynomial	of	the	second	kind.	Denote	by	M1	(E)	the	set	of	probability	measures	on	E	equipped	with	the	topology	of	weak	convergence	(see	Definition	13.12	and	Remark	13.14).	For	topological	spaces,	these	are	the	continuous	maps,	and	for	measurable	spaces,	these
are	the	measurable	maps.	Denote	by	Z	the	set	of	finite	partitions	of	Ω	into	pairwise	disjoint	measurable	sets.	(8.12)	By	Theorem	8.14(viii)	(dominated	convergence),	there	are	null	sets	Br	∈	F	,	r	∈	Q,	and	C	∈	F	such	that			1	(8.13)	lim	F	r	+	,	ω	=	F	(r,	ω)	for	all	ω	∈	Ω	\	Br	n→∞	n	as	well	as	inf	F	(−n,	ω)	=	0	Let	N	:=	sup	F	(n,	ω)	=	1	and	n∈N	for	all	ω	∈	Ω	\
C.	♣	2.2	Independent	Random	Variables	Now	that	we	have	studied	independence	of	events,	we	want	to	study	independence	of	random	variables.	sup	f	∈F	A	Proof	“	⇒	”	Let	F	be	uniformly	integrable.	Here	also,	X	is	a	bounded	martingale	and	we	can	compute	the	square	variation	process,	♦	n−1	n			*	)	2		2	)X*n	=	E	(Xi	−	Xi−1	)	Xi−1	=	2	Xi	(1	−	Xi	).
Also	let	f¯	dμ	=	f	dμ	if	this	expression	is	defined	for	f	.	(iv)	Show	that	XYδ	⇒	X	for	δ	↓	0.	Use	an	orthonormal	basis	b0,1	,	(cn,k	),	(dn,k	)	of	suitably	modified	Haar	functions	(such	that	the	cn,k	have	support	[0,	T	]	and	the	dn,k	have	support	[T	,	1])	to	show	that	a	regular	conditional	distribution	of	WT	given	W1	is	defined	by	P[WT	∈	·	|W1	=	x]	=	NT	x,T	.
As	ε	>	0	was	arbitrary,	the	integrals	coincide.	Lemma	21.5	Let	X	and	Y	be	modifications	of	each	other.	Each	letter	is	finished	by	a	pause	sign.	In	fact,	An	=	ni=1	E[Yi2		Y1	,	.	1	(f	+	g	+	|f	−	g|)	2	and	f	∧g	=	1	(f	+	g	−	|f	−	g|)	2	15.1	Separating	Classes	of	Functions	329	Step	3.	Theorem	15.55	Let	μ	∈	Rd	and	let	C	be	a	real	positive	definite	symmetric	d	×
d	matrix.	By	virtue	of	the	diagonal	sequence	argument	(see	the	proof	of	Helly’s	theorem,	Theorem	13.33),	we	can	find	a	subsequence	(μnk	)k∈N	such	that	for	all	C	∈	C,	there	exists	the	limit	α(C)	:=	lim	μnk	(C).	That	is,	if	we	assume	n	:=	k1	+	.	For	fixed	n	∈	N	and	large	k,	we	have	[ω1	,	.	∈	A	such	that	Ω	=	∞		Ωn	and	such	that	μ(Ωn	)	<	∞	for	all	n	∈	N.
See	[33]	for	a	detailed	treatment	of	finite	exchangeable	families.	For	any	fixed	ω1	∈	Ω1	,	by	the	monotone	convergence	theorem,	If	(ω1	)	=	limn→∞	Ifn	(ω1	).	665	665	675	682	References	..	Proof	Let	f	:	E	I	→	R	be)	measurable	Then,	for	every	s	∈	I	,	the	and	bounded.	However,	λ(A	∩	Kn	)	−→	∞;	hence	there	exists	an	n	∈	N	with	λ(A	∩	Kn	)	>	L	+	1.	If	p	<
∞,	then,	in	addition,	(i)	and	(ii)	are	equivalent	to:	(iii)	(|fn	|p	)n∈N	is	uniformly	integrable	and	there	exists	a	measurable	f	with	meas	fn	−→	f	.	Intuitively,	such	a	small	local	change	should	not	make	a	difference	for	a	global	phenomenon	such	as	recurrence.	For	example,	continuity	is	not	among	those	properties.	In	particular,	Student’s	t-distribution	with
k	∈	N	degrees	of	freedom	is	infinitely	divisible	(this	is	the	case	where	σ	2	=	1	and	θ	=	r	=	k/2).	Proof	Assume	that	(με	)ε>0	satisfies	an	LDP	with	rate	functions	I	and	J	.	be	i.i.d.	random	variables.	Integrability	of	ϕ(X1	,	.	Let	E	be	a	Polish	space	with	complete	metric	d.	Then	A	∩	{σ	≤	t}	∈	Ft	.	For	any	x	∈	E	there	is	an	r(x)	>	0	with		inf	I	B2r(x)(x)	≥	I	(x)	−
δ		sup	φ	B2r(x)(x)	≤	φ(x)	+	δ.	n=0	(iii)	In	this	special	case,	fN	(z)	=	eλ(z−1)	for	z	∈	C	with	|z|	≤	1.	X	is	called	centered	if	E[Xt	]	=	0	for	every	t	∈	I	.	19.17	Random	walk	on	a	hypercube.	We	call	E[X]	the	intensity	measure	of	X.	8	Show	that	if	the	walk	starts	at	x,	then	the	probability	of	visiting	1	before	0	is	17	using	(i)	the	method	of	network	reduction,	and
(ii)	the	method	of	matrix	inversion.	Takeaways	The	integral	was	defined	first	for	functions	which	take	only	finitely	many	values.	However,	by	(v),					E[Xn		F	]	−	E[X		F	]	≤	E[Zn	|F	].	Each	of	the	n	people	entering	the	theatre	(one	by	one)	has	a	seat	reservation.	By	Markov’s	inequality,	for	every	ε	>	0,	P	[|Xt	−	Xs	|	≥	ε]	≤	Cε−α	|t	−	s|1+β	.	In	other	words,
a	process	has	the	(possibly	time-inhomogeneous)	Markov	property	if	and	only	if	past	and	future	are	independent	given	the	present.	19.8.	x	0	Fig.	♦	Lemma	14.11	If	every	Ei	is	a	π-system,	then	Z	E	,R	is	a	π-system.	•	normed	if	Xn,l	∈	L2	(P)	and	l=1	A	centered	array	is	called	a	null	array	if	its	individual	components	are	asymptotically	negligible	in	the
sense	that,	for	all	ε	>	0,	lim	max	P[|Xn,l	|	>	ε]	=	0.	σ	n	x∈R	Example	15.53	Let	α	∈	(0,	1).	,	n,	where	n	∈	N.	m	m!	m!	♦	m=1	(2.6)	Note	that	in	Theorem	2.7	in	the	case	of	independent	events,	only	the	probabilities	P[A∗	]	=	0	and	P[A∗	]	=	1	could	show	up.	Sometimes	the	ramified	shape,	in	particular	of	the	running	martingale	(French	la	martingale	à
anneaux),	is	considered	as	emblematic	for	the	doubling	strategy	in	the	Petersburg	game.	⎛	0	⎜	⎜1	⎜3	⎜	⎜0	⎜	⎜	⎜0	⎜	⎜	⎜0	⎜	⎜	⎜0	p	:=	⎜	⎜	⎜0	⎜	⎜	⎜0	⎜	⎜0	⎜	⎜	⎜0	⎜	⎜	⎜0	⎝	0	1	1	2	2	⎞	0	0	0	0	0	0	0	0	0	0	0	0	1	1	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	4	4	0	0	14	14	0	0	12	0	0	0	0	0	1	1	3	3	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	⎟	⎟	0	0	0	0	0	0⎟	⎟	0	0	0	0	0	0⎟	⎟	⎟	1	1	⎟	2	2	0	0	0
0⎟	⎟	0	0	0	0	0	0⎟	⎟	⎟	1	1	0	0	4	4	0	0⎟	⎟,	⎟	0	0	0	14	14	0	⎟	⎟	⎟	0	0	0	0	12	0	⎟	⎟	0	0	0	0	0	13	⎟	⎟	⎟	1	1⎟	3	0	0	0	0	3⎟	⎟	1	1	⎟	2	2	0	0	0	0⎠	0	0	12	12	0	0	⎞	⎛	143	81	21	3	8	19	3	3	15	9	3	11	116	116	29	58	29	58	29	58	116	58	58	116	G	:=	(I	−	p)−1	⎟	⎜	⎟	⎜	⎜	27	81	13	3	16	19	6	3	15	9	3	11	⎟	⎜	58	58	29	29	29	29	29	29	58	29	29	58	⎟	⎟	⎜	⎜	0	0	1	0	0	0	0	0	0	0	0	0	⎟	⎟	⎜	⎟	⎜	⎜
3	9	24	165	5	15	78	68	21	30	107	27	⎟	⎜	58	58	29	58	29	29	29	29	58	29	58	58	⎟	⎟	⎜	⎟	⎜	⎜	0	0	0	0	1	0	0	0	0	0	0	0	⎟	⎟	⎜	⎟	⎜	⎜	19	57	18	15	11	95	15	15	75	45	15	55	⎟	⎜	116	116	29	58	29	58	29	58	116	58	58	116	⎟	=⎜	⎟.	Therefore,	lim	sup	n→∞	1	log	P[ξn	(X)	∈	A]	≤	−	inf	Iμ	(A).	If	lim	|h|	E[|X|	=	0,	then,	for	every	t	∈	R,	n!	n→∞	ϕ(t	+	h)	=	∞		(ih)k	k=0	k!	(	'	E	eit	X
Xk	.	Furthermore,	there	exists	a	δ	>	0	such	that,	for	x	∈	[−N,	N]d	and	u	∈	Rd		with	|u|	<	δ,	we	have	1	−	ei)u,x*		<	ε2	/6.	Using	de	Moivre’s	formula,	one	can	show	that,	for	x	∈	(−σ,	σ	),	χN	(x)	=	(−1)	N−1	=	(1	−	x)	2	(σ/2)	N−1		sin	N	arc	cos	x/σ	2	(1	−	x)	1	−	(x/σ	)2	N−1		σ	cos	k=1	2		πk		N		−x	.	In	other	words,	(Xn	)n∈N	is	independent	given	Y	and	BerY
-distributed.	,	n,	and	define	stochastic	kernels	from	Rd	to	Rd	by	κk	(x,	·	)	=	δx	∗	μk	for	k	=	1,	.	At	the	second	stage,	we	toss	the	coin	n	times	independently	with	outcomes	Y1	,	.	♦	Takeaways	In	the	context	of	statistical	mechanics,	substantial	contributions	to	an	observable	are	not	only	due	to	the	most	frequent	observations	but	also	due	to	rare	but	very
large	observations.	Lemma	4.3	The	map	I	is	positive	linear	and	monotone	increasing:	Let	f,	g	∈	E+	and	α	≥	0.	(iii)	If	f	≤	g,	then	I	(f	)	≤	I	(g).		Example	1.74	The	restriction	of	the	Lebesgue–Borel	measure	λ	on	R,	B(R)		).	More	general	criteria	will	be	presented	in	Chap.	We	say	D	n→∞	that	(Xn	)n∈N	converges	in	distribution	to	X,	formally	Xn	−→	X	or	Xn
⇒	X,	if	the	distributions	converge	weakly	and	hence	if	PX	=	w-lim	PXn	.	n→∞	n	Similarly,	this	also	holds	for	x	∈	U	∩	(−∞,	0)	with	I	(x)	<	∞;	hence	lim	inf	n→∞	1	log	Pn	(U	)	≥	−	inf	I	(U	).	Infer	that	ϕ(t	+	s)	=	ϕ(s)	for	all	s	∈	Rd	.	Theorem	4.21	(Fatou’s	lemma)	Let	f	∈	L1	(μ)	and	let	f1	,	f2	,	.	,	D	be	independent	Poisson	processes	with	rate	1/D.	This	property
of	λn	is	called	outer	regularity.	Definition	13.8	Let	(E,	dE	)	and	(F,	dF	)	be	metric	spaces.	Using	(15.5),	we	infer	)	*	2n	|u(2n−1)	(θ	t)|	sup	|u(2n−1)	(θ	t)|	≤	gn	(t)	:=	2n	sup	.	(iii)	If	X	≥	0	almost	surely,	then	E[X]	=	0	⇐⇒	X=0	almost	surely.	Assume	that	there	exists	an	ε	>	0	and	an	C(ε)	<	∞	such	that,	for	all	s,	t	∈	I	with	|t	−	s|	≤	ε,	we	have	|f	(t)	−	f	(s)|	≤
C(ε)	|t	−	s|γ	.	Lower	bound	For	any	x	∈	E	and	r	>	0,	we	have			eφ/ε	dμε	≥	lim	inf	ε	log	lim	inf	ε	log	ε→0	ε→0	eφ/ε	dμε	Br	(x)	r→0	≥	inf	φ(Br	(x))	−	I	(x)	−→	φ(x)	−	I	(x).	(7.13)	In	order	to	show	that	(7.13)	holds	for	all	g	∈	Lp	(μ),	we	first	show	f	∈	Lq	(μ).	Let	a	>	0	and	τ	=	inf	t	≥	0	:	Bt	∈	{0,	a}	.	,	Xn	∼	γp	be	independent	geometrically	distributed	random
variables	with	parameter	p	∈	(0,	1).	Unlike	the	Poisson	distribution,	the	normal	distribution	is	the	limit	of	rescaled	sums	of	i.i.d.	random	variables	(central	limit	theorem).	(21.38)	n=1	Compare	(21.21).	Thus			ε	>	P[A	\	F	]	=	P[A	∩	(Ω	\	F	)]	=	P[A]	1	−	P[F	]	≥	P[A]	1	−	P[A]	−	ε	.	Show	that	X	and	Y	are	independent	and	2N0,1	-distributed.	♦	Example	2.28
Let	(Xm,n	)(m,n)∈N2	be	an	independent	family	of	Bernoulli	random	variables	with	parameter	p	∈	(0,	1).	As	a	consequence	we	get	a	formal	proof	for	the	intuitive	fact	that	increasing	the	resistance	along	an	individual	bond	(or	even	removing	the	bond	which	is	the	same	as	increasing	the	resistance	to	infinity)	increases	the	effective	resistance	between
any	two	given	points.	,	xn	))	=	P	×	n	i=1	,	(−∞,	xi	]	=	n		n			μi	(−∞,	xi	]	=	F{i}	(xi	).	12.3,	we	need	some	more	technical	tools	(e.g.,	the	notion	of	conditional	independence).	Let	T	>	0	be	the	temperature	of	the	system	and	let	β	:=	1/T	be	the	so-called	inverse	temperature.	Proof	First	consider	d	=	1	and	p	<	1.	By	the	martingale	convergence	theorem,	X
converges	P-almost	surely	and	in	L1	(P)to	a	random	variable	X∞	.	(25.4)	By	Fubini’s	theorem	and	the	dominated	convergence	theorem,	we	thus	conclude	that	+	E	T	0	,	(Hs	−	Hsn	)2	ds		=	Hs	(ω)	−	Hsn	(ω)	2	n→∞	(P	⊗	λ)(d(ω,	s))	−→	0.	For	N	∈	N,	define	the	truncated	random	variables	|X|	∧	N.	(iii)	Let	X	and	Y	be	independent	Poisson	random	variables
with	parameters	λ	≥	0	and	μ	≥	0,	respectively.	19.2);	that	is,	for	all	x,	y	∈	E,	we	have	π(x)	p(x,	y)	=	π(y)	p(y,	x).	Let	X	:	Ω	→	Ω		be	a	map.	In	the	last	section,	we	describe	the	speed	of	convergence	to	the	equilibrium	by	means	of	the	spectrum	of	the	transition	matrix.	Hence,	for	n	∈	N,	2	E[X	]	=	E[e	n	nY	]	=	E[e	Y1	+...+Yn2	]=	n		2	E[eYi	]	=	E[eY	]n	i=1		=
∞	−∞	(2π)−1/2	ey	e−y	2	/2	(15.1)	n2	dy	2	/2	=	en	.	493	493	497	500	502	506	510	xiv	Contents	21	Brownian	Motion	.	Then	e−s	κs	h	=	e−s		∞	0	e−t	κs	κt	g	dt	=		∞	e−t	κt	g	dt	≤	h.		Let	(bn	)n∈N	be	an	orthonormal	basis	of	L2	([0,	1])	such	that	Wt	:=	limn→∞	nk=1	ξk	)1[0,t	]	,	bk	*,	t	∈	[0,	1],	is	a	Brownian	motion.	We	come	now	to	a	theorem	that
combines	Theorem	1.55	with	the	idea	of	Lebesgue–Stieltjes	measures.	Formally,	we	argue	that	{Xs	∈	K}	∈	Fs	⊂	Ft	for	all	s	≤	t.	Proof	Although	the	statement	is	intuitively	so	clear	that	it	might	not	need	a	proof,	we	give	a	formal	proof	in	order	to	introduce	a	technique	called	coupling.	Then	∞	D	X2n	=	Sn	:=	Y1	+	.	Exercise	5.2.1	(Bernstein–Chernov
bound)	Let	n	∈	N	and	p1	,	.	x∈I	◦	(8.9)	x∈V	Corollary	8.21	Let	p	∈	[1,	∞]	and	let	F	⊂	A	be	a	sub-σ	-algebra.	The	central	limit	theorem	will	show	that	the	error	is	indeed	exactly	of	this	order.	Hence,	for	all	t	≥	0,		e−t	x	ν˜	n	(dx)	=	un	(t	+	1)	−	un	(t)	un	(1)	n→∞	−→	u(t	+	1)	−	u(t)	.	If	κ1	and	κ2	are	(sub)stochastic,	then	κ1	⊗	κ2	is	(sub)stochastic.	For	δ	>	0,
let	Bδ	:=	x	∈	E	:	d(x,	B)	<	δ	13.1	A	Topology	Primer	277		be	the	open	δ-neighborhood	of	B.	+	Xn,kn	⇒	S,	then	S	is	infinitely	divisible.	♦	2.2	Independent	Random	Variables	67	Definition	2.29	(Convolution)	Let	μ	and	ν	be	probability	measures	on	(Z,	2Z	).	Define	the	stochastic	matrix	p	(x,	y)	=		∞	n	(x,	y).	Hence	f	is	bounded.	be	real	random	variables	with
distribution	functions	F,	F1	,	F2	,	.	∗	Let	An	⊂	Ω	for	any	n	∈	N	and	let	A	⊂	∞	n=1	An	.	Then	A	:=	{A	⊂	Ω	:	A	or	Ac	is	countable}	is	a	σ	-algebra.	This	modification	is	called	Brownian	sheet.	On	the	other	hand,	S	n	−	Skn	and	Skn	are	independent	for	any	k	∈	N;	hence	ψS	n	=	ψSkn	·	ψS	n	−Skn	.	Example	21.16	Let	B	be	a	Brownian	motion.	*	monotone
limita,bU	)	a,bthe	)	*	=	limn→∞	E[Un	]	<	∞.	If	X	is	irreducible	and	recurrent,	then	π	and	hence	C	are	unique	up	to	a	factor.	For	n	∈	N,	define	gn	=	|fn	−	f	|p	.	i=1	i=1	Since	En	↑	Ω	and	since	μ	and	ν	are	lower	semicontinuous,	we	infer	μ(A)	=	lim	μ(A	∩	En	)	=	lim	ν(A	∩	En	)	=	ν(A).	For	two	examples	we	could	compute	the	spectral	gap	explicitly.	n→∞		∗
(i)	If	∞	n=1	P[An	]	<	∞,	then	P[A	]	=	0.	n→∞	(i)	If	E[log(0	)]	<	0,	then	Xn	−→	∞	a.s.	n→∞	(ii)	If	E[log(0	)]	>	0,	then	Xn	−→	−∞	a.s.	(iii)	If	E[log(0	)]	=	0,	then	lim	inf	Xn	=	−∞	and	lim	sup	Xn	=	∞	a.s.	n→∞	n→∞	Proof	(i)	and	(ii)	By	symmetry,	it	is	enough	to	show	(ii).	If	(ii)	holds,	then,	for	all	Z	∈	Z,			fZ	dμ	=	ν(C)	=	ν(Ω)	C∈Z:	μ(C)>0	since	ν(C)	=	0	for	those
C	that	do	not	appear	in	the	sum.	One	could	conjecture	that	any	point	on	the	great	circle	is	equally	likely.	y∈E	19.1	Harmonic	Functions	463	2.	Consider	a	Galton–Watson	process	(Zn	)n∈N0	with	geometric	offspring	distribution	p(k)	=	2−k−1	for	k	∈	N0	.	In	order	to	get	more	precise	estimates	3	for	the	integral,	we	need	additional	information;	for
example,	the	value	V1	:=	f	2	(x)	dx	−	I	2	if	f	∈	L2	([0,	1]).	The	case	of	a	right	boundary	point	is	similar.	Theorem	14.8	Let	I	be	countable,	and	for	every	i	∈	I	,	let	(Ωi	,	τi	)	be	Polish	with	Borel	σ	-algebra	Bi	=	σ	(τi	).	(iii)	(Triangle	distribution)	Note	that	Tria	=	U[−a/2,a/2]	∗	U[−a/2,a/2];	hence	ϕTria	(t)	=	ϕU[−a/2,a/2]	(t)2	=	4	sin(at/2)2	1	−	cos(at)	=2	.	,
n}	:	Sk	≥	t	and	Ak	=	{τ	=	k}	for	k	=	1,	.	Let	z	=	u	−	iv	be	the	complex	conjugate	of	z	and	|z|	=	u2	+	v	2	its	modulus.	The	Metropolis	algorithm	constitutes	a	universal	tool	for	the	construction	of	such	a	Markov	chain.	For	each	n	∈	N,	let	(Xn,k	)k∈N	be	an	independent	family	of	random	variables	with	Xn,k	∼	Berpn,k	.	9.2	Martingales	Everyone	who	does
not	own	a	casino	would	agree	without	hesitation	that	the	successive	payment	of	gains	Y1	,	Y2	,	.	C(x)	C(x)	C(x)	y∈E	y∈E	y∈E	Hence	u	is	harmonic	for	the	stochastic	matrix	p(x,	y)	=	C(x,	y)/C(x).	D	D	Show	that	if	XZ	=	Y	Z	holds,	then	X	=	Y	.	Hence,	by	the	preceding	theorem,	for	any	n	∈	N,	there	exists	an	open	setUn	⊃	A	∩	Kn	with	λ(Un	\	A)	<	ε/2n	.	♦
Definition	9.15	(Stopping	time)	A	random	variable	τ	with	values	in	I	∪	{∞}	is	called	a	stopping	time	(with	respect	to	F)	if	for	any	t	∈	I	{τ	≤	t}	∈	Ft	.	Therefore,	)	*	)	*	)	*	E	ϕ(X)F	(X)	=	E	ϕ(X	)F	(X	)	=	E	ϕ(X	)F	(X)	.	This	is	not	the	case,	in	general,	as	the	example	below	indicates.	(ii)	Now	we	set	the	constraint	p(2,	1)	=	0.	If	we	had	v0	>	v0	,	then	the	trader
could	follow	the	strategy	H		−H	(which	gives	a	final	payment	of	VT	−VT	=	0)	and	make	a	sure	profit	of	v0	−	v0	.	The	distribution	of	X	is	called	the	log-normal	distribution.	(See	Figs.	Corollary	15.10	A	finite	measure	μ	on	Zd	is	uniquely	determined	by	the	values		ϕμ	(t)	=	ei)t,x*	μ(dx),	t	∈	[−π,	π)d	.	(iv)	As	ei)t,X*	and	ei)t,Y	*	are	independent	random
variables,	we	have	*	)	*	)	*	)	ϕX+Y	(t)	=	E	ei)t,X*	·	ei)t,Y	*	=	E	ei)t,X*	E	ei)t,Y	*	=	ϕX	(t)	ϕY	(t).	Use	Pólya’s	theorem	to	show	that	ψ1	(t)	:=	ϕ1	(t),	if	|t|	≤	1,	ϕ2	(t),	if	|t|	>	1,	1	1+t	2	and	15.4	Characteristic	Functions	and	Moments	349	and	ψ2	(t)	:=	ϕ2	(t),	if	|t|	≤	1,	ϕ1	(t),	if	|t|	>	1,	are	characteristic	functions	of	probability	distributions	on	R.	21.3	Strong
Markov	Property	..	If	I	is	an	interval,	then	a	map	g	:	I	→	R	is	called	affine	linear	if	there	are	numbers	a,	b	∈	R	such	that	g(x)	=	ax	+	b	for	all	x	∈	I	.	+	Xn	for	n	∈	N.	Such	a	risk-free	profit	(or	free	lunch	in	economic	jargon)	is	called	an	arbitrage.	♣	k=0	7.2	Inequalities	and	the	Fischer–Riesz	Theorem	We	present	one	of	the	most	important	inequalities	of
probability	theory,	Jensen’s	inequality	for	convex	functions,	and	indicate	how	to	derive	from	it	Hölder’s	inequality	and	Minkowski’s	inequality.	Then	(Y	n	)n∈N	is	an	indepen−n	dent	family	of	random	variables	(with	values	in	C([0,	2	m])).	Thus	as	research	topics	trickle	down	into	graduate-level	teaching,	first	textbooks	written	for	new,	cutting-edge
courses	may	make	their	way	into	Universitext.	266	12	Backwards	Martingales	and	Exchangeability	Takeaways	A	backwards	martingale	(Yn	)n∈N0	is	a	stochastic	process	such	that	(Y−m	)m∈−N0	is	a	martingale.	,	m	*	)	=	P	{Nti	−	Nti−1	=	ki	for	i	=	1,	.	Thus	μ(Ωn+0	)	>	0	for	some	n0	∈	N.	Write		ZJ	,	(14.3)	Z=	J	⊂I	finite	and	similarly	define	Z	R	and	Z	E
,R	.	Example	4.11	(Discrete	measure	space)	Let	(Ω,	A)	be	a	discrete	measurable	space	αω	δω	for	certain	numbers	αω	≥	0,	ω	∈	Ω.	Then	we	define		E[X	|A]	:=	⎧	⎨	E[1A	X]	,	P[A]	X(ω)	P[dω|A]	=	⎩	0,	if	P[A]	>	0,	(8.5)	else.	Assume	that	the	offspring	distribution	is	given	by	P[X1,1	=	k]	=	13	(2/3)k	,	k	∈	N0	.	Applying	Step	1	to	the	algebra	C	yields	that,	for
all	f,	g	∈	C,	f	∨g	=	are	also	in	C.	x	→	P	Xj	≤	xj	for	all	j	∈	J	=	P	j	∈J	Then	FJ	is	called	the	joint	distribution	function	of	(Xj	)j	∈J	.	(23.18)	x∈E	Remark	23.18	(Moment	condition)	The	tail	condition	(23.17)	holds	if	there	exists	an	α	>	1	such	that		lim	sup	ε	log	eαφ/ε	dμε	<	∞.	(23.19)	ε→0	Indeed,	for	every	M	∈	R,	we	have			eφ(x)/ε	1{φ(x)≥M}	με	(dx)	=	M	+	ε
log	ε	log	e(φ(x)−M)/ε	1{φ(x)≥M}	με	(dx)		≤	M	+	ε	log	eα(φ(x)−M)/ε	με	(dx)		=	−(α	−	1)M	+	ε	log	eαφ(x)/ε	με	(dx).	,	Xk	=	xk	]	k=1	=	N−1	1		1		gk	(xk+1	)	=	gk	(1)	N!	N!	k:	xk	=1	k=0	=		gk	(0)	k:	xk	=0	M−1	N−1		1		M!	(N	−	M)!	.	Takeaways	We	recognised	the	function	spaces	L2	as	Hilbert	spaces.	In	fact,	it	is	not	hard	to	show	that	M	is	the	expected
time	to	return	to	0;	hence	the	criterion	for	positive	recurrence	could	also	be	deduced	by	Theorem	17.52.	For	any	y	∈	A	and	x	∈	(BR(y)/3(y))	∩	Qn	,	we	have	R(x)	≥	R(y)	−	x	−	y2	>	2	1	3	R(y),		and	hence	r(x)	>	3	R(y)	and	thus	y	∈	Br(x)	(x).	By	(21.17)	and	(21.18),	using	the	convergence	theorem	for	backwards	martingales	(Theorem	12.14),	we	get	that	in
the	sense	of	L1	-limits	)		*	EBτ	[F	(B)]	=	lim	Ex	F	(Bτ	n	+t	)t	≥0		Fτ	n	n→∞	)		*	)		*	=	lim	Ex	F	(Bτ	+t	)t	≥0		Fτ	n	=	Ex	F	(Bτ	+t	)t	≥0		Fτ	+	.	Proof	By	Stirling’s	formula,	lim	n→∞	1	n	−n	√	n	e	2π	n	=	1.	This	equation	also	holds	if	at	most	one	of	the	integrals	infinite.	Then	we	should	have	that	the	probability	for	A1	,	.	Consider	now	f	≥	0.	For	k	=	1,	the	claim
is	true	by	definition.			(ii)	E[X	|F	]	∈	L1	(P),	and	for	any	A	∈	F	,	we	have	E[X	|F	]	dP	=	A	X	dP.	;	;	;	∧	1	and	[0,n]	∞	d(f,	g)	=	∞		2−n	dn	(f,	g).	,	Yk	),	where,	given	Ξ∞	,	the	random	variables	Y1	,	.	We	have	shown	the	existence	of	solutions	of	the	Dirichlet	problem	in	Example	19.4.	In	order	to	show	uniqueness	(under	certain	conditions)	we	first	derive	the
maximum	principle	for	harmonic	functions.	At	any	time	n	∈	N0	,	one	site	In	out	of	Λ	is	chosen	at	random	and	the	individual	at	that	site	reconsiders	his	or	her	opinion.	dλk	λ=0	(21.40)	21.9	Pathwise	Convergence	of	Branching	Processes	555	In	particular,	the	first	six	moments	are	Ei	[Zn	]	=	i,	Ei	[Zn2	]	=	2i	n	+	i	2	,	Ei	[Zn3	]	=	6i	n2	+	6i	2	n	+	i	3	,	Ei
[Zn4	]	=	24i	n3	+	36i	2	n2	+	(12i	3	+	2i)	n	+	i	4	,	(21.41)	Ei	[Zn5	]	=	120i	n4	+	240i	2	n3	+	(120i	3	+	30i)	n2	+	(20i	4	+	10i	2)	n	+	i	5	,	Ei	[Zn6	]	=	720i	n5	+	1800i	2	n4	+	(1200i	3	+	360i)	n3,	+	(300i	4	+	240i	2)n2	+	(30i	5	+	30i	3	+	2i)n	+	i	6	.	Therefore,	for	every	k	=	2,	.	19.11	Steps	3	and	4.	Define	Sn	:=	Z1	+	.	The	claim	follows	since,	for	y	∈	Zd	,	
[−π,π)d	e	i)t,y−x*	dt	=	(2π)d	,	0,	if	x	=	y,	else.	Then	E[Xnλ	]	=	0	and	Var[Xnλ	]	=	)λ,	Cλ*.	Hence	A	∈	G.	It	is	implicitly	assumed	that	the	reader	has	a	certain	familiarity	with	the	basic	concepts	of	probability	theory,	although	the	formal	framework	will	be	fully	developed	in	this	book.	(18.9)	See	Fig.	Then	h1	,	hn−1	∈	UL	are	distinct	but	connected	in	K	p
even	if	we	remove	x.	Show	that	this	random	walk	in	a	random	environment	is	•	a.s.	transient	if	E[log(0	)]	<	0,	•	a.s.	null	recurrent	if	E[log(0	)]	=	0,	and	•	a.s.	positive	recurrent	if	E[log(0	)]	>	0.	(9.4)	Since,	in	this	case,	v0	does	not	depend	on	the	trading	strategy	and	is	hence	unique,	the	market	is	automatically	arbitrage-free.	(ii)	Let	A,	B	∈	DE	with	A	⊃
B.	In	the	case	of	finite	signed	measures	this	n→∞	is	equivalent	to:	(μn	)	is	bounded	and	μn	(A)	−→	μ(A)	for	any	measurable	A	(see	[38,	Theorem	IV.9.5]).	μ	is	infinitely	divisible	if	and	only	if	there	exists	an	α	≥	0	and	a	σ	-finite	measure	16.1	Lévy–Khinchin	Formula	373	ν	∈	M((0,	∞))	with		(1	∧	x)	ν(dx)	<	∞	(16.5)	and	such	that		u(t)	=	αt	+		1	−	e−t	x	ν(dx)
for	t	≥	0.	Let			and	P	=		A=A	P	.	Here	R1	=	19	10	,	R2	=	25	,	R3	=	1,	δ	=	125	,	R1	=	δ/R1	=	25	,	3	=	δ/R3	=	513	.	Theorem	7.10	Let	G	⊂	Rn	be	open	and	convex	and	let	ϕ	:	G	→	R	be	a	map.	6.1	Almost	Sure	and	Measure	Convergence	149	Then	(since	d(f,	g)	≤	d(f,	fn	)	+	d(g,	fn	)),	for	any	m	∈	N	and	ε	>	0,		μ	Am	∩	{d(f,	g)	>	ε}			n→∞	≤	μ	Am	∩	{d(f,	fn	)	>
ε/2}	+	μ	Am	∩	{d(g,	fn	)	>	ε/2}	−→	0.	♣	E[X]	=	R	Exercise	5.1.3	Let	X	∼	βr,s	be	a	Beta-distributed	random	variable	with	parameters	r,	s	>	0	(see	Example	1.107(ii)).	“(iv)	⇒	(i)”	Let	L	⊂	E	be3	compact	with	μn	(E	\	L)	≤	1	for	all	n	∈	N.	Theorem	5.7	The	map	Cov	:	L2	(P)	×	L2	(P)	→	R	is	a	positive	semidefinite	symmetric	bilinear	form	and	Cov[X,	Y	]	=	0	if
Y	is	almost	surely	constant.	Thus,	if	the	defining	equality	(or	inequality)	holds	for	any	time	step	of	size	one,	by	induction	it	holds	for	all	times.	Assume	that	in	the		beginning	there	is	one	black	and	one	red	ball	in	the	urn.	♣	Exercise	21.2.4	Let	B	be	a	Brownian	motion,	a	<	0	<	b.	♣	6.2	Uniform	Integrability	From	the	preceding	section,	we	can	conclude
that	convergence	in	measure	plus	existence	of	L1	limit	points	implies	L1	-convergence.	Upper	bound	For	M	>	0	and	ε	>	0,	define			ε	φ(x)/ε	ε	e	με	(dx)	and	GM	:=	FM	:=	{φ≥M}	{φ	0,		lim	sup	ε	log	ε→0	eφ(x)/ε	με	(dx)	=	FM	∨	GM	.	Show	that	X1	∈	L1	(P)	and	Y	=	E[X1	]	almost	surely.	Hence	k=1	E∩A⊂	∞		n=1	Bn	,	E	∩	Ac	⊂	mn	∞			n=1	k=1	Cnk	and	En
=	Bn	mn	k=1	Cnk	.	Hence,	it	is	enough	to	show	that,	for	Brownian	motion	X,	we	have	Cov[Xs	,	Xt	]	=	min(s,	t).	Proof	(i)	This	is	obvious.	Show	the	conditional	Borel–Cantelli	lemma:	P[A∞		A∗	]	=	0.	∈	(1,	2],	let	dn	=	n	E[X]	for	all	n	∈	N.	If	μ	is	a	probability	measure,	the	existence	of	the	sequence	(Ωn	)n∈N	is	not	needed.	150	6	Convergence	Theorems	˜	fn
)	n→∞	“	⇐	”	Assume	d(f,	−→	0.	δω	is	called	the	Dirac	measure	for	the	point	ω.	Similarly,	we	get	Var[X]	=	E[X2	]	−	μ2	=	.	Thus,	for	N	∈	N	and	0	≤	t1	,	.	They	can	be	generated	by	classes	with	less	structure	(algebras,	rings,	semirings),	but	also	by	classes	with	a	different	structure	(e.g.,	a	topology).	Theorem	17.59	(Strassen’s	theorem)	Let	L	:=	(x1	,	x2	)
∈	Rd	×	Rd	:	x1	≤	x2	.	Lemma	21.45	The	moments	of	Zn	are	Ei	[Znk	]	=	(−1)k	d	k		(n)	−λ	i		ψ	(e	)		.	n→∞	“(iii)	⇒	(i)”	Since	|fn	|p	−→	|f	|p	in	measure,	by	Theorem	6.25,	we	have	|f	|p	∈	L1	(μ)	and	hence	f	∈	Lp	(μ).	be	independent,	square	integrable	random	variables		with	E[Yn	]	=	1	for	all	n	∈	N.	x	Note	that	h(x)/(1	∧	x)	≤	1	for	all	x	>	0.	(3.5)	(iv)	Let	X1	,	.
The	family	(κt	(x,	A),	t	∈	I,	x	∈	E,	A	∈	B(E))	is	also	called	the	family	of	transition	probabilities	of	X.	Hence,	also	in	this	case,	i	is	continuous.	A	is	a	semiring	and	σ	(A)	=	B(R),	where	B(R)	is	the	Borel	σ	-algebra	on	R.	In	particular,	this	implies	that	not	all	exponential	moments	are	finite.	Clearly,	ν	=	νa	+3	νs	and	νs	(Ω	\	E)	=	0;	hence	νs	⊥	3μ.	By	Q±	(A)	:=
E[X±	1A	]	for	all	A	∈	F	,	we	define	two	finite	measures	on	(Ω,	F	).	n→∞	Proof	“(i)	⇐⇒	(ii)”	Clearly,	B	:=	{Sn	−→	∞}	is	an	invariant	event	and	thus	has	probability	either	0	or	1.	By	construction,	equation	(13.3)	holds	and	the	proof	is	complete.	D	Note	that	F1n	(x)	:=	F1	◦	.	Let	Ei	∈	σ	(Ei	)	for	any	i	∈	J	,	and	let	Ei	∈	Ei	for	any	i	∈	J		\	(J	∪	{j	}).	21.8	Donsker’s
Theorem	.	That	is,	we	do	not	have	control	on	the	quantity	P[|I:n	−	I	|	>	ε].	Fix	a	parameter	p	∈	[0,	1]	and	independently	declare	any	edge	of	L2	open	with	probability	p	and	closed	with	probability	1	−	p.	Recall	that	this	is	a	probability	measure	on	the	space	of	sequences	(E	N0	,	B(E)⊗N0	).	(iii)	There	is	a	map	h	∈	L1	(μ),	h	≥	0,	such	that	|f		(	·,	x)|	≤	h	μ-
a.e.	for	all	x	∈	I.	Let	G	⊂	F	⊂	A	be	σ	-algebras	and	let	Y	∈	L1	(Ω,	A,	P).	Hence	we	are	looking	for	solutions	VT	−1	and	HT	of	the	following	system	of	linear	equations:	VT	−1	+	HT	(XT−	−	XT	−1	)	=	VT−	,	VT	−1	+	HT	(XT+	−	XT	−1	)	=	VT+	.	Clearly,	X−1	({ω})	=	{ω}	∈	B(R).	and	∞	n=1	An	=	A.	If	ϕ	:	E	N	→	R	is	measurable	and	if	E[|ϕ(X)|]	<	∞,	then	for
all	n	∈	N	and	all		∈	S(n),	E[ϕ(X)|En	]	=	E[ϕ(X	)|En	].	.)	and	(A2	,	A4	,	A6	,	.	,	n	defines	a	substochastic	kernel			i	i	i	/	/	κk	:=	κ1	⊗·	·	·⊗κi	from	(Ω0	,	A0	)	to	×	Ωk	,	Ak	.	In	this	section,	we	study	a	criterion	for	relative	sequential	compactness	in	L1	,	the	so-called	uniform	integrability.	However,	then	also	Xn	=	Xn0	for	all	n	≥	n0	.	,	Ym	)	by	Yi	:=	#{k	=	1,	.	By
Jensen’s	inequality,	we	get	Var[X]	=	E[X2	]	−	(E[X])2	≥	0.	(iv)	(N.N.)	This	can	either	be	computed	directly	or	can	be	deduced	from	(iii)	by	using	the	Fourier	inversion	formula	(equation	(15.2)).	For	f	∈	Cc	(E),	there	exists	an	n0	∈	N	such	that	the	support	of	f	is	contained	in	Wn0	.	Theorem	20.35	(Kolmogorov–Sinai)	Let	P	be	a	generator	of	A;	that	is	A	=		
−n	(P)	.	Definition	18.14	Define	a	stochastic	matrix	p	on	E	by	p(x,	y)	=		⎧	⎪	⎨	q(x,	y)	min	1,	⎪	⎩	1−		π(y)q(y,x)	π(x)q(x,y)		,	if	x	=	y,	q(x,	y)	>	0,	0,	p(x,	z),	z=x	if	x	=	y,	q(x,	y)	=	0,	if	x	=	y.	(ii)	A	is	\-closed.	We	often	do	not	give	the	statements	both	for	submartingales	and	for	supermartingales.	This	statement	holds	more	generally	if	we	replace	Zd	by	a
locally	compact	Abelian	group.	Then	(Xi,j	,	(i,	j	)	∈	I	×	J	)	is	uniformly	integrable.	(iii)	If	(Ei	∪	{∅})	is	∩-stable,	then	(Ei	)i∈I	is	independent	⇐⇒	(σ	(Ei	))i∈I	is	independent.	Show	that	AX	∼	NAμ,ACAT	for	every	m	∈	N	and	every	real	m	×	d	matrix	A.	−	:=	PX	is	called	the	geometric	distribution2	with	parameter	Then	γp	:=	b1,p	p;	formally	γp	=	∞		p	(1	−
p)n	δn	.	TV	n	Indeed,	the	probability	pn,k	that	we	do	not	see	any	ball	twice	when	drawing	k	balls	(with	replacement)	from	n	different	balls	is	pn,k	=	k−1		(1	−	l/n)	l=1	and	thus	Rn,k	≥	2(1−pn,k	).	(vii)	For	any	A	∈	F	and	B	∈	A,	we	have	P[A	∩	B]	=	0	if	P[A]	=	0,	and	P[A	∩	B]	=	P[B]	if	P[A]	=	1.	A	b-adic	prefix	code	is	defined	in	a	similar	way	as	a	binary
prefix	code;	however,	instead	of	0	and	1,	now	all	numbers	0,	1,	.	Let	Bn	=	{d(fn	,	fn+1	)	>	εn	}	and	B	=	lim	sup	Bn	.	N→∞	Hence	XY	∈	L1	(P).	2	The	entropy	of	the	state	m	is	H	(m)	=	−	1	+	m	1	−	m	1	−	m	1+m	log	−	log	.	For	this	reason,	we	first	give	a	proof	only	for	the	case	E	=	R	and	come	to	applications	before	proving	the	difficult	implication	in	the
general	situation.	♣	[−n,n]	n→∞	Exercise	13.2.5	Let	E	=	R	and	μn	=	δn	for	n	∈	N.	Let	NL1	be	the	number	of	infinite	open	clusters	if	p	we	consider	all	edges	e	in	EL	as	open	(independently	of	the	value	of	Xe	).	We	say	that	two	points	x,	y	∈	Zd	are	connected	by	an	open	path	if	there	is	an	n	∈	N	and	an	open	path	(x0	,	x1	,	.	Example	1.107	(i)	Let	θ,	r	>	0
and	let	Γθ,r	be	the	distribution	on	[0,	∞)	with	density	x	→	θr	x	r−1	e−θx	.	.)..	Exercise	20.6.1	Let	Ω	=	[0,	1)	and	τ	:	x	→	2x	(mod	1).	Takeaways	A	Feller	semigroup	of	stochastic	kernels	is	a	Markov	semigroup	with	just	enough	additional	regularity	such	that	we	can	construct	an	RCLL	version	of	the	corresponding	Markov	process.	j	∈J	j	∈J	Reflection	How
do	you	choose	four	events	A1	,	A2	,	A3	,	A4	such	that	each	pair	Ai	,	Aj	,	i	=	j	,	and	each	triple	Ai	,	Aj	,	Ak	,	#{i,	j,	k}	=	3,	is	independent,	but	A1	,	A2	,	A3	,	A4	is	not?	For	τ	−	s,	since	τ	is	a	stopping	time,	we	have	{τ	−	s	≤	t}	=	{τ	≤	t	+	s}	∈	Ft	+s	.	+	Rn−1	)−1	(see	Fig.	By	(8.12)	and	(8.13),	we	have	F˜	(z,	ω)	=	F	(z,	ω)	for	all	z	∈	Q	and	ω	∈	Ω	\	N.	♣
Exercise	21.2.5	Let	B	be	a	Brownian	motion,	b	>	0	and	τb	=	inf{t	≥	0	:	Bt	=	b}.	Consider	the	set	of	functions	1	0		g	dμ	≤	ν(A)	for	all	A	∈	A	,	G	:=	g	:	Ω	→	[0,	∞]	:	g	is	measurable	and	A	7.5	Supplement:	Signed	Measures	185	and	define	γ	:=	sup			g	dμ	:	g	∈	G	.	For	n	∈	N,	the	nth	derivative	ψX	fulfills	lim	ψX(n)	(z)	=	z↑1	∞		P[X	=	k]	·	k(k	−	1)	·	·	·	(k	−	n	+
1),	(3.2)	k=n	where	both	sides	can	equal	∞.	9.3	Discrete	Stochastic	Integral	.	Further,	let	Y1	=	2	if	X1	=	1	and	Y1	=	−1	otherwise.	“(vi)	⇒	(iii)”	Let	f	:	E	→	R	be	bounded	and	measurable	with	μ(Uf	)	=	0.	(iii)	ν	is	totally	continuous	with	respect	to	μ.	Define	Y	=	(Y1	,	.	We	will	derive	a	large	deviations	principle	for	the	empirical	measures	1	δ	Xi	.	♣	Exercise
1.3.3	Let	(μn	)n∈N	be	a	sequence	of	finite	measures	on	the	measurable	space	(Ω,	A).	In	fact,	vague	convergence	is	a	sensible	notion	even	for	infinite	measures.	However,	if	we	do	not	intersect	with	the	set	A,	then	stochastic	convergence	would	fail,	although	a.e.	we	still	had	fn	−→	f	.	Since	κ2	is	finite,	we	have	n≥1	Aω0	,n	=	Ω1	for	all	ω0	∈	Ω0	.	In	order
to	check	the	assumptions	of	Theorem	1.53,	we	only	have	to	check	that	μ	is	σ	-subadditive.	♦	Theorem	17.25	Let	q	be	an	E	×	E	matrix	such	that	q(x,	y)	≥	0	for	all	x,	y	∈	E	with	x	=	y.	be	exchangeable	real	random	variables.	If	there	exists	a	random	variable	S	with	n→∞	Xn,1	+	.	Clearly,	Fμ	is	right	continuous	and	Fμ	(−∞)	=	0,	since	μ	is	upper
semicontinuous	and	finite	(Theorem	1.36).	We	assume	that	{L,	X1	,	X2	,	.	With	different	bounds	(instead	of	0.8),	the	statement	was	found	independently	by	Berry	[10]	and	Esseen	[46].	Reflection	Find	an	example	of	a	discontinuous	linear	map	F	:	V	→	R.	In	particular,	A∗	:=	lim	infn→∞	An	⊂	A∗	:=	lim	supn→∞	An	.	,	Xk	)		A	=	E	ϕk−1	(X1	,	.	To	this	end,
for	n	∈	N0	,	define	Mn	:=	X0	+	n				Xk	−	E[Xk		Fk−1	]	(10.1)	k=1	and	An	:=	n				E[Xk		Fk−1	]	−	Xk−1	.	Takeaways	For	two	examples	of	aperiodic	and	irreducible	Markov	chains,	we	have	constructed	a	coupling	such	that	two	chains	meet	almost	surely:	Random	walks	on	the	d-dimensional	integer	lattice	and	positive	recurrent	Markov	chains.	Corollary
13.31	If	E	is	a	locally	compact	separable	metric	space,	then	M≤1	(E)	is	vaguely	sequentially	compact.	Consequently,	F	(x)	=	)x,	u*/u2	.	Proof	Evidently,	the	singleton	{|X0	|p	}	is	uniformly	integrable.	Then	there	exists	an	ε	>	0	with	(x	−	ε,	x	+	ε)	⊂	U	.	234	10	Optional	Sampling	Theorems	Proof	It	is	enough	to	show	that	E[XT	1A	]	=	E[Xτ	1A	]	for	all	A	∈
Fτ	.	be	open	sets	and	let		n	C	⊂	∞	i=1	Ai	.	Even	if	all	moments	exist,	the	distribution	of	X	is,	in	general,	not	uniquely	determined	by	its	moments.	In	general,	the	expectation	could	be	zero	for	some	t.	Exercise	21.6.1	Show	that	the	map	F∞	:	Ω	→	[0,	∞],	is	A-measurable.	∈	M1	(Rd	)	with	characteristic	functions	ϕ,	ϕ1	,	ϕ2	,	.	Then,	for	I	=	(a,	b],	clearly	PNI
=	Poiα(b−a)	=	Poiα(I	).	For	t	∈	I	,	define	the	σ	-algebras	that	code	the	past	before	t	and	the	future	beginning	with	t	by	F≤t	:=	σ	(Xs	:	s	∈	I,	s	≤	t)	and	F≥t	:=	σ	(Xs	:	s	∈	I,	s	≥	t).	Reff	(0	↔	x)	+	Reff	(x	↔	1)	(19.16)	Since	we	always	have	u(x)	∈	[0,	1],	rearranging	the	terms	yields	(again	in	the	general	situation)	Reff	(1	↔	x)	≤	Reff	(0	↔	1)	+	Reff	(0	↔	x).
Obviously,	only	points	of	UL	can	be	leaves.	More	precisely,	Λ∗	(x)	=	)t	∗	(x),	x*	−	Λ(t	∗	(x)),	Λ∗	(x)	>	)t,	x*	−	Λ(t)	for	all	t	=	t	∗	(x),	and	Λ	(t	∗	(x))	=	x.	A	A	Example	1.85		(i)	Let	Ω		be	countable.	More	generally,	we	also	write	E[X]	=	X	dP	if	only	X−	or	X+	is	integrable.	Definition	1.10	A	class	of	sets	A	⊂	2Ω	is	called	a	λ-system	(or	Dynkin’s	λ-system)	if	(i)
Ω	∈	A,	(ii)	for		any	two	sets	A,	B	∈	A	with	A	⊂	B,	the	difference	set	B	\	A	is	in	A,	and	(iii)	∞	n=1	An	∈	A	for	any	choice	of	countably	many	pairwise	disjoint	sets	A1	,	A2	,	.	Lemma	7.46	Let	μ,	ν	be	finite	measures	on	(Ω,	A)	that	are	not	mutually	singular;	in	short,	μ	⊥	ν.	Exercise	7.5.1	Let	μ	be	a	σ	-finite	measure	on	(Ω,	A)	and	let	ϕ	be	a	signed	measure	on
(Ω,	A).	The	Lebesgue	integral	approximates	the	area	by	the	measure	of	the	levels	sets	(right	hand	side).	A	similar	argument	for	q	−	yields	lim	inf	Fnk	(x)	≥	k→∞	F	(x).	,	T	}).	To	this	end,	we	compute	#A˜	#B	#B˜	P[A]	=	#A	36	=	6	and	P[B]	=	36	=	6	.	Let	r(x)	∈	(R(x)/2,	R(x))	∩	Q.	Uniqueness	of	the	decomposition	is	easy:	If	x	=	y		+	z	is	an	orthogonal
decomposition,	then	y	−	y		∈	W	and	z	−	z	∈	W	⊥	as	well	as	y	−	y		+	z	−	z	=	0;	hence	0	=	y	−	y		+	z	−	z	2	=	y	−	y		2	+	z	−	z	2	+	2)y	−	y		,	z	−	z	*	=	y	−	y		2	+	z	−	z	2	,	whence	y	=	y		and	z	=	z	.		Hence	μ	{d(f,	g)	>	0}	=	0.	More	information	about	this	series	at	Achim	Klenke	Probability	Theory	A	Comprehensive	Course	Third	Edition	Achim	Klenke	Institut
f¨ur	Mathematik	Johannes	Gutenberg-Universit¨at	Mainz	Mainz,	Germany	ISSN	0172-5939	ISSN	2191-6675	(electronic)	Universitext	ISBN	978-3-030-56401-8	ISBN	978-3-030-56402-5	(eBook)	Mathematics	Subject	Classification:	60-01,	60B10,	60G42,	60G55,	60H05,	60H10,	60J10,	37-01,	28-01,	82-00	©	The	Editor(s)	(if	applicable)	and	The	Author(s),
under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	This	work	is	subject	to	copyright.	Let	x(i)	∈	{0,	1}	be	the	opinion	of	the	voter	at	site	i	∈	Λ	and	denote	by	x	∈	{0,	1}Λ	a	generic	state	of	the	whole	population.	As	ϕn	(0)	=	1	for	all	n	∈	N,	we	have	f	(0)	=	1.	Hence	we	have	to	find	a	more	subtle	argument.	We	aim	at	a	contradiction.	♣
Exercise	15.4.5	Let	X1	,	X2	,	.	(ii)	If	Ω0	=	R	and	I	=	{1,	2,	3},	then	R{1,2,3}	is	isomorphic	to	the	customary	R3	.	For	k	∈	{nN	+	1,	.	We	thus	obtain	an	equivalent	network	if	we	replace	multiply	used	nodes	by	multiple	nodes	(see	Fig.	In	the	second	step,	we	draw	i.i.d.	random	variables	X1	,	X2	,	.	,	Dn−1	),	n	∈	N,	for	certain	functions	Fn	:	{−1,	1}n−1	→
N.	μ(A)	≤	n=1	n=1	We	now	give	two	different	proofs	for	(1.13).	Note	that,	for	all	ε	>	0,	l=1,...,kn		it	x		e	−	1		≤	2	x	2	/ε2	,	if	|x|	>	ε,	ε	|t|,	if	|x|	≤	ε.	√	(i)	E[e−λτb	]	=	e−b	2λ	for	λ	≥	0.	Hence	convergence	almost	everywhere	would	not	imply	stochastic	convergence.		Proof	“(i)	⇒	(ii)”	Let	F	be	continuous	at	x.	We	use	the	abbreviations	pi	:=	ti	−	ti−1	and	λi
=	α	·	(ti	−	ti−1	)	and	show	that	(Nti	−	Nti−1	)i=1,...,m	is	independent	(5.18)	and	Nti	−	Nti−1	∼	Poiλi	for	all	i	=	1,	.	Clearly,	the	probability	qn	:=	P[Zn	=	0]	that	Z	is	extinct	by	time	n	is	monotone	increasing	in	n.	We	let	X0	=	x0	>	0	and	for	n	=	1,	.	In	particular,	dν	the	density	dμ	is	unique	up	to	equality	μ-almost	everywhere.	Theorem	13.25	(Continuous
mapping	theorem)	Let	(E1	,	d1	)	and	(E2	,	d2	)	be	metric	spaces	and	let	ϕ	:	E1	→	E2	be	measurable.	n=1	Takeaways	Kolmogorov’s	inequality	gives	bounds	for	the	maximum	of	partial	sums	of	random	variables	similar	to	Chebyshev’s	inequality	for	one	random	variable.	Remark	21.34	Sometimes	we	want	a	Brownian	motion	to	start	not	at	X0	=	0	but		=
at	an	arbitrary	point	x.	t	≤T	Theorem	10.11	(Optional	sampling	theorem)	Let	X	=	(Xn	)n∈N0	be	a	supermartingale	and	let	σ	≤	τ	be	stopping	times.	Let	X	be	a	symmetric	simple	random	walk	on	Zd	.	(ii)	Now	let	I	⊂	R	be	an	interval	and	let	X	and	Y	be	almost	surely	right	continuous.		We	have	established	that	every	finite	measure	on	R,	B(R)	is	a
Lebesgue–Stieltjes	measure	for	some	function	F	.	For	k	∈	N	let	mk	(Xn	)	=	E[Xnk	]	be	the	kth	moment	if	Mk	(Xn	)	<	∞.	Then	(Xn,l	)	is	independent,	centered	and	normed.	Clearly,	an	is	an	n-symmetric	map	(but	not	m-symmetric	for	any	m	>	n).	Exercise	21.3.1	(Hard	problem!)	Let	Px	be	the	distribution	of	Brownian	motion	started	at	x	∈	R.	Hence	E[X]	is
lower	semicontinuous	and	is	thus	a	measure	(by	Theorem	1.36).	From	a	topological	point	of	view,	R	will	be	considered	as	the	so-called	two	point	compactification	by	considering	R	as	topologically	isomorphic	to	[−1,	1]	via	the	map	ϕ	:	[−1,	1]	→	R,	⎧	⎪	⎨	tan(πx/2),	x	→	−∞,	⎪	⎩	∞,	if	x	∈	(−1,	1),	if	x	=	−1,	if	x	=	+1.	∪	FN	)]	<	ε.	Here	we	consider	the	case
where	none	of	the	traits	is	favored	by	selection.	In	Corollary	12.19,	we	will	see	that	in	the	case	of	independent	random	variables,	E	is	also	P-trivial.	,	Xn	)-measurable.	3		gε/3	dμ	0.	A	graphical	representation	of	the	points	(FΦ−1	(t),	Fn−1	(t)),	t	∈	R	is	called	Q-Q-plot	or	quantile-quantile-plot.	n→∞	21.8	Donsker’s	Theorem	551	Next,	for	N	>	0	and	s,	t	∈
[0,	N],	we	compute	the	fourth	moments	of	the	n	,n	¯	Kn	,n	for	the	main	term.	Depending	on	the	outcome	of	a	random	experiment,	we	choose	the	distribution	of	a	second	random	experiment	(in	a	measurable	way).	In	order	to	establish	the	existence	of		μ,	we	define	as	in	Lemma	1.47	μ∗	(A)	:=	inf			μ(F	)	:	F	∈	U(A)	for	any	A	∈	2Ω	.	Later	we	will	encounter
more	0–1	laws	(see,	for	example,	Theorem	2.37).	,	in	∈	{1,	.	Hence,	let	(fnk	)k∈N	be	a	subsequence	k→∞	with	fnk	∈	U	for	all	k	∈	N.	(ii)	(Uniform	distribution)	This	is	immediate.	In	addition,	we	also	want	to	construct	systematically	infinite	families	of	random	variables	with	given	(joint)	distributions.	,	Ak	∈	A	with−lΩ	=	A1	∪.	11.2	for	a	simulation	of	the
voter	model.	Show	that	μ	is	absolutely	continuous	with	bounded	continuous	density	f	=	dμ	dλ	given	by	1	f	(x)	=	2π		∞	−∞	e−it	x	ϕμ	(t)	dt	for	all	x	∈	R.	If,	on	the	other	hand,	A	⊂	R	is	not	in	B(R),	then	A	∈	2R	,	but	X−1	(A)	∈	B(R).)	(ii)	For	x	∈	R,	we	agree	on	the	following	notation	for	rounding:	x!	:=	max{k	∈	Z	:	k	≤	x}	and	"x#	:=	min{k	∈	Z	:	k	≥	x}.	Let	τ
be	the	shift	on	Ω	and	let	P	be	an	invariant	probability	measure.	19.	(17.19)	Thus,	simple	random	walk	on	Z	is	recurrent	if	and	only	if	it	is	symmetric;	that	is,	if	p	=	12	.	n=1	(Xt	,	t	∈	N0	)	is	called	a	symmetric	simple	random	walk	on	Z.	For	measurable	f,	g	:	Ω	→	E,	define		dH	(f,	g)	:=		1	∧	d(f	(ω),	g(ω))	H	(ω)	μ(dω).	.+	Xn	for	every	n.	For	n	∈	N	and	t	∈	[0,
1],	define			Xtn	=	1[0,t	]	(s)	n			λ(ds)	=	ξm	bm	(s)	m=1	n		ξm	)1[0,t	]	,	bm	*.	be	independent	real	random	variables.	By	Kirchhoff’s	rule,	we	have	I	(l,	l	+	1)	=	−I	(x1	)	for	any	l	=	0,	.	Exercise	17.7.1	Use	an	elementary	direct	coupling	argument	to	show	the	claim	of	Theorem	17.61	for	the	case	n2	/n1	∈	N.	Exercise	15.5.1	The	argument	of	Remark	15.39	is
more	direct	than	the	argument	with	Lévy’s	continuity	theorem	but	is	less	robust:	Give	a	sequence	X1	,	X2	,	.	There	exists	a	unique	smallest	σ	-algebra	A∗	⊃	A	and	an	extension	μ∗	of	μ	to	A∗	such	that	(Ω,	A∗	,	μ∗	)	is	complete.	,	2n	},	we	have		*	)	P	Xk2−n	−	X(k−1)2−n		≥	2−γ	n	≤	C	2−n(1+β−αγ	)	.	More	generally,	for	J	⊂	J		⊂	I	,	the	restricted	map		XJJ	:
×	Ω	−→	×	Ω	,	j	j	∈J		j		ω	→	ω		j	∈J	J	(14.1)	is	called	the	canonical	projection.	Evidently,	A	∩	τ	−k	(A)	=	A	for	every	k	∈	N0	.	“(ii)	⇒	(iii)”	For	any	ε	>	0,	there	is	an	nε	∈	N	such	that	fn	−	fnε	1	<	ε	for	all	n	≥	nε	.	(7.8)	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	178	If	in	(7.7)	we	choose	h	=	1{g1}	in	(7.8),	we	obtain	that	(μ+ν)-almost	everywhere	g	≤	1.
Theorem	16.27	Let	μ	∈	M1	(R)	be	nontrivial.	(2)	Checking	if	F	is	constant	needs	computer	time	of	the	same	order	of	magnitude.	(i)	(Pi	◦	X0−1	,	i	∈	I	)	is	tight;	that	is,	for	every	ε	>	0,	there	is	a	K	>	0	such	that		Pi	ω	:	|ω(0)|	>	K	≤	ε	for	all	i	∈	I.	Note	that	in	order	for	)X*	to	have	the	simple	form	as	in	Example	10.6,	it	is	not	enough	for	the	random	variables
Y1	,	Y2	,	.	Therefore,	X∞	is	the	Radon–Nikodym	density	of	Q	with	respect	to	P.	In	the	physical	literature,	Tc	:=	1/βc	is	called	the	Curie	temperature	for	spontaneous	magnetization.	,	xd	)	is	continuous	at	yi	=	xi	.	n=1	By	Parseval’s	equation	and	the	Bienaymé	formula,	we	have	f	22	=	∞		*	)	*	)	)f,	bn	*2	=	Var	I	(f	)	=	E	I	(f	)2	.	7.1,	these	inequalities	enabled
us	to	show	the	celebrated	Fischer-Riesz	theorem.	Let	A	:=	{device	is	declared	as	defective},	B	:=	{device	is	defective},	and	P[B]	=	0.02,	P[A|B]	=	0.95,	P[B	c	]	=	0.98,	P[A|B	c	]	=	0.1.	Bayes’	formula	yields	P[B	|A]	=	=	P[A|B]	P[B]	P[A|B]	P[B]	+	P[A|B	c	]	P[B	c	]	19	0.95	·	0.02	=	≈	0.162.	2	)	*	Hint:	For	Sn	,	use	Markov’s	inequality	with	f	(x)	=	eλx	for
some	λ	>	0	and	then	find	the	λ	that	optimizes	the	bound.	(i)	The	canonical	triple	of	X1	+	.	x	(ii)	Let	f	:	R	→	[0,	∞)	be	continuous	and	let	F	(x)	=	f	(t)	dt	for	all	x	∈	R.	<	bn	and	A	=	i=1	μ(A)	=	n		(bi	−	ai	).	#En	This	implies	the	first	inequality	in	(23.15).		Let	ε	>	0.	E	is	called	locally	compact	if	any	point	x	∈	E	has	an	open	neighborhood	whose	closure	is
compact.	♠	In	Definition	2.32,	we	defined	the	convolution	of	two	real	probability	measures	μ	and	ν	as	the	distribution	of	the	sum	of	two	independent	random	variables	with	distributions	μ	and	ν,	respectively.	In	analogy	with	Lemma	8.10,	we	make	the	following	definition.	Definition	21.1	Let	X	and	Y	be	stochastic	processes	on	(Ω,	A,	P)	with	time	set	I
and	state	space	E.	n→∞	Note	that	kn+1	≤	(1	+	2ε)kn	for	sufficiently	large	n	∈	N.	be	probability	measures	on	E.	♣	Exercise	13.1.5	Let	C	⊂	Rd	be	an	open,	bounded	and	convex	set	and	assume	that	U	⊂	{x	+	rC	:	x	∈	Rd	,	r	>	0}	is	such	that	W	:=	U	∈U	U	has	finite	Lebesgue	measure	λd	(W	).	For	a	fixed	realization	of	the	repeated	experiment,	let	ω1	,	ω2	,
.	Now	define	Xn	(k)	:=	NI	n	(k)	and	0	X	n	(k)	:=	1,	0,	if	Xn	(k)	≥	1,	else.	(For	bounded	f	,	V1	can	easily	be	bounded.)	Indeed,	in	this	case,	Var[I:n	]	=	V1	/n;	hence,	by	Chebyshev’s	inequality,	(	'	P	|I:n	−	I	|	>	ε	n−1/2	≤	V1	/ε2	.	,	n	n				1	−	e−θi	x	.	Before	we	do	so,	we	make	the	following	definition.	(14.8)	k=1	Proof	For	k	=	1,	.	f	1	∈E	1	Show	that	H	(p)	≤	H
(p1	)	+	H	(p2	).	(i)	Show	that	there	exist	finite	numbers	(dk	)k∈N	(depending	on	the	distribution	PX1	)	such	that	for	any	k,	n	∈	N	we	have		)	*	E	(X1	+	.	If	λ(A)	<	∞,	then	there	exists	an	n	∈	N	with	λ(A\Kn	)	<	ε/2.	(iii)	A	is	closed	under	intersections.	For	monotone	increasing	bounded	f	:3Rd	→	R,	3	3we	have	f	(x1	)−f	(x		2	)	≤	0	for	every	x	=	(x1	,	x2	)	∈	L;
hence	f	dμ1	−	f	dμ2	=	f	(x	)	−	f	(x	)	ϕ(dx)	≤	0	and	thus	μ1	≤st	μ2	.	Denote	ϕ(X)	=	ϕ(X1	,	.	p	Hence	A	is	in	the	tail	σ	-algebra	T	((Xe	)e∈E	)	by	Theorem	2.35.	,	ωn	]c	=	[ω1	,	.	Then	⎡	Cov	⎣d	+	m		αi	Xi	,	e	+	n		⎤	βj	Yj	⎦	=	j	=1	i=1		αi	βj	Cov[Xi	,	Yj	].	Then	(PXn,l	)n∈N	is	tight	for	every	l	=	1,	.	12.3,	here	we	give	a	different	proof	of	de	Finetti’s	theorem
(Theorem	12.26).	If	{ω}	∈	A,	then	the	completion	is	A∗	=	2Ω	,	μ∗	=	δω	.	Reflection	If	instead	of	μ(N0	)	=	1,	in	the	previous	lemma	we	only	assume	μ(N0	)	∈	[0,	1],	then	we	still	have	(i)	⇐	(ii)	⇐⇒	(iii)	⇐⇒	(iv),	but	not	(i)	⇒	(ii).	♦	Definition	12.6	Let	X	=	(Xn	)n∈N	be	a	stochastic	process	with	values	in	E.	Hence	τ	is	the	shift	on	the	product	space	⊗I	.	The
nth	symmetrized	average	An	(ϕ)	:	E	N	→	R,	x	→	1		ϕ(x		)	n!	(12.1)	∈S(n)	is	an	n-symmetric	map.	We	still	have	to	show	that	κ	is	a	version	of	the	conditional	distribution.	For	x	∈	Z	\	{0},	use	partial	integration	to	compute	the	integral,		π	−π		cos(tx)	ϕ(t)	dt	=	2	π	cos(tx)	(1	−	2t/π)	dt	0	=		π	4	2	4	4	1−	sin(πx)	−	sin(0)	+	sin(tx)	dt	x	π	x	πx	0	=	4	(1	−	cos(πx)).
Furthermore,	tl	∈	Dl	for	l	=	n,	.	Here	summation	is	over	all	subsets	of	{1,	.	In	particular,	for	λ	∈	(0,	1),	Rλ	:=	∞		λn	pn	(0,	0)	n=0	=	(2π)−D	∞			n=0	=	(2π)−D	=	(2π)	−D	[−π,π)D		[−π,π)D		λn	φ	n	(t)	dt	1	dt.	of	364	4	15	Characteristic	Functions	and	the	Central	Limit	Theorem	−1	F100	(t)	4	2	2	0	0	−2	−2	−4	−4	FΦ−1	(t)	−4	−2	0	α	=	0.4	2	−1	F100	(t)	4
FΦ−1	(t)	−4	−2	0	α	=	0.48	2	4	∗	from	Example	15.53	with	α	=	0.4	(left)	and	α	=	0.48	(right).	Since	all	Xi	◦	Y	are	measurable,	we	have	Y	−1	(A	)	∈	A	for	any	A	∈	E		.	To	conclude,	we	pick	up	again	the	example	with	which	we	started.	Hence	γε	is	minimal	for	ε	=	ε0	.	In	fact,	this	argument	is	even	more	robust	since	it	uses	only	that	the	single	steps	of	X
have	an	expectation	that	is	not	zero.	Theorem	4.17	The	map		·	1	is	a	seminorm	on	L1	(μ);	that	is,	for	all	f,	g	∈	L1	(μ)	and	α	∈	R,	αf	1	=	|α|	·	f	1	,	f	+	g1	≤	f	1	+	g1	,	f	1	≥	0	for	all	f	(4.4)	and	f	1	=	0	if	f	=	0	a.e.	Proof	The	first	and	the	third	statements	follow	from	Theorem	4.9(iii)	and	Theorem	4.8(i).	If	the	derivative	of	f	is	bounded,	then	f	is	also	(globally)
Hölder-1-continuous,	but	not	necessarily	(globally)	Hölder-γ	-continuous	for	any	γ	∈	(0,	1).	408	17	Markov	Chains	In	particular,	we	see	that	Xt	is	finite	for	all	t.	Manifestly,	the	map	x	→	Ex	[F	(B)]	=	E0	[f	(Bt1	+	x,	.	Furthermore,	we	have	Px	[Xt	∈	A]	=	(δx	·	κt	)(A)	=	κt	(x,	A).	Let	Ω	=	Ω	+	Ω	−	be	a	Hahn	decomposition	of	Ω.	Hence,	we	get	kn		3		t2	ϕn,l	(t)
−	1	=	−	.	Theorem	24.4	Let	X	be	a	random	measure	on	E.	Let	A0	=	{∅}.	Concluding,	we	get	h(P,	τr	)	=	0.	Our	aim	is	to	find	a	maximal	element	f	in	G	(i.e.,	an	f	for	which	This	f	will	be	the	density	of	νa	.	In	particular,	any	edge	that	directly	connects	0	to	1	can	be	deleted.	ai	Then	μf	is	a	σ	-finite	content	on	A	(even	a	premeasure).	It	is	impossible	that	the
random	walk	would	go	to	∞	(or	−∞)	slower	than	linearly.	,	Xn−1	,	Dn	)	for	any	n	=	1,	.	Do	the	sets	F˜n	=	[−n,	n]	∩	Z,	n	∈	N	do	the	trick?	Denote	by	Uϕ	the	set	of	points	of	discontinuity	of	ϕ.	Thus	Xλ	=	)λ,	X*.	be	i.i.d.	with	E[Yi	]	=	0	and	E[Yi2	]	=	1.	“(i)	⇒	(ii)”	Note	that	|x	+	y|p	≤	2p	(|x|p	+	|y|p	)	for	all	x,	y	∈	R.	Show	that	A	is	a	semiring	and	μ	is	a
content	on	A	that	is	lower	and	upper	semicontinuous	but	is	not	σ	-additive.	19.9	Star–triangle	transformation.	)	*	n→∞	A	coupling	is	called	successful	if	P(x,y)	−→	0	for	all	m≥n	{Xm	=	Ym	}	x,	y	∈	E.	Let	Z0	=	1	and		Zn−1	Zn	=	Xn−1,i	for	n	∈	N.	Then	ϕ	is	an	infinitely	divisible	CFP.	367	16.1	Lévy–Khinchin	Formula..	Let	Xn	,	n	∈	N,	be	Poisson	random
variables	with	parameters	λn	.	L(ϕ)	is	nonempty	and	ϕ	=	sup	L(ϕ).	Define	Sn	=	T1	+	.	(iii)	A∈F	A	∈	τ	for	any	F	⊂	τ	.	We	show	that	X	has	a	continuous	modification	on	[0,	1].	Since	f	ε	↑	f	and	g	ε	↑	g	for	ε	↓	0,	the	monotone	convergence	theorem	implies	(4.8).	For	example,	consider	E	=	{0,	.	Define	C		:=	U	∩	Kn	:	U	∈	U,	n	∈	N	and	C	:=	0	N	1	Cn	:	N	∈	N
and	C1	,	.	If	ϕ	:	I	→	R	is	a	map,	then	we	write	L(ϕ)	:=	g	:	I	→	R	is	affine	linear	and	g	≤	ϕ	.	Closed	subsets	of	Polish	spaces	are	again	Polish.	Then	μ	is	an	∅-continuous	content	but	not	a	premeasure.	(17.15)	Definition	17.23	If	(17.13),	(17.14)	and	(17.15)	hold,	then	q	is	called	the	Q-matrix	of	X.	Definition	16.3	The	compound	Poisson	distribution	with
intensity	measure	ν	∈	Mf	(R)	is	the	following	probability	measure	on	R:	CPoiν	:=	e∗(ν−ν(R)δ0)	:=	e−ν(R)	∞	∗n		ν	n=0	n!	.	Ω×[0,T	]	)3∞	*	Step	3.	Takeaways	A	priori,	checking	equality	of	two	measures	by	computing	integrals	or	checking	weak	convergence	of	a	sequence	of	measures	requires	to	consider	a	huge	class	of	test	functions.	A	ring	is	called	a
σ	-ring	if	it	is	also	σ	-∪-closed.	Furthermore,	for	all	r	∈	(1,	s),	1	f	(t)	=	2π	i		∞	−∞	t	−(r+iρ)	φf	(r	+	iρ)	dρ.	As	E	is	compact,	by	the	Stone–Weierstraß	theorem,	there	is	a	g	∈	C	such	that	g˜	−	f˜∞	<	ε.	Accordingly,	let	X˜	and	Y˜	be	independent	random	walks	with	transition	matrix	p.	(iii)	The	random	walk	oscillates	around	0	with	a	growing	amplitude.	If	the
series	in	(3.1)	converges	for	some	z	>	1,	then	the	statement	is	also	true	for	any	r	∈	(0,	z)	and	we	have	lim	ψX(n)	(x)	=	ψX(n)	(1)	<	∞	for	n	∈	N.		For	k	∈	K,	let	Bk	∈	Z	k	and	Jk	⊂	Ik	be	finite	with	Bk	=	j	∈Jk	Aj	for	certain	Aj	∈	σ	(Xj	).	Proof	As	L(ϕ)	=	∅	by	Corollary	7.8,	we	can	choose	numbers	a,	b	∈	R	such	that	ax	+	b	≤	ϕ(x)	for	all	x	∈	I	.	As	characteristic
functions	determine	distributions,	the	claim	follows	by	Theorem	13.34.	n	In	other	words,	(PSn	/n	)n∈N	satisfies	an	LDP	with	rate	n	and	rate	function	I˜.	Then	the	following	are	equivalent:	(i)	X	is	aperiodic.	For	pairwise	independent	random	variables	with	first	moment,	we	could	establish	a	strong	law	of	large	number	via	an	involved	truncation
procedure	which	allows	to	use	second	moments	estimates.	We	prepare	for	the	proof	of	Theorem	16.5	with	a	further	theorem.	Submartingales	are	favourable	games	(the	mean	future	is	better	than	the	present)	and	supermartingales	are	unfavourable	games	(the	mean	future	is	not	as	good	as	the	present).	n→∞	Show	that	μ	is	a	measure	on	(Ω,	A).	n	n−1
k=0	“	⇐	”	Now	assume	that	(20.7)	holds.	+	We	now	construct	Ω	+	with	∞ϕ(Ω	)	=	α.	As	one	of	the	most	prominent	orders	we	present	here	the	so-called	stochastic	order	and	illustrate	its	connection	with	couplings.	For	α	>	2,	ϕα,γ	is	not	a	CFP,	see	Exercise	15.4.3.)	(v)	The	Gamma	distribution	Γθ,r	with	CFP	ϕθ,r	(t)	=	exp(rψθ	(t)),	where	∗n	ψθ	(t)	=	log(1
−	it/θ	),	is	infinitely	divisible	with	Γθ,r	=	Γθ,r/n	.	The	limits	in	(i)	and	(iii)	coincide.	By	construction,	L	=	V	⊂	U	is	compact.)	Specializing	on	the	case	U	=	E,	we	get	that	for	any	compact	set	K,	there	exists	a	relatively	compact	open	set	L◦	⊃	K.	Define	Y	=	(Y	(1)	,	.	By	assumption,	A	∩	B	∈	D,	and	trivially	A	∩	B	⊂	A.	By	the	monotone	convergence	theorem
(Theorem	4.20),	we	conclude				f	dλ	=	lim	I	n→∞	I	b	gn	dλ	=	f	(x)	dx.	Let	Xt	:=	YTt	and	Px	=	0		PYx	⊗	PT0	.	Theorem	1.61	(Finite	products	of	measures)	Let	n	∈	N	and	let	μ1	,	.	(Hint:	Without	proof,	use	the	existence	of	a	subset	of	[0,	1]	that	is	not	Borel	measurable.	“	⇐	”	Now	let	(X,	(Px	)x∈E	)	be	a	Markov	process.	We	say	that	ν	is	singular	to	μ.
Therefore,	f	(y)	∈	Bδ	(f	(x))	∩	D	=	∅	and	f	(z)	∈	Bδ	(f	(x))	∩	D	c	=	∅;	hence	f	(x)	∈	∂D.	μ(E)	Let	N,	Y1	,	Y2	,	.	If	the	time	set	is	countable,	this	property	can	be	generalized	to	random	(stopping)	times	and	is	then	called	strong	Markov	property.	Show	that,	for	every	ε	>	0,	there	is	a	set	A	∈	A	with	μ(Ω	\	A)	<	ε	n→∞	and	supω∈A	|fn	(ω)	−	f	(ω)|	−→	0.	699
Name	Index	..	n	n∈N	n	Definition	20.30	(Entropy	of	the	simple	shift)	h(P,	τ	)	is	called	the	entropy	of	the	dynamical	system	(Ω,	A,	P,	τ	).	,	βn	∈	R	as	well	as	d,	e	∈	R.	Consequently,	νa	0	μ	and	ν	=	νa	+	νs	is	the	decomposition	we	wanted	to	construct.	(i)	(ii)	(iii)	(iv)	Nμ1	,σ	2	∗	Nμ2	,σ	2	=	Nμ1	+μ2	,σ	2	+σ	2	for	μ1	,	μ2	∈	R	and	σ12	,	σ22	>	0.	Below	the
critical	temperature,	the	magnetization	increases	with	decreasing	temperature.	(3.9)	In	particular,	we	have	∞				2n	−n	n	√	=	4	x	n	1−x	n=0	1	for	all	x	∈	C	with	|x|	<	1.	Hence	I1A	is	measurable	for	all	A	∈	A1	⊗	A2	.	(23.23)	In	the	case	h	=	0,	m	=	0	is	a	solution	of	(23.23)	for	any	β.	Then	τ	is	a	bounded	stopping	time	and	sup	Xm	≥	a	⇐⇒	m≤n		Let	f	(m,	X)
=	1{m≤n}	1{Xn−m	>a}	+	1	2	τ	≤	n.	(iii)	The	distribution	of	τb	has	density	fb	(x)	=	√b	2π	e−b	2	/(2x)	x	−3/2	.	♣	Exercise	21.4.3	Let	p	≥	1	and	let	X1	,	X2	,	X3	,	.	Show	that	Xn	−→	X	if	and	only	if	D	Xn	+	Yn	−→	X.	Theorem	1.64	(Product	measure,	Bernoulli	measure)	Let	E	be	a	finite	nonempty	set	and	Ω	=	E	N	.	,	μn	be	probability	measures	on	R,	B(R)	.
Then	there	exists	a	smallest	σ	-algebra	σ	(E)	with	E	⊂	σ	(E):	σ	(E)	:=		A.	At	this	point,	we	only	briefly	make	plausible	the	existence	theorem	for	such	regular	versions	of	processes	in	the	case	of	so-called	Feller	semigroups.	♠	Reflection	An	event	is	independent	of	itself	if	A	and	B	are	independent	for	B	=	A.	Remark	9.2	Sometimes	families	of	random
variables	with	more	general	index	sets	are	called	stochastic	processes.	In	other	words,	there	are	contents	that	are	not	premeasures.	However,	rigorous	proofs	are	known	only	for	d	=	2	and	d	≥	19	(see	[67]).	Then	f	◦ϕ	is	bounded	and	measurable	and	Uf	◦ϕ	⊂	Uϕ	;	hence	μ(Uf	◦ϕ	)	=	0.	Consider	the	case	Ω	=	R,	μ	the	Lebesgue	measure	and	fn	:=
1[n,n+1]	,	f	≡	0.	,	Ak	}	for	certain	pairwise	disjoint	non-empty	sets	A1	,	.	By	Theorem	16.5,	we	have	CPoiνn	−→	μ.	Consider	a	Poisson	process	(Nt	)t	≥0	and	choose	an	independent	exponentially	distributed	random	variable	T	(it	would	suffice	for	T	to	have	a	density).	,	ωn	]	is	the	product	of	the	probabilities	of	the	individual	events;	that	is,	μ([ω1	,	.	104	4
The	Integral	Exercise	4.1.1	Let	f	:	R	→	R	be	defined	by	f	(x)	=	e−x	1[0,∞)	(x),	and	let	λ	the	Lebesgue	measure	on	R.	Now	fix	ε	>	0.	Show	the	following:	(i)	The	effective	conductance	between	x0	and	x1	is	Ceff	(x0	↔	x1	)	=	d.	Then	C	=	{fλ	,	λ	≥	0}	separates	points,	f0	=	1	∈	C	and	fμ	·	fλ	=	fμ+λ	∈	C.	In	addition,	these	functions	are	exponentially	scaled
with	1/ε.	n	n−1	lim	n→∞	k=0	(20.7)	20.5	Mixing	507	Proof	“	⇒	”	Let	(Ω,	A,	P,	τ	)	be	ergodic.	Exercise	2.1.1	In	a	queue	each	new	arriving	person	chooses	independently	a	random	waiting	position.	Exercise	16.2.1	Let	μ	be	an	α-stable	distribution	and	let	ϕ	be	its	characteristic	function.	L	Thus,	eventually	there	will	be	a	consensus	of	all	individuals,	and
the	probability	that	the	surviving	opinion	is	e	∈	{0,	1}	is	the	initial	frequency	of	opinion	e.	For	any	x	∈	E,	dx	:=	gcd(N(x,	x))	is	called	the	period	of	the	state	x.	Indeed,	for	s	<	t	and	for	the	case	of	a	submartingale,					E[Xt		Fs	]	=	E[E[Xt		Fs	]		Fs	]	≥	E[Xs		Fs	]	=	Xs	.	n→∞	n→∞		n→∞	Hence	Z	=	0	and	thus	E[Zn		F	]	−→	0	almost	surely.	In	particular,	we	get
(as	shown	already	in	Example	4.22)	that	E[Sn	]	=	0	for	all	n	∈	N.	We	follow	the	exposition	in	[37].	♦	Example	10.7	Let	Y1	,	Y2	,	.		For	A	∈	A,	we	define	f	dμ	:=	A	(f	1A	)	dμ.	If	we	let	ε	→	0,	intuitively	we	should	get	the	conditional	probabilities	as	proportional	to	the	thickness	(in	metres).	]	Case	2:	Var[Y	]	>	0.	Note	that	Bn,k	∞	≤	2−(n+1)/2	if	n	∈	N	and
Bn,k	Bn,l	=	0	if	k	=	l.	,	DT	.	Remark	7.41	(i)	If	ϕ	is	a	signed	measure,	then	in	(7.10)	we	automatically	have	absolute	convergence.	be	identically	distributed,	real	random	p		n−1				Xk		for	n	∈	N.	Furthermore,	E[Yn	(x)]	=	P[Xn	≤	x]	=	F	(x)	and	E[Zn	(x)]	=	P[Xn	<	x]	=	F	(x−).	“(viii)	⇒	(vii)”	This	is	obvious	by	Lemma	13.15.	Since	E	is	a	π-system,	Theorem
1.19	yields	A	⊃	DE	⊃	δ(E)	=	σ	(E)	=	A.	14.4	Markov	Semigroups	.	We	define	a	set	function	μ˜	F	:	A	→	[0,	∞),	(a,	b]	→	F	(b)	−	F	(a).	♦	Theorem	2.26	Let	K	be	an	arbitrary	set	and	Ik	,	k	∈	K,	arbitrary	mutually	disjoint	index	sets.	Hence,	by	Theorem	12.14,		*	)	n→∞	An	(ϕ)	−→	E	ϕ(X)		E	a.s.	and	in	L1	.	be	independent		random	variables	with	P[Xn	=	1]	∈	(0,
1)	for	all	n	∈	N.	Klenke,	Probability	Theory,	Universitext,	493	494	20	Ergodic	Theory	Example	20.3	(i)	If	X	=	(Xt	)t	∈I	is	i.i.d.,	then	X	is	stationary.	It	suffices	to	consider	B	=	(Bt	)t	∈[0,1]	.	Then	a.e.	convergence	is	equivalent	to	a.e.	convergence	on	each	An	.	(For	example,	for	any	x	∈	K,	take	an	open	ball	Bεx	(x)	of	radius	εx	>	0	that	is	contained	in	U	and
that	is	relatively	compact.	k→∞	k→∞	N→∞	On	the	other	hand,	Acn,N	↓	∅	for	N	→	∞;	hence	μ(Acn,N	)	−→	0.	n→∞	In	both	cases,	we	have	fn	−→	f	almost	everywhere.	107	5	Moments	and	Laws	of	Large	Numbers	.	By	Theorem	15.57,	this	yields	the	claim.	In	statistical	physics,	a	key	quantity	is	the	so-called	partition	function		Znβ	:=	e−βUn	dμ0n	.	More
precisely,	there	exists	a	unique	finite	C	for	any	B	∈	Fn	.	Indeed,	#		∈	S(n)	:	−1	(i)	≤	l	for	some	i	∈	{1,	.	If	λn	(A)	is	finite,	then	for	any	ε	>	0	there	exists	a	compact	K	⊂	A	such	that	λn	(A	\	K)	<	ε.		random	nt	!	n	For	t	>	0,	let	St	=	i=1	Yi	and		Stn	=	√	12	Stn	.	By	assumption,	the	set	E		:=	{Xi−1	(A	)	:	A	∈	Ai	,	i	∈	I	}	is	a	generator	of	A	.	Hence,	it	is	enough	to
show	that	the	integrals	along	δb,t	and	#c,t	vanish	if	b	→	0	and	c	→	∞.			∞	∞		μ(An	)	≤	μ	An	for	any	choice	of	countably	many	(iv)	If	A	is	a	ring,	then	n=1	n=1	∞		mutually	disjoint	sets	A1	,	A2	,	.	We	study	periodicity	of	Markov	chains	in	the	first	section.	σ	>τ	is	a	stopping	time	In	fact,	obviously,	we	have	Fτn	⊃	Fτ	+	for	all	n.	,	ωn	∈	E	and	n	∈	N.	(8.10)	If	X
is	surjective,	then	ϕ	is	determined	uniquely.	(For	example,	for	the	Petersburg	game	(Example	4.22)	we	had	Fn	(x1	,	.	Hence,	in	the	following,	assume	g(t)	<	∞	for	all	t	>	0.	22.3	Hartman–Wintner	Theorem	.	Let	N	=	{ω	:	f	(ω)	>	0}.	∈	M≤1	(R)	with	corresponding	distribution	functions	F,	F1	,	F2	,	.	By	construction,	A	is	predictable	with	A0	=	0,	and	M	is	a
martingale	since				*	)	E[Mn	−	Mn−1		Fn−1	]	=	E	Xn	−	E[Xn		Fn−1	]		Fn−1	=	0.	n→∞	(ii)	(Xn,l	)	is	a	null	array	and	PSn	−→	N0,1	.	n=1	k→∞	Then	αkε	−→	have	αkε	=	2−k	3∞	0	∞		g	ε	(t)	dt.	If	r	∈	F	is	an	arbitrary	fixed	point	of	ψ,	then	r	≥	0	=	q0	.	Later	we	will	come	back	to	the	introductory	example	and	make	the	computations	explicit.	Hence	we	only
have	to	show	that	the	conditional	distributions	exist.	The	starting	point	will	be	to	define	the	values	of	μ	on	a	smaller	class	of	sets;	that	is,	on	a	semiring.	However,	in	practice,	this	distinction	will	not	be	needed	in	this	book.	we	have	Ei	=	E	Takeaways	Assume	that	a	Markov	chain	can	return	to	a	given	state	only	at	times	that	are	a	multiple	of	some
natural	number	d	and	assume	that	d	is	the	largest	number	with	this	property.	Reflection	Find	an	example	that	shows	that	in	(iii),	we	cannot	simply	drop	the	assumption	that	there	exists	a	sequence	En	↑	Ω	with	μ(En	)	<	∞.	For	n	∈	N,	define	the	polynomial	fn	by	fn	(x)	:=	n		f	(k/n)	k=0			n	k	x	(1	−	x)n−k	k	for	x	∈	[0,	1].	Then,	in	particular,	A	∈	F	;	hence	*
)	*	)	*	)	E	1A	E[E[X	|F	]|G]	=	E	1A	E[X	|F	]	=	E[1A	X]	=	E	1A	E[X	|G]	.	+	R(5,	6).	B	⊂	U	:=	n=1	Un	.	Find	an	example	that	shows	that	this	assumption	cannot	be	dropped.		Then	D(ε)	:=	∞	n=1	Dn	(ε)	⊂	N,	where	N	is	the	null	set	from	the	definition	of	almost	everywhere	convergence.	By	Theorem	1.18,	it	is	sufficient	to	show	that	M(μ∗	)	is	a	λ-system.	Now
let	Ω1	,	Ω2	,	.	Definition	8.35	A	measurable	space	(E,	E)	is	called	a	Borel	space	if	there	exists	a	Borel	set	B	∈	B(R)	such	that	(E,	E)	and	(B,	B(B))	are	isomorphic.	Then	ν(An	)	<	∞;	hence		(f1	−	f2	)	dμ.	Let	I	be	the	unit	matrix	on	E.	Roughly	speaking,	the	difference	is	that	vague	convergence	does	not	imply	convergence	of	total	masses.	Theorem	5.32
(Baum	and	Katz	[8])	Let	γ	>	1	and	let	X1	,	X2	,	.	Then	the	canonical	process	Xn	:	(Rd	)N0	→	Rd	is	a	Markov	chain	with	distributions	(Px	)x∈Rd	.	Clearly,	this	measure	is	σ	-finite;	however,	it	is	neither	locally	finite	nor	outer	regular.	Definition	9.37	(Discrete	stochastic	integral)	Let	(Xn	)n∈N0	be	an	F-adapted	real	process	and	let	(Hn	)n∈N	be	a	real-
valued	and	F-predictable	process.	+	Xk	for	k	=	1,	.	(21.4)	Hence	s→t	Xs	−→	Xt	in	probability.	Then	f	=	f	+	−	f	−	with	f	+	,	f	−	≥	0	being	integrable	functions.	c1	(ek	),	.	P	Xjr	∈	Air	for	all	r	=	1,	.	Let	(Ye	)e∈E	be	an	independent	family	of	random	variables	with	P[Ye	≤	q]	=	q	for	any	e	∈	E	and	q	∈	{p,	p	,	1}.	,	T	,	as	well	as	x0	∈	R	such	that	X0	=	x0	and	Xn
=	fn	(X1	,	.	Hence	d(B1	,	Ac1	)	>	0.	=	Z0i	=	1,	then	D	Z	=	Z1	+	.	This	implies	Sn	≥	S	+	2	for	n	≥	n0	and	hence	lim	infn→∞	Sn	/n	≥	pε	2	>	0.	Sometimes	we	will	drop	the	qualifications	“	almost	everywhere	”	and	“	almost	surely	”.	Hence		(B(R))⊗[0,∞)		Ω		=	σ	Xt	,	t	∈	[0,	∞)	=	B(Ω,	d).	The	subset	of	probability	measures	is	denoted	by	M1	(Ω)	:=	M1	(Ω,	A).
Then	f	is	Hölder-continuous	of	order	γ	with	constant	C	:=	C(ε)	"T	/ε#1−γ	.	By	the	dominated	convergence	theorem,	we	get	(25.3).	Then	ϕn	=	ϕ	1/n	serves	the	purpose.	Let	Z	1	,	.	We	denote	the	equivalence	relation	by	R	and	let	UL	=	KL	/R	be	the	set	of	equivalence	classes.	Then	αf	+	βg	is	also	harmonic	on	E	\	A.	Definition	9.22	If	τ	<	∞	is	a	stopping
time,	then	we	define	Xτ	(ω)	:=	Xτ	(ω)	(ω).	In	the	latter	case,	the	absolute	value	of	the	mean	magnetization		β,0		β,0	is	m±		=	m+	>	0.	Definition	7.4	A	subset	G	of	a	vector	space	(or	of	an	affine	linear	space)	is	called	convex	if,	for	any	two	points	x,	y	∈	G	and	any	λ	∈	[0,	1],	we	have	λx	+	(1	−	λ)y	∈	G.	Then	E[X]	=	n		kP[X	=	k]	=	k=0			n		n	k	k	p	(1	−	p)n−k
k	k=0	=	np	·		n			n−1	k=1	k−1	pk−1	(1	−	p)(n−1)−(k−1)	=	np.	(ii)	(Stability	under	complements)	If	A	∈	A0	,	then	X−1	((A	)c	)	=	(X−1	(A	))c	∈	σ	(X−1	(E		));	hence	(A	)c	∈	A0	.	(21.24)	Lévy	Construction	of	Brownian	motion	Up	to	continuity	of	paths,	X	is	thus	a	Brownian	motion.	The	main	theorem	says	that	any	function	of	the	history	up	to	a	given	time	t
can	be	represented	as	a	discrete	stochastic	integral	with	respect	to	this	binary	splitting	process.	and	Y1	,	Y2	,	.	If	G	⊂	F	is	a	σ	-algebra,	then	we	write	L[X	|G]	for	the	regular	conditional	distribution	of	X	given	G.	Here	one	choice	(and	thus	up	to	multiples	the	unique	choice)	for	the	conductances	is		C(x,	x	+	1)	=	p	1−p	x	for	x	∈	Z,	and	C(x,	y)	=	0	if	|x	−	y|
>	1.	Letting	ε	→	0,	we	get	(13.14).	Our	next	goal	is	to	deduce	simple	criteria	in	terms	of	distribution	functions	and	densities	for	checking	whether	a	family	of	random	variables	is	independent	or	not.	By	(i),	we	have	(P3).	Thus	(wn	)n∈N	is	a	Cauchy	sequence:	wm	−	wn		−→	0	if	m,	n	→	∞.	If	this	is	the	case,	then	strict	inequality	holds	if	H	(p)	<	∞.	24.1
Random	Measures	615	independent	increments	and	that	PX(A)	=	PX1	(A)	∗	PX2	(A)	∗	.	To	this	end,	we	distinguish	two	cases.	Klenke,	Probability	Theory,	Universitext,	163	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	164	the	triangle	inequality,	to	this	end,	we	have	to	change	the	space	a	little	bit	since	we	only	have	f	−	gp	=	0	⇐⇒	f	=g	μ-a.e.	For	a
proper	norm	(that	is,	not	only	a	seminorm),	the	left-hand	side	has	to	imply	equality	(not	only	a.e.)	of	f	and	g.	Consider	the	distribution	μα	on	R	with	density	fα	(x)	=	1	|x|−1−1/α	1{|x|≥1}	.	Clearly,	E	⊂	DE	;	hence	δ(E)	⊂	DE	.	6	1	Basic	Measure	Theory	(ii)	Assume	A	∈	AI	.	♦	60	2	Independence	Theorem	2.13	(i)	Let	I	be	finite,	and	for	any	i	∈	I	let	Ei	⊂	A
with	Ω	∈	Ei	.	In	the	rest	of	this	chapter,	we	let	(Ω,	A)	and	(Ω		,	A	)	be	measurable	spaces.	Starting	d	with	a	graph	other	than	Z	,	for	example	an	infinite	binary	tree,	can	result	in	multiple	infinite	connected	components	(Exercise	2.4.1).	We	can	argue	as	follows.	be	exchangeable,	square	integrable	random	variables.	Hence	(16.4)	holds	if	n→∞	the	array
(Xn,l	)	is	a	null	array.	If	in	particular	σ	(E		)	=	A	,	then	X	is	A	−	−A	-measurable	⇐⇒	X−1	(E		)	⊂	A.	,	tn	∈	I	,	we	have	that	(Xt1	,	.	28	1	Basic	Measure	Theory		As	in	Example	1.54,	it	can	be	shown	that	μ˜	F	((a,	b])	≤	ε	+	∞	˜	F	((a(k),	b(k)]).	,	x1	+	.	Define	two	sets	B1	:=	x	∈	C	:	d(x,	Ac1	)	≥	d(x,	Ac2	)	,	A1	B1	B2	:=	x	∈	C	:	d(x,	Ac1	)	≤	d(x,	Ac2	)	.	Indeed,	Xn
=	X0	+	Z1	+	.	,	n}	≥	t	≤	t	−2	Var[Sn	].	As	soon	as	constructing	probability	spaces	has	become	routine,	the	concrete	probability	space	will	lose	its	importance	and	it	will	be	only	the	random	variables	that	will	interest	us.	Example	17.55	Let	X	be	a	real	random	variable	and	let	f,	g	:	R	→	R	be	monotone	increasing	functions	with	E[f	(X)2	]	<	∞	and	E[g(X)2
]	<	∞.	(i)	Show	that	I	−	p	is	invertible.	For	x	=	(x0	,	.	6.1	Almost	Sure	and	Measure	Convergence	.	Hence,	for	any	ε	>	0,	there	exists	a	compact	set	K	⊂	E	with	P[X1	∈	K	c	]	<	ε2	.	Furthermore,	)	2	*	n→∞	Ln	(ε)	=	E	Y1	1{|Y1	|>ε√n}	−→	0;	hence	(Xn,l	)	satisfies	the	Lindeberg	condition.	Hence	∞		)	*	σ2	ψ(t)	:=	log	E	eit	X	=	−	t	2	+	ibt	+	ψk	(t)	2	k=0
satisfies	the	Lévy–Khinchin	formula	σ2	ψ(t)	=	−	t	2	+	ibt	+	2			eit	x	−	1	−	itx	1{|x|	0.	n∈N	Similarly,	we	get	μ({f1	<	f2	})	=	0;	hence	f1	=	f2	μ-a.e.	Definition	7.30	Let	μ	and	ν	be	two	measures	on	(Ω,	A).	,	XN	=	xN	]	=	P[X1	=	x1	]	N−1		P[Xk+1	=	xk+1	|X1	=	x1	,	.	By	the	strong	n=1	Markov	property,	for	every	finite	stopping	time	σ	(recall	that	Fσ	is	the	σ
-algebra	of	the	σ	-past),		Pπ	[X	∈	A		Fσ	]	=	PXσ	[X	∈	A].	For	d	≥	2,	we	have	pc	(d)	∈	2d−1	,	3	.	Hence	P[Ai	]	=	whence	+	,		P	Aj	=	P[Aj	].	Proof	(i)	For	t	∈	I	,	we	have	{σ	∨	τ	≤	t}	=	{σ	≤	t}	∩	{τ	≤	t}	∈	Ft	and	{σ	∧	τ	≤	t}	=	{σ	≤	t}	∪	{τ	≤	t}	∈	Ft	.	Hence	μn	is	supported	by	[0,	∞).	Neither	the	publisher	nor	the	authors	or	the	editors	give	a	warranty,
expressed	or	implied,	with	respect	to	the	material	contained	herein	or	for	any	errors	or	omissions	that	may	have	been	made.	In	particular,	it	is	analytic	and	is	hence	determined	by	the	coefficients	of	its	power	series	about	t	=	0;	that	is,	by	the	moments	of	X.	sup	f	∈F	(6.5)	{|f	|>gε	}	Clearly,	(ii)	implies	(i).	“	⇒	”	By	the	usual	approximation	arguments,	it
is	enough	to	consider	functions	f	that	depend	only	on	finitely	many	coordinates	0	≤	t1	≤	t2	≤	.	David	Wilson	has	nice	simulations	and	a	survey	of	the	current	research	on	his	web	site	.	n	+1	wLn	+	wn−Ln	Hence	(Xn	)n∈N0	is	our	generalized	urn	model	with	weights	(wn	)n∈N0	.	Finally,	in	the	third	step,	an	embedding	of	E	into	RN	is	constructed.	
Hence	)	1	E	Xˆ	1	]	=	ϕˆ		(0)	=	ϕ		(τ	)	=	0,		)	1	Var	Xˆ	1	]	=	ϕˆ		(0)	=	ϕ		(τ	)	∈	(0,	∞).	Corollary	21.32	The	map	F1	:	Ω	→	[0,	∞),	ω	→	sup{ω(t)	:	t	∈	[0,	1]}	is	A-measurable.	(ii)	If	f	dμ	<	∞,	then	f	<	∞	almost	everywhere.	Since	every	CPoiνn	is	infinitely	divisible,	on	the	one	hand	we	have	to	show	that	this	property	is	preserved	under	weak	limits.	“(iii)	⇒	(iv)”
Let	A1	,	A2	,	.	This	transition	matrix	is	not	irreducible;	rather	it	has	two	absorbing	states	0	and	N.	10.2	Optional	Sampling	and	Optional	Stopping	.	Then	F	−1	(t)	≤	x	⇐⇒	t	≤	F	(x).	If,	in	addition,	q	is	aperiodic,	or	q	is	not	reversible	with	respect	to	π,	then	p	is	aperiodic.	Now	we	can	drop	the	quotation	marks	from	the	statement	and	write	it	down
formally.	Define	J	=	k∈K	Jk	.	That	is,	we	denote	the	edge	that	connects	x	and	y	by	)x,	y*	=	)y,	x*	instead	of	{x,	y}.	Clearly,	we	have	E[E[|X|	∧	N	|F	]2	]	≤	N	2	.	That	is,	let	Xn,i	,	n,	i	∈	N0	be	i.i.d.	random	variables	on	N0	with	P[Xn,i	=	k]	=	p(k),	k	∈	N0	,	and	based	on	the	initial	state	Z0	define	inductively	Zn+1	=	Zn		Xn,i	.	18.4	Speed	of	Convergence	So	far
we	have	ignored	the	question	of	the	speed	of	convergence	of	the	distribution	PXn	to	π.	Proof	See,	e.g.,	[83,	page	79].	2	h∈Z	Rearranging	this	formula	yields	an	expression	for	the	number	of	leaves:		+	#	u	∈	Z	:	degHL	(u)	=	1	=	2	+	degHL	(h)	−	2	h∈Z	≥	2	+	#	h	∈	Z	:	degHL	(h)	≥	3	≥	2	+	#(Z	∩	TL	).	.,	then	X	=	∞	X	has	intensity	measure	E[X]	=	μ	and
hence	X	is	n=1	n	a	random	measure	(see	Exercise	24.1.1).	Show	that	n→∞	νt	/n	−→	δ0	.	(	n→∞	(ii)	P	Sn	−→	∞	>	0.	For	any	ε	∈	(0,	1],	we	have	ερC,ε	∈	Lip1	(E;	[0,	1]).	6.1	Implications	between	the	concepts	of	convergence.	In	the	general	case,	it	follows	by	Theorem	20.21.	,	hzn	).	♣	8.3	Regular	Conditional	Distribution	211	Exercise	8.3.3	Assume	the
random	variable	(X,	Y	)	is	uniformly	distributed	on	the	disc	B	:=	{(x,	y)	∈	R2	:	x	2	+	y	2	≤	1}	and	on	[−1,	1]2,	respectively.	In	this	section,	we	show	how	to	do	this.	A	subset	C	⊂	Cb	(E;	K)	is	called	an	algebra	if	(i)	1	∈	C,	(ii)	if	f,	g	∈	C,	then	f	·	g	and	f	+	g	are	in	C,	and	(iii)	if	f	∈	C	and	α	∈	K,	then	(αf	)	is	in	C.	A	simple	algorithm	for	this	method	is	the
following.	Show	that	X	is	null	recurrent,	irreducible	and	aperiodic	and	that	independent	coalescence	does	not	give	a	successful	coupling.	Let	W1	:=	U1	.	By	considering	Laplace	transforms,	we	obtain	that,	for	every	λ	≥	0,	the	sequence	of	distributions	converges:	˜n	lim	Ex	[e−λZt	]	=	lim	n→∞	n→∞	=	lim	n→∞		ψ(		t	n!)	nx	nt	−	(nt	−	1)e−λ/n	nt	+	1	−	nt
e−λ/n		=	lim	1	−	n→∞	(e−λ/n	)	nx	1	−	e−λ/n	n(1	−	e−λ/n	)t	+	1	nx	(21.44)		=	exp	−	lim		x	n(1	−	e−λ/n	)	n→∞	n(1	−	e	−λ/n	)t	+	1			λ	(x/t)	:=	ψt	(λ)x	.	Interpret	the	statement	of	Theorem	23.11	in	this	case.	38	1	Basic	Measure	Theory	Corollary	1.82	(Measurability	of	composed	maps)	Let	I	be	a	nonempty	index	set	and	let	(Ω,	A),	(Ω		,	A	)	and	(Ωi	,	Ai	)	be
measurable	spaces	for	any	i	∈	I	.	Then	F	(0)	=	0	since	F	is	linear.	The	subsequent	section	proves	the	CLT	for	real-valued	random	variables	by	means	of	characteristic	functions.	Then	Ntn	∼	b2n	,pn	.	Hence	P[X	=	n]	=	P[X	≥	n]−P[X	≥	n+1]	=	(1−p)n	−(1−p)n+1	=	p	(1−p)n	.	That	is,	at	each	step,	X	jumps	to	any	of	its	2D	neighbors	with	the	same
probability	1/2D.	n=m	In	the	last	step,	we	used	Remark	7.41(i).	3.2	Poisson	Approximation	..	Letting	ε	:=	ε	Var[Sn	],	we	get	Ln	(ε)	≤	ε	−δ	kn		*	)	1	E	|Xn,l	|2+δ	.	Corollary	16.9	If	(μn	)n∈N	is	a	(weakly)	convergent	sequence	of	infinitely	divisible	probability	measures	on	R,	then	μ	=	limn→∞	μn	is	infinitely	divisible.	To	put	it	differently,	under	Px	,	the
process	(Bt	−	x)t	≥0	is	a	standard	Brownian	motion.	For	a	random	walk	on	Z	with	a	finite	first	moment,	this	shows	that	it	is	recurrent	if	and	only	if	the	increments	are	centred.	We	infer		x,y∈E	=	J	(x,	y)2	R(x,	y)		2	I	(x,	y)	+	D(x,	y)	R(x,	y)	x,y∈E	=				I	(x,	y)2	+	D(x,	y)2	R(x,	y)	+	2	I	(x,	y)	D(x,	y)	R(x,	y)	x,y∈E	x,y∈E	x,y∈E	x,y∈E					=	I	(x,	y)2	+	D(x,	y)2	R(x,
y)	+	2	u(x)	−	u(y)	D(x,	y).		(iii)	Let	n	∈	N	and	A,	A1	,	.	,	Xd	)T	is	called	d-dimensional	normally	distributed	with	expectation	μ	and	covariance	matrix	C	if	X	has	the	density	fμ,C	(x)	=	2		1B	C	exp	−	x	−	μ,	C	−1	(x	−	μ)	2	(2π)d	det(C)	1	(15.10)	for	x	∈	Rd	.	2	x	27/5	0	x	R	(x,	1)	=	27/26	1	1	R	(0,	x)	=	27/32	54/25	513/125	19	R	(0,	1)	=	27/8	0	Fig.	Of	course,	two
independent	chains	form	a	coupling,	though	maybe	not	the	most	interesting	one.	Then	ϕ	is	concave	(exercise!);	hence,	for	nonnegative	random	variables	X	and	Y	with	finite	expectation	(by	Theorem	7.11),	'	(	E	Xα	Y	1−α	≤	(E[X])α	(E[Y	])1−α	.		Let	(Yn	)n∈N0	,	PYx	x∈E	be	a	discrete	Markov	chain	with	transition	matrix	p	and			let	(Tt	)t	≥0,	PTn	n∈N	be	a
Poisson	process	with	rate	λ.	(ii)	Compute	pmax	explicitly.	On	the	trace	σ		algebra	A		,	we	define	a	measure	by	Ω		μ		(A)	:=	μ(A)	Ω	for	A	∈	A	with	A	⊂	Ω		.	5.3	Strong	Law	of	Large	Numbers	129	Assume	that	the	computer	generates	numbers	X1	,	X2	,	.	in	this	publication	does	not	imply,	even	in	the	absence	of	a	specific	statement,	that	such	names	are
exempt	from	the	relevant	protective	laws	and	regulations	and	therefore	free	for	general	use.	Further,	let	F0+	=		+	t	>0	Ft	.	Then	we	have	n→∞	√	2.	,	An	∈	A	such	that	μ(A1	∪	.	In	the	first	round,	the	stake	is	H1	=	1.	Proof	Let	λ	∈	Rd	.	Only	for	the	more	general	case	of	stationary	n→∞	1	X	do	we		need	an	additional	argument.)	By	the	ergodic	theorem,	we
have	n	Sn	−→	E[X1		I]	=	0	a.s.	Thus,	for	every	m	∈	N,		lim	sup	n→∞								1	1	max	Sk		=	lim	sup	max	Sk		n	k=1,...,n	n	k=m,...,n	n→∞	≤	max	k≥m	|Sk	|	m→∞	−→	0.	Show	that	X	and	Y	are	independent.	Hence	we	only	have	to	show	sufficiency	of	the	two	conditions.	Example	4.22	(Petersburg	game)	By	a	concrete	example,	we	show	that	in	Fatou’s	lemma	the
assumption	of	an	integrable	minorant	is	essential.	♣	Exercise	1.5.3	Use	the	transformation	formula	(Theorem	1.101)	to	show	the	following	statements.	e−|x|	Exercise	23.1.1	Let	X	be	a	real	random	variable	with	density	f	(x)	=	c−1	,	1	+	|x|3		∞	e−|x|	where	c	=	dx.	By	Prohorov’s	theorem,	in	Polish	spaces,	tightness	is	equivalent	to	relative	sequential
compactness.	-	Frequency	0.0651	0.0189	0.0306	0.0508	0.1740	0.0166	0.0301	0.0476	0.0755	0.0027	0.0121	0.0344	0.0253	Letter	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	Morse	code	-.	e∈E	♦	Example	20.32	(Markov	chain)	Let	(Xn	)n∈N0	be	a	Markov	chain	on	E	with	transition	matrix	P	and	stationary	distribution	π.	Let	A	∈	I	(recall	that	I	is	the	invariant	σ	-
algebra)	and	B	=	A.	are	independent	Poisson	point	processes	with	intensity	measures		μ1	,	μ2	,	.	Furthermore,	let	Z1	,	Z2	,	.	♦	Remark	9.27	If	I	=	N,	I	=	N0	or	I	=	Z,	then	it	is	enough	to	consider	at	each	instant	s	only	t	=	s	+	1.	That	is,	those	x	for	which	φ(x)	−	I	(x)	is	close	to	its	maximum.	On	the	other	hand,	A	is	called	sequentially	compact
(respectively	relatively	sequentially	compact)	if	any	sequence	(xn	)n∈N	with	values	in	A	has	a	subsequence	(xnk	)k∈N	that	converges	to	some	x	∈	A	(respectively	x	∈	A).	Corollary	16.10	If	μ	∈	M1	(R)	is	infinitely	divisible,	then	there	exists	a	continuous	convolution	semigroup	(μt	)t	≥0	with	μ1	=	μ	and	a	stochastic	process	(Xt	)t	≥0	with	independent,
stationary	increments	Xt	−	Xs	∼	μt	−s	for	t	>	s.	Let	g	:	A	→	R	be	a	bounded	function.	It	is	an	interesting	finding	that	in	two	important	examples	we	could	check	σ	-subadditivity	using	topological	properties.	In	order	to	simplify	the	notation,	we	may	assume	that	X	is	the	canonical	process	on	E	N0	.	n→∞	We	write	μn	−→	μ	if	any	of	the	four	conditions
holds	and	say	that	(μn	)n∈N	converges	weakly	to	μ.	20.5	Mixing	509	“	⇒	”	Let	X	be	periodic	with	period	d	≥	2.	In	particular,	if	A	=	×j	∈J	Aj	for	certain	306	14	Probability	Measures	on	Product	Spaces	Aj	∈	Aj	,	then	XJ−1	(A)	is	called	a	rectangular	cylinder	with	base	J	.	k=1	314	14	Probability	Measures	on	Product	Spaces	i	/	If	μ	is	a	finite	measure	on	(Ω0
,	A0	),	then	μi	:=	μ	⊗	κk	is	a	finite	measure	on	k=1			i	i	/	×	Ωk	,	Ak	.	(−∞,x]	Here	(−∞,	x]	=	{y	∈	Rn	:	yi	≤	xi	for	i	=	1,	.	Reflection	Come	up	with	an	example	for	X	such	that	the	series	in	(3.1)	does	not	converge	for	any	z	>	1	but	lim	ψX	(x)	exists	and	is	finite.	(i)	Compute	the	generating	function	ψ	and	the	extinction	probability	q.	Theorem	21.6	yields	the
existence	of	a	version	B	of	X	that	has	Hölder-γ	-continuous	paths.	In	particular,	here	α	=	∞.	If	μ(Ω)	<	∞,	then	(i)	implies	uniform	integrability	of	F	since	the	infimum	is	taken	over	the	smaller	set	of	constant	functions.	While	the	preceding	corollary	only	yields	an	abstract	uniqueness	statement,	we	will	profit	also	from	an	explicit	inversion	formula	for



Fourier	transforms.	(21.39)	554	21	Brownian	Motion	We	consider	now	the	probability	generating	function	of	X1,1	,	ψ	(1)	(s)	:=	ψ(s)	:=	E[s	X1,1	],	s	∈	[0,	1].	is	independent	and	BerZ	-distributed.	Definition	2.11	(Independence	of	classes	of	events)	Let	I	be	an	arbitrary	index	set	and	let	Ei	⊂	A	for	all	i	∈	I	.	,	Xn	be	integrable	i.i.d.	random	variables.	Left
hand	side:	n	=	1000,	Right	hand	side	n	=	10	000.	Hint:	Use	suitable	stopping	times	K	and	apply	the	martingale	convergence	theorem	(Theorem	11.4)	to	the	stopped	process	XK	.	Intuitively,	this	is	the	symmetric	simple	random	walk	whose	vertical	transitions	are	all	blocked	away	from	the	vertical	axis.	The	next	theorem	shows	that	if	the	Xn	are
integrable,	then	the	process	of	partial	sums	can	go	to	infinity	only	with	a	linear	speed.	21.1	Computer	simulation	of	a	Brownian	motion.	Hence,	it	remains	to	show	measurability	of	If	.	-Z	n			−(n+1)	E	Xn,i		Fn	=m	i=1	=	m−(n+1)	∞			*	)	E	1{Zn	=k}	k	·	Xn,i		Fn	k=1	=	m−n	∞			*	)	E	k	·	1{Zn	=k}		Fn	k=1	=m	−n	Zn	=	Wn	.	Note	that	T	⊂	E;	hence	the
statement	is	trivially	true	if	the	roles	of	E	and	T	are	interchanged.	Let	W	:=	(W1	,	.	The	discrete	stochastic	integral	of	H	with	respect	to	X	is	the	stochastic	process	H	·X	defined	by	(H	·X)n	:=	n		Hm	(Xm	−	Xm−1	)	for	n	∈	N0	.	552	21	Brownian	Motion	We	apply	this	twice	(with	a	=	(t	+	s)n	−	(t	+	s)n!	and	a	=	"sn#	−	sn)	and	obtain	(using	the	rough
estimate	"(t	+	s)n#	−	sn!	≤	tn	+	2	≤	3tn)	from	(21.36)	(since	t	≤	N)	)	*	)	Kn	Kn	4	*	E	(T¯tK+sn	,n	−	T¯sKn	,n	)4	≤	n−2	σ	−4	E	(T"(t	+s)n#	−	T	sn!	)	)	Kn	=	n−2	σ	−4	E	(T"(t	+s)n#−	sn!	)	4	*	3	3tnKn2	+	18t	2	=	2	tn−1/2	+	18t	2	2	2	n	σ	σ			√	3	3/2	3	≤	2	t	+	18t	2	≤	+	18	N	t	3/2	.	Show	that	for	λ-almost	all	t	∈	[0,	∞)	the	series	∞	n=1	f	(nt)	converges
absolutely.	♣	Chapter	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	In	this	chapter,	we	study	the	spaces	of	functions	whose	pth	power	is	integrable.	A	family	F	⊂	Lp	(μ)	is	called	bounded	in	Lp	(μ)	if	sup{f	p	:	f	∈	F	}	<	∞.	A	fundamental	question	is:	When	does	a	sequence	(μn	)n∈N	of	measures	on	(E,	E)	converge	weakly	or	does	at	least	have	a	weak
limit	point?	Show	that	the	reverse	inclusion	to	Theorem	4.19	holds,		Lp	(μ)	⊂	Lp	(μ)	if	1	≤	p	≤	p	≤	∞.	You	can	search	these	sites	by	name,	keywords	or	location	and,	sometimes,	you	can	enter	a	phone	number	to	do	a	reverse	search.Telkom	Cell	Phone	ContractsAs	Africa’s	biggest	integrated	telecommunications	company,	Telkom	mobile	contracts	are
also	part	of	the	company’s	offerings.	The	additional	claim	follows	by	the	Portemanteau	theorem	(Theorem	13.16)	since	N0,1	has	a	density;	hence	N0,1	(∂[a,	b])	=	0.	Thus	X0	≥	Sk+1	−	Mn	◦	τ	for	k	=	1,	.	Clearly,	Hn	may	only	depend	on	the	results	of	the	gambles	that	happened	earlier,	but	not	on	Dm	for	any	m	≥	n.	By	Lemma	15.23,	this	implies	uniform
convergence	on	compact	sets.	.)	with	P[Zi	=	i]	=	P[Zi	=	−i]	=		1	11	.	......-..-.-..	Let	E	∈	E	with	μ(E)	<	∞.	However,	p	is	sufficiently	contractive	only	if	the	multiplicity	of	the	eigenvalue	1	is	exactly	1	and	if	there	are	no	further	(possibly	complex-valued)	eigenvalues	of	modulus	1.	19.6	Random	Walk	in	a	Random	Environment	.	24.1	Random	Measures	613
Theorem	24.5	Let	PX	be	the	distribution	of	a	random	measure	X.	If3E[X]	=	0,	then	X	is	called	centered.	Then,	by	construction,	P[Rn	(i)	=	j	]	=	r(i,	j	)	−	r(i,	j	−	1)	=	p(i,	j	).	are	i.i.d.	E-valued	random	variables	with	P[Xi	=	e]	=	pe	for	e	∈	E.	Now	A0	=	σ	(E		)	since	E		⊂	A0	.	Before	we	show	that	Cramér’s	theorem	is	essentially	an	LDP,	we	make	two
technical	statements.	Let	h	=	0	e−t	κt	g	dt.	n=1	Reflection	In	the	above	theorem,	why	did	we	need	that	μ	is	finite?	Let	X	be	a	Markov	process	with	transition	kernels	(κt	)t	≥0	and	with	respect	to	a	filtration	F	that	satisfies	the	usual	conditions.	Proof	We	explicitly	construct	a	probability	space	(Ω,	A,	P)	and	a	random	variable	X	:	Ω	→	R	such	that	FX	=	F	.
(c)	(−f	)	dμ	=	−	f	dμ.	Let	n	∈	N	with	C	⊂	Kn	.	We	have	thus	reduced	the	problem	to	the	one-dimensional	situation	and	will	henceforth	assume	d	=	1.	By	Lemma	20.7,	we	have	E[X0	|I]	◦	τ	=	n	:=	Xn	−	E[X0	|I],	without	loss	of	E[X0	|I]	P-a.s.	Hence,	by	passing	to	X	generality,	we	can	assume	E[X0	|I]	=	0.	In	order	to	work	with	the	concepts	of	weak
convergence	in	this	proof,	we	introduce	the	function	⎧	1			it	x	⎪	e	−	1	−	itx	,	if	x	=	0,	⎪	⎨	x2	(15.8)	ft	(x)	:=	2	⎪	t	⎪	⎩	−	,	if	x	=	0,	2	as	well	as	the	measures	νn	∈	Mf	(R),	n	∈	N,	νn	(dx)	:=	kn		x	2	PXn,l	(dx).	Before	we	develop	the	complete	theory,	we	begin	with	two	examples:	The	Lebesgue	measure	and	the	infinite	product	measure.	(iii)	If	s	≥	0,	then	τ	+
s	is	a	stopping	time.	By	concatenation	of	stochastic	kernels	we	construct	multi-step	random	experiments.	The	corresponding	map	is	called	a	stochastic	kernel.	In	particular,	for	X	∈	L1	(P),	the	family	(E[X	|Fj	],	j	∈	J	)	is	uniformly	integrable.	,	Ajn−1	∈	B(E)	and	A	:=	×j	∈L	Aj	.	23.2	The	shifted	free	energy	F	β	(m)	−	F	β	(0)	of	the	Weiss	ferromagnet
without	exterior	field	(h	=	0).	Hence	we	expect	the	convergence	in	the	central	limit	theorem	to	be	slower.	Recall	the	definition	of	the	trace	of	a	class	of	sets	from	Definition	1.25.	+	Xn	)2k	−	k	E	X12	nk		≤	d2k	nk−1	.	While	here	this	is	only	of	interest	in	that	it	simplifies	the	computation	of	fair	prices,	it	has	an	economic	interpretation	as	a	measure	for
the	market	prices	that	we	would	see	if	all	traders	were	risk-neutral;	that	is,	for	traders	who	price	a	future	payment	by	its	mean	value.	If	X	∼	Nμ,C	,	then	the	following	statements	hold.	Let	E	=	N	and	⎧	2	⎪	⎨	x	,	q(x,	y)	=	−x	2	,	⎪	⎩	0,	if	y	=	x	+	1,	if	y	=	x,	else.	Show	that	every	symmetric	function	f	:	E	n	→	R		1	n	can	be	written	in	the	form	f	(x)	=	g	n	i=1
δxi	,	where	g	has	to	be	chosen	appropriately	(depending	on	f	).	,	ω	]	=	pωi	.	Use	Doob’s	inequality	(Exercise	21.4.1)	to	show	that	the	martingale	convergence	theorems	(a.s.	convergence	(Theorem	11.4),	a.s.	and	L1	-convergence	for	uniformly	integrable	martingales	(Theorem	11.7)	and	the	Lp	martingale	convergence	theorem	(Theorem	11.10))	hold	for
X.	Example	17.53	Let	(px	)x∈N0	be	numbers	in	(0,	1]	and	let	X	be	an	irreducible	Markov	chain	on	N0	with	transition	matrix	p(x,	y)	=	⎧	⎪	⎨	⎪	⎩	px	,	1	−	px	,	0,	if	y	=	x	+	1,	if	y	=	0,	else.	Example	14.33	We	come	back	to	the	example	from	the	beginning	of	this	chapter.	The	publisher	remains	neutral	with	regard	to	jurisdictional	claims	in	published	maps
and	institutional	affiliations.	Since	the	distribution	of	(X1	,	.	Hence	μ∗	(E	∩	A)	+	μ∗	(E	∩	Ac	)	≤	μ∗	(E)	and	thus	A	∈	M(μ∗	),	which	implies	A	⊂	M(μ∗	).	Let	g	:=	|f	|q−1	.	Hence	by	the	induction	hypothesis,	we	have	P[Nn1	,t	+1	≥	l]	=	E[hn1	,l	(Nn1	,t	)]	≤	E[hn1	,l	(Nn2	,t	)]	≤	E[hn2	,l	(Nn2	,t	)]	=	P[Nn2	,t	+1	≥	l].	The	bold	lines	are	superconductors.	By
the	assumption	(16.30),	we	have	α	<	2.	20.3	Examples	.	As	we	saw	in	Theorem	17.17,	by	Xn+1	:=	Rn	(Xn	)	and	Yn+1	:=	Rn	(Yn	),	two	Markov	chains	X	and	Y	are	defined	with	transition	matrix	p.	In	order	to	distinguish	μ	and	ν	one	needs	a	generator	that	contains	sets	of	finite	measure	(of	μ).			/	(i)	Aj	=	σ	×	Ej	:	Ej	∈	Ej	∪	{Ωj	}	for	every	countable	J	⊂	I	.
We	conclude	that	m		αi	μ(Ai	)	=	m		n		αi	μ(Ai	∩	Bj	)	i=1	j	=1	i=1	=	m		n		βj	μ(Ai	∩	Bj	)	=	i=1	j	=1	n		βj	μ(Bj	).	For	measurable	A1	,	.	Hence	the	strategy	is	to	truncate	the	Yi	to	obtain	fourth	moments.	By	the	preceding	theorem,	there	exists	a	compact	set	C	⊂	A	∩	Kn	with	λ((A	∩	Kn	)	\	C)	<	ε/2.	We	have	seen	how	to	construct	the	Markov	chain	X	with
initial	value	X0	=	x	by	defining	Xn	=	Fn	◦	Fn−1	◦	·	·	·	◦	F1	(x).	Finally,	let	A	:=	{Sn	=	0	for	every	n	∈	N}	be	the	event	of	an	“escape”	from	0.	On	C([0,	1])	the	norm	f	∞	=	supx∈[0,1]	|f	(x)|	induces	a	topology.	As	compact	sets	are	totally	bounded,	there	exists	an	N	∈	N	and	points	t1	,	.	,	kD	∈	N0	with	k1	+	.	n	Hence	the	upper	bound	in	the	LDP	holds	(even
for	arbitrary	A).	Define	the	measure	ν	by		ν(A)	:=	for	A	∈	A.	In	this	case,	we	say	that	μ2	is	stochastically	larger	than	μ1	.	We	give	just	two	different	possibilities:	μ	=	12	δ1	+	12	δ3	and	μ	=	12	δ2	+	12	δ4	.	3.3	Branching	Processes	.	Similarly,	X	is	a	submartingale	if	E[Yt	]	≥	0	for	all	t,	and	a	supermartingale	if	E[Yt	]	≤	0	for	all	t.	Do	it!	(iii)	Compute
limn→∞	ψn	(z),	z	∈	[0,	1].	Then	we	clearly	have	LaX+b	(t)	=	e−bt	LX	(at)	and	LX+Y	(t)	=	LX	(t)·LY	(t)	for	t	≥	0.	-..	Then:	(i)	(Linearity)	E[λX	+	Y	|F	]	=	λE[X	|F	]	+	E[	Y	|F	].	Remark	17.2	If	E	is	a	countable	space,	then	X	has	the	Markov	property	if	and	only	if,	for	all	n	∈	N,	all	s1	<	.	Now	choose	L	large	enough	for	P[A2L,0]	>	0.	(ii)	For	X	as	in	(i)	with	E[X]
=	0,	infer	that	(using	Jensen’s	inequality)	)	*	2	E	eλX	≤	cosh(λ)	≤	eλ	/2	for	all	λ	∈	R.	♦	Lemma	20.4	If	(Xn	)n∈N0	is	stationary,	then	X	can	be	extended	to	a	stationary	n	process	X	.	Definition	8.25	(Transition	kernel,	Markov	kernel)	Let	(Ω1	,	A1	),	(Ω2	,	A2	)	be	measurable	spaces.	Evidently,	X	is	adapted	to	F	and	for	all	s	∈	N0	,	we	have				E[Xs+1		Fs	]	=
E[Xs	Ys+1		Fs	]	=	Xs	E[Ys+1		Fs	]	=	Xs	.	Hence	any	countable	union	of	sets	in	A	is	a	finite	union	of	sets.	We	saw	that	with	probability	one	there	is	at	least	one	infinite	open	cluster.	Let	pN	=	{pn	:	n	∈	N}	and	Pn	=	{p	∈	P	:	p	≤	n}.	Proof	(i)	and	(ii)	follow	by	simple	computations.	We	now	show	by	elementary	means	the	validity		of	(1.13).	As	r	is	irrational,
it	is	easy	to	see	that	A	is	generated	by	n∈N0	τr−n	(P).	,	ωn	∈	E,	n	∈	N})	and	with	the	product	measure	(or	Bernoulli	measure)	n	⊗N		)	*		P=	p	δ	;	that	is	where	P	[ω	,	.	,	An	,	the	random	variables	X(A1	),	.	a	I	Proof	Choose	t	such	that	(4.6)	holds.	However,	the	Morse	code	also	consists	of	gaps	of	different	lengths	that	signal	ends	of	letters	and	words.	On
the	other	hand,	for	any	f	∈	L2	(μ),	the	map	L2	(μ)	→	R,	g	→	)f,	g*	is	continuous	and	linear.	Then	X	is	a	martingale.	be	i.i.d.	real	random	variables	with	E[X1	]	=	μ	and	Var[X1	]	=	σ	2	∈	(0,	∞).	i=1	For	any	Ai	,	there	exists	an	open	rectangleBi	⊃	Ai	with	λn	(Bi	\	Ai	)	<	ε	2−i−1	(upper	semicontinuity	of	λn	).	Indeed,	n→∞	by	the	triangle	inequality,	f	−	g1	≤	fn
−	f	1	+	fn	−	g1	−→	0.	To	this	end,	we	agree	on	the	following	conventions.	Show	that	P[X	<	Y	]	=	θ	.	Definition	21.35	We	say	that	the	finite-dimensional	distributions	of	(Xn	)	converge	to	those	of	X	if,	for	every	k	∈	N	and	t1	,	.	Finally,	we	show	that	closed	sets	are	measurable	with	respect	to	this	outer	measure.	We	first	show	that	the	matrix	p		is
irreducible.	Exercise	8.3.1	Let	(E,	E)	be	a	Borel	space	and	let	μ	be	an	atom-free	measure	(that	is,	μ({x})	=	0	for	any	x	∈	E).	(iii)	A	is	a	σ	-algebra	if	and	only	if	σ	(A)	=	A.	For	two	Lebesgue	integrable	maps	f,	g	:	Rn	→	[0,	∞],	define	the	convolution	f	∗	g	:	Rn	→	[0,	∞]	by		(f	∗	g)(x)	=	Rn	f	(y)	g(x	−	y)	λn	(dy).	In	many	cases,	it	is	necessary	to	rescale	the
original	distributions	in	order	to	capture	the	behavior	of	the	essential	fluctuations,	e.g.,	in	the	central	limit	theorem.	We	thus	obtain	the	Cox–Ross–Rubinstein	formula	π(VT	)	=	x0	bT	,p	({A,	.	,	Yn	)	=	(X1	,	X2	/2,	X3	/3,	.	Rw	+	Rw	By	symmetry	(and	since	X	is	transient),	we	get	)	)	*	*	n→∞	n→∞	P0	Xn	−→	−∞	=	1−P0	Xn	−→	∞	≥	1−	−	+	Rw	Rw	=	−	+	−	+.
2	k!	√	(iii)	Let	Sn∗	=	(X1	+	.	Furthermore,	XN	↑	|X|	and	YN	↑	|Y	|.	Show	that	F	is	tight	if	and	only	if	L	is	bounded.	We	are	now	at	the	point	to	use	a	Markov	chain.	Then	(PXi	+Yi	,	i	∈	I	)	is	tight.	(ii)	A	is	closed	under	complements.	Theorem	19.7	(Uniqueness	of	harmonic	functions)	Assume	that	F	(x,	y)	>	0	for	all	x,	y	∈	E.	Then			f	dμn	≤	Fn	(y0	)	+	Fn	(∞)
−	Fn	(yN	)	+	N		(f	(yi	)	+	ε)(Fn	(yi	)	−	Fn	(yi−1	)).	(i)	(ii)	(iii)	(iv)	(v)	μ	is	σ	-additive	(and	hence	a	premeasure).	∈	Mf	(E).	One	sufficient	condition	for	M	<	∞	is		∞		n−1		exp	−	(1	−	pk	)	n=0	k=0		<	∞.	1.5	Random	Variables..	Then,	by	Theorem	12.24,	there	exists	a	σ	-algebra	A	⊂	F	such	that	(Xn	)n∈N	is	i.i.d.	given	A.	,	∞}	the	(random)	number	of	infinite
open	clusters.	Now	let	νn	=	1R\{0}	nμn	.	Exercise	18.2.1	Let	dP	be	√	the	Prohorov	metric	(see	(13.4)	and	Exercise	13.2.1).	For	any	ε	>	0	(and	gε	and	g˜ε	as	above),	3	ε	choose	aε	such	that	{		g	gε/2	>aε	}	ε/2	dμ	<	2	.	n→∞	n→∞	Since	ν	∈	A	is	arbitrary,	we	get	lim	supn→∞	inf	Iμ	(A	∩	En	)	=	inf	Iμ	(A).	Proof	(i)	This	is	immediate	from	the	definition	of	the
integral.	n=1	As	a	sum	of	convex	functions,	H	is	convex.	n→∞	This	shows	that	almost	surely	Sτn	+1	<	L	−	ε	infinitely	often	and	this	in	turn	contradicts	the	assumption	that	L	be	finite.	17.2	Discrete	Markov	Chains:	Examples	401	Theorem	17.17	(i)	With	respect	to	the	distribution	(Px	)x∈E	,	the	canonical	process	X	on	(E	N0	,	B(E)⊗N0	)	is	a	Markov
chain	with	transition	matrix	p.	On	the	other	hand,	we	write	“f	≤	g	almost	everywhere”	if	the	weaker	condition	holds	that	there	exists	a	μ-null	set	N	such	that	f	(ω)	≤	g(ω)	for	any	ω	∈	N	c	.	5.3	Simulation	of	a	Poisson	process	with	rate	α	=	0.5.	6	5	4	3	2	1	0	0	2	4	6	8	10	5.5	The	Poisson	Process	141	Theorem	5.34	If	(NI	,	I	∈	I)	has	properties	(P1)–(P5),
then	(N(0,t	]	,	t	≥	0)	is	a	Poisson	process	with	intensity	α	:=	E[N(0,1]	].	By	E	,R		Theorem	1.81,	we	have	σ	Z{i}	=	σ	(Xi	)	for	all	i	∈	I	;	hence	σ	(Xi	)	⊂	σ	(Z	E	,R	).	♣	Exercise	17.6.5	(i)	Use	a	direct	argument		to	show	that	the	Markov	chain	in	Example	17.53	is	recurrent	if	and	only	if	∞	n=0	(1	−	pn	)	=	∞.	Let	γ	∈	(0,	1].	This	proposal	is	accepted	with
probability	f	(X1	)/c	and	is	rejected	otherwise.	In	the	above	description,	we	have	constructed	by	hand	a	two-stage	experiment.	Clearly,	h	is	continuously	differentiable	on	R.	Now	let	D	=	A	∈	A1	⊗	A2	:	I1A	is	A1	-measurable	.	In	the	particular	case	V	=	L2	(μ),	by	the	Cauchy–Schwarz	inequality,	we	have	F	2	=	f	2	.	∈	B(E)	with	An	↑	A.	∈	Lp	(Ω,	A,	P)	with
Xn	−	Xp	−→	0,	;	;	;E[Xn	|F	]	−	E[X	|F	];	n→∞	−→	0.	,	Xn−1	=	xn−1	]	=	P[Yn−1,1	+	.	18.1	and	18.2	for	illustrations	of	aperiodic	and	periodic	Markov	chains.	If	ϕ	is	the	characteristic	function	of	the	measure	μ	from	the	previous	example,	then	clearly	ψ(t)	=	|ϕ(t)|.	The	chain	starts	at	2,	and	we	want	to	compute	the	probability	that	it	visits	3	before	5.	For
general	education	we	present	Bochner’s	theorem	that	formulates	a	necessary	and	sufficient	condition	for	a	function	ϕ	:	Rd	→	C	to	be	the	characteristic	function	of	a	probability	measure.	For	all	n	∈	N,	we	have	i=1			μ∗	(E	∩	Bn+1	)	=	μ∗	(E	∩	Bn+1	)	∩	Bn	+	μ∗	(E	∩	Bn+1	)	∩	Bnc	=	μ∗	(E	∩	Bn	)	+	μ∗	(E	∩	An+1	).	,	n},	Reff	(0	↔	k)		=	R(l,	l	+	1)	Reff	(0	↔
n)	k−1	Pk	[τn	<	τ0	]	=	u(k)	=	N	n−1	l=0	R(l,	l	+	1).	(ii)	X	is	a	submartingale	(supermartingale)	if	and	only	if	H	·X	is	a	submartingale	(supermartingale)	for	any	locally	bounded	predictable	H	≥	0.	(7.11)	Indeed,	letting	E	:=	{f	≥	g},	for	all	A	∈	A,	we	have				(f	∨	g)	dμ	=	A	f	dμ	+	A∩E	g	dμ	≤	ν(A	∩	E)	+	ν(A	\	E)	=	ν(A).	Exercise	20.6.2	Let	(an	)n∈N	be	a
sequence	on	nonnegative	numbers.	Now	the	idea	is	to	construct	a	Markov	chain	X	whose	distribution	converges	to	π	in	the	long	run.	However,	this	is	exactly	(21.3)	with	T	=	1.	Nevertheless,	the	eigenvalues	and	eigenvectors	are	of	the	same	form	as	in	Case	1.	This	is	particularly	helpful	in	the	context	of	statistical	mechanics	when	a	Markov	chain	is
needed	that	maximises	the	entropy	under	certain	constraints.	Note	that	for	this	proof	we	did	not	presume	the	existence	of	conditional	expectations	(rather	we	constructed	them	explicitly	for	finite	σ	-algebras);	that	is,	we	did	not	resort	to	the	Radon–Nikodym	theorem	in	a	hidden	way.	,	n	−	1,	n}d	and	En	:=	{e	∈	E	:	e	∩	Bn	=	∅}.	Since	M	takes	only
integer	values,	there	is	a	(random)	n0	such	that	Mn	=	Mn0	for	all	n	≥	n0	.	The	graphs	in	Fig.	We	have	bn1	,p1	≤st	bn2	,p2	if	and	only	if	(1	−	p1	)n1	≥	(1	−	p2	)n2	(17.31)	n1	≤	n2	.	Then	X	and	1A	are	independent;	hence	E[E[X	|F	]	1A	]	=	E[X	1A	]	=	E[X]	E[1A	].	The	aim	is	to	show	that	almost	surely	B	∈	Hγ	.	Define	fn	:	[0,	1]	→	R	by		fn	(x)	=	2n	f	dλ,	if	k
is	chosen	such	that	x	∈	Ik,n	.	(f	+	g)−	dμ		−		f	dμ	+	+		g	dμ	−	g	−	dμ		f	dμ	+	g	dμ.	,	N	−	1}.	As	in	the	calculation	for	X,	we	obtain	(since	H	(ν	|ν)	=	0)	1	≥	P[ξn	(Y	)	=	ν]	=	#An	(ν)	e−nH	(ν)	;	hence	#An	(ν)	≤	enH	(ν)	.	Definition	21.26	A	Markov	semigroup	(κt	)t	≥0	on	E	is	called	a	Feller	semigroup	if	f	(x)	=	lim	κt	f	(x)	t	→0	for	all	x	∈	E,	f	∈	C0	(E)	and	κt	f
∈	C0	(E)	for	every	f	∈	C0	(E).	(iii)	κ(x,	·	)	=	Poix	is	a	stochastic	kernel	from	[0,	∞)	to	N0	(note	that	x	→	Poix	(A)	is	continuous	and	hence	measurable	for	all	A	⊂	N0	).	In	the	general	case,	for	N,	the	upper	bound	2	max{ki	:	i	=	1,	.	♦	i=1	Takeaways	Consider	an	orthonormal	basis	of	the	Hilbert	space	L2	([0,	1])	and	assign	to	each	basis	vector	an	i.i.d.
standard	normally	distributed	factor.	Let	n	←	n	+	1.	♣	Exercise	15.1.7	Let	μ	be	a	probability	measure	on	R	with	integrable	characteristic	function	ϕμ	and	hence	ϕμ	∈	L1	(λ),	where	λ	is	the	Lebesgue	measure	on	R.	19.5).	Show	that	for	any	ε	>	0,	there	is	a	compact	set	C	⊂	A,	a	closed	set	4.3	Lebesgue	Integral	Versus	Riemann	Integral	107	D	⊂	R	\	A	and
a	continuous	map	ϕ	:	R	→	[0,	1]	with	1C	≤	ϕ	≤	1R\D	and	such	that	1A	−	ϕ1	<	ε.	Then	the	exchangeable	σ	-algebra	is	P-trivial;	that	is,	P[A]	∈	{0,	1}	for	all	A	∈	E.	Reff	(0	↔	k)	+	Reff	(k	↔	n)	Note	that	this	yields	the	ruin	probability	of	the	corresponding	Markov	chain	X	on	{0,	.	(12.4)	262	12	Backwards	Martingales	and	Exchangeability	What	happens	if
we	let	N	→	∞?	2.3	Kolmogorov’s	0–1	Law	69	Show	that	for	k	=	(k1	,	.	We	have	not	shown	that	almost	surely	B	was	not	Hölder-	12	-continuous	at	any	t	≥	0	(however,	see	Remark	22.4).	What	is	the	distribution	of	S	:=	Tn=1	Xn	?	The	states	at	later	times	are	defined	inductively	by	Xn	(i)	=	Xn−1	(i),	if	In	=	i,	Xn−1	(In	+	Nn	),	if	In	=	i.	For	any	k	∈	N,	choose
bε	(k)	>	b(k)	such	that			μ	(a(k),	bε	(k)]	≤	μ	(a(k),	b(k)]	+	ε	2−k−1	.	This	is	an	approximation	of	f	on	[0,	∞)	by	convex	and	piecewise	linear	functions.	,	tk	∈	[0,	∞).	7.3	Hilbert	Spaces	173	Theorem	7.25	(Orthogonal	decomposition)	Let	(V	,	)	·	,	·*)	be	a	Hilbert	space	and	let	W	⊂	V	be	a	closed	linear	subspace.	,	Cn	.	Compute	the	Radon–Nikodym	derivative
dbn,p	n,q	7.5	Supplement:	Signed	Measures	In	this	section,	we	show	the	decomposition	theorems	for	signed	measures	(Hahn,	Jordan)	and	deliver	an	alternative	proof	for	Lebesgue’s	decomposition	theorem.	Clearly,	for	any	n	∈	N,	)	*	P[#C	p	(0)	=	∞]	≤	P	there	is	an	x	∈	C	p	(0)	with	x∞	=	n	.	(ii)	Let	A	be	a	ring.	95	4.1	Construction	and	Simple	Properties
.	Show	that	there	exists	a	b	∈	R	such	that	X	=	b	almost	surely.	(1.3)	In	order	to	show	that	DE	is	a	λ-system	for	any	E	∈	δ(E),	we	check	(i)–(iii)	of	Definition	1.10:	(i)	Clearly,	Ω	∩	E	=	E	∈	δ(E);	hence	Ω	∈	DE	.	Then	F0	is	a	P-trivial	σ	-algebra.	Hence	the	claim	follows	immediately	from	Corollary	12.18.	Is	this	random	walk	recurrent?	Let	E	be	the	set	of
possible		outcomes.	In	larger	markets,	equivalence	holds	only	with	a	somewhat	more	flexible	notion	of	arbitrage	(see	[30]).	Proof	Define	fn	by	fn	(k/n)	:=	f	(k/n)	for	k	=	0,	.	n→∞	(i)	There	is	an	f	∈	L1	(μ)	with	fn	−→	f	in	L1	.	(iii)	For	every	P	∈	M1	(R),	there	is	a	sequence	(Pn	)n∈N	in	M1	(R)	such	that	each	n→∞	Pn	has	finite	support	and	such	that	Pn	⇒	P	.
Show	that	X	is	an	F-martingale.	(iii)	A	=	{(a,	b]	:	a,	b	∈	R,	a	≤	b}	is	a	semiring	on	Ω	=	R	(but	is	not	a	ring).	Hence	0	≤	g	≤	1.	Fix	some	N	∈	N	and	define	xj	:=	inf	x	∈	R	:	F	(x)	≥	j/N	,	j	=	0,	.	β,0	In	this	case,	F	β	has	a	local	maximum	at	0	and	has	global	minima	m±	.	For	F	∈	V		,	we	define	F		:=	sup{|F	(f	)|	:	f		=	1}.	♦	Proof	We	use	different	arguments	to
show	that	the	right-hand	side	of	(23.18)	is	a	lower	and	an	upper	bound	for	the	left-hand	side.	518	21	Brownian	Motion		Proof	Define	Nt	:=	{Xt	=		Yt	}	for	t	∈	I	and	N¯	=	t	∈I	Nt	.	,	x(n)	).	i∈I	Theorem	8.7	(Bayes’	formula)	)	Let	*I	be	a	countable	set	and	let	(Bi	)i∈I	be	pairwise	disjoint	sets	with	P	i∈I	Bi	=	1.	In	the	following,	let	(E,	d)	be	a	separable	metric
space	with	Borel	σ	-algebra	B(E).	If	ϕ	is	convex,	then	E[ϕ(X)−	]	<	∞	and	E[ϕ(X)]	≥	ϕ(E[X]).	Since	for	each	n	∈	N,	the	left	hand	side	is	a	probability	measure,	we	have	α1	=	1	and	μpn	−	πT	V	≤	C|λ2	|n	(18.10)	for	a	constant	C	(that	does	not	depend	on	μ).	Then	(Xn	)n∈N	fulfills	the	strong	law	of	large	numbers.	A	function	f	is	called	harmonic	on	G	:=	E	\	A
if	(p	−	I	)f	=	0	holds	on	G.	Furthermore,	for	all	x1	,	.	If	ϕ	is	convex,	then	ϕ	is	continuous	and	hence	measurable.	(ii)	ν	0	μ.	E	In	particular,	the	family	(κn	)n∈N	is	a	Markov	semigroup	and	the	distribution	X	is	uniquely	determined	by	κ1	.	Show	that	|f	|	dμ	<	∞	and	that		n→∞	f	dμn	−→		f	dμ.	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	188	As	κ	is	an
isometry,	κ	in	particular	is	injective.	The	use	of	general	descriptive	names,	registered	names,	trademarks,	service	marks,	etc.	,	N	−	1,	are	eigenvalues	of	modulus	1.	As	an	example	consider	X	:=	exp(Y	),	where	Y	∼	N0,1	.	,	2n−1	.	+	Xn,kn	.	9.2	Martingales	221	Remark	9.33	Many	statements	about	supermartingales	hold	mutatis	mutandis	for
submartingales.	n=1	The	same	computation	without	absolute	values	yields	the	remaining	part	of	the	claim.	Hence,	by	Theorem	1.96,	there	exist	sets	A1	,	A2	,	.	Instead	of	checking	by	a	direct	computation	that	this	process	(X,	Y	)	is	indeed	a	coupling	with	transition	matrix	p,	¯	consider	the	construction	of	Markov	chains	from	Theorem	17.17:	Let	(Rn	(x)
:	n	∈	N0	,	x	∈	E)	be	independent	random	variables	with	distribution	P[Rn	(x1	)	=	x2	]	=	p(x1	,	x2	),	and	let	R˜	n	((x1	,	y1	))	=	(Rn	(x1	),	Rn	(y1	)).	A	necessary	and	sufficient	condition	for	this	to	be	true	is	that	μ	vanishes	on	the	sets	where	ν	vanishes.	Hence	τ		:=	(τ	∧t)+1{τ	>t	}	and	σ		:=	(σ	∧t)+1{σ	>t	}	(and	thus	τ		+σ		)	are	Ft	-measurable.	(iii)	If	in
addition	μ(Ω)	=	1,	then	(Ω,	A,	μ)	is	called	a	probability	space.	We	will	show	that	Pp	[N	=	m]	=	0	for	any	m	∈	N	\	{1}.	This	is	k−1	equivalent	to	the	condition	that	m1	≤	m2	≤	.	From	these	considerations	and	from	Theorem	16.12,	we	conclude	the	following	theorem.	Hence	(PXn	)n∈N	is	tight	and	thus	relatively	sequentially	compact	(Prohorov’s	theorem).
+	Yn	is	integrable	and	E[Xn		Fm	]	=	Xm	if	m	<	n	(where	F	=	σ	(X)).	n		Proof	Let	X	be	the	canonical	process	on	(Ω,	A,	P)	=	(Rd	)N	,	B(Rd	)⊗N	,	P	and	let	τ	:	Ω	→	Ω	be	the	shift;	that	is,	Xn	=	X0	◦	τ	n	.	Evidently,	≤st	is	a	partial	order	on	M1	(Rd	).	Bn	is	a	disjoint	union	of	certain	sets	Cn,1	,	.	By	Corollary	15.3,	C	is	a	separating	class	for	Mf	([0,	∞])	and	thus
also	for	Mf	([0,	∞)).	(21.45)	0	Lemma	21.46	(κt	)t	≥0	is	a	Markov	semigroup	and	there	exists	a	Markov	process	(Yt	)t	≥0	with	transition	kernels	Px	[Yt	∈	dy]	=	κt	(x,	dy).	,	xn	)	→	xi	be	the	projection	on	the	ith	coordinate	for	each	i	=	1,	.	Hint:	Use	Exercise	4.2.4	to	show	the	assertion	first	for	indicator	functions,	then	for	simple	functions	and	finally	for
general	f	∈	Lp	(λ).	Let	X0	=	0	almost	surely	and	P[X1	=	−1]	=	P[X1	=	0]	=	P[X1	=	1]	=	13	.	If	λ	=	1,	then	the	condition	of	Step	1	is	fulfilled	and	we	are	done.	23.3	Sanov’s	Theorem..	n→∞	346	15	Characteristic	Functions	and	the	Central	Limit	Theorem	Proof	n→∞	(i)	By	the	definition	of	weak	convergence,	we	have	ϕn	−→	ϕ	pointwise.	14.4	Markov
Semigroups	323	Theorem	14.45	(Kernel	via	a	consistent	family	of	kernels)	Let	I	⊂	[0,	∞)	with	0	∈	I	and	let	(κs,t	:	s,	t	∈	I,	s	<	t)	be	a	consistent	family	of	stochastic	kernels	on	the	Polish	space	E.	Exercise	4.3.1	Use	Theorem	4.26	to	compute	31	0	log(x)	dx	and	3π	0	sin(x)	dx.	Clearly,	A	remains	unchanged	if	we	change	p	the	state	of	finitely	many	edges.	In
particular,	we	have	∞	n=1	p	(0,	0)	=	∞.	Show	that	bn,p	≤st	Poiλ	⇐⇒	(1	−	p)n	≥	e−λ	.	Here	the	integral	is	the	basis	for	another	concept	of	convergence.	The	physical	interpretation	is	that	if	we	throw	a	block	of	the	considered	material	into	a	bathtub,	then	the	block	will	soak	up	water;	that	is,	it	will	be	wetted	inside.	,	n}	a>0	a>0	a>0	θ	>0r	>0	θ	>0	θ
>0	a>0	n	∈	N	p	∈	[0,	1]	r	>	0	p	∈	(0,	1]	λ>0	uniform	U[−a,a]	triangle	Tria	N.N.	Gamma	Γθ	,r	exponential	expθ	two-sided	exponential	exp2θ	Cauchy	Caua	binomial	bn,p	−	negative	binomial	br,p	Poisson	Poiλ	N0	N0	R	0,	∞)	[0,	∞)	R	e−λ	λk	k!	θ	−θ	|x|	e	2	1	1	2	aπ	1	+	(x/a)			n	k	p	(1	−	p)n−k	k			−r	(−1)k	pr	(1	−	p)k	k	1	1−cos(ax)	π	ax	2	θr	r−1	e−θ	x	Γ	(r)
x	θ	e−θ	x	1/2a	+	1	a	1	−	|x|/a	[0,	a]	a>0	uniform	U[0,a]	[−a,	a]	1/a	R	μ	∈	R	σ2	>	0	normal	Nμ,σ	2	2πσ	Density	/	Weights			2	√	1	exp	−	(x−μ)	2	2σ	2	on	Parameter	Distribution	Name	Symbol	2	t	2	/2	(1	−	p)	+	peit	r	n	p	1	−	(1	−	p)eit		exp	λ(eit	−	1)		e−a|t|	θ	θ	−	it	1	1	+	(t/θ)2	(1	−	it/θ)−r	(1	−	|t|/a)+	eiat	−1	iat	sin(at)	at	2	1−cos(at)	a2	t	2	eiμt	·	e−σ	Char.
194	8	Conditional	Expectations	Definition	8.9	Let	X	∈	L1	(P)	and	A	∈	A.	Then	(owing	to	(P2))	*	)	*	)	*	)	α(s	+	t)	=	E	N(0,s]	+	N(s,s+t	]	=	E	N(0,s]	+	E	N(0,t	]	=	α(s)	+	α(t).	Define	ν=	μ(	·)	∈	M1	(E).	Then	(H	·X)n0	−1	=	0;	hence			*	)	*	)	0	=	E	(H	·X)n0		Fn0	−1	=	E	Xn0		Fn0	−1	−	Xn0	−1	.	We	summarize	the	discussion	in	a	theorem.	Hence	Xn,ln	−→	0	in
probability.	2	Hence	(fZ	,	Z	∈	Z)	is	uniformly	integrable	by	Theorem	6.24(iii).	If	k	∈	N	and	σk	<	∞,	then	clearly	Yσi	−	Yτi	=	Yσi	−	a	≥	b	−	a	for	all	i	≤	k;	hence	(H	·Y	)σk	=	σi	k			(Yj	−	Yj	−1	)	=	i=1	j	=τi	+1	k		(Yσi	−	Yτi	)	≥	k(b	−	a).	For	measurable	A	⊂	E,	the	intensity	measure	yields	the	expected	value	of	this	random	variable.	For	x	∈	(xj	−1	,	xj	),	we
have	(by	definition	of	xj	)	Fn	(x)	≤	Fn	(xj	−)	≤	F	(xj	−)	+	Rn	≤	F	(x)	+	Rn	+	1	N	Fn	(x)	≥	Fn	(xj	−1	)	≥	F	(xj	−1	)	−	Rn	≥	F	(x)	−	Rn	−	1	.	Choose	r1	∈	Q	and	ε1	>	0	such	that	q1	∈	Bε1	(r1	).	∈	D.By	Theorem	1.4(iii),	there	exist	mutually	disjoint	∞	sets	B1	,	B2	,	.	♣	Exercise	11.2.10	Assume	that	F	=	(Fn	)n∈N	is	a	filtration	on	the	probability	space	(Ω,	A,	P).
,	BtN	)].	,	mr	∈	N0	,	we	also	have	ri=1	r	ki	mi	∈	N(x,	x).	Let	N	=	∞	n=1	B	(1/n).	*	)	Dominated	convergence	yields	lim	sup	E	f	(Xn	)	−	f	(Yn	)	=	0.	Recall	that	a	function	g	:	Rn	→	R	is	called	affine	linear	if	there	is	an	a	∈	Rn	and	7.2	Inequalities	and	the	Fischer–Riesz	Theorem	169	a	b	∈	R	such	that	g(x)	=	)a,	x*	+	b	for	all	x.	In	particular,	{τ	∧	t	≤	s}	∈	Fs	⊂
Ft	for	any	s	≤	t.	,	C(tn	),	2f	∞	−γ	.	If	y	∈	E	with	p(x,	y)	>	0,	then	Lx,y	=	1	and	hence	Lx0	,y	=	Lx0	,x	+	Lx,y	=	i	+	1	(mod	d).	,	Yn	).		Let	(a,	b],	(a(1),	b(1)],	(a(2),	b(2)],	.	♣	Chapter	8	Conditional	Expectations	If	there	is	partial	information	on	the	outcome	of	a	random	experiment,	the	probabilities	for	the	possible	events	may	change.	Indeed,	let	Ω	=	{0,	1}N
and	let	P	be	the	product	measure	⊗N	(Theorem	1.64),	as	well	as	A	=	σ	([ω1	,	.	(2)	With	probability	π(x	I,σ	)/π(x−I	),	replace	x	by	x	I,σ	.	19.7	Initial	situation.	Clearly,	E[NI	]	=	α	(I	)	<	∞;	thus	we	have	(P4).	k=1	μ	This	implies	that	μ˜	F	is	σ	-subadditive.	However,	if	we	assume	the	existence	of	higher	moments,	we	get	reasonable	estimates	on	the	rate	of
convergence.	t	→0	If	I	=	[0,	∞)	and	if	in	addition	νt	−→	δ0	,	then	the	convolution	semigroup	is	called	continuous	(in	the	sense	of	weak	convergence).	Hence	we	get	that	B	∩	E	∈	δ(E)	for	any	B	∈	δ(E)	and	E	∈	E.	(ii)	Let	A	∈	F	and	J	⊂	I	with	A	=	j	∈J	Bj	.	Hence,	let	c	:=	−	E[log(0	)]	>	0.	Hence,	Z	is	a	martingale,	and	the	first	six	centered	moments	are	Ei
[(Zn	−	i)2	]	=	2i	n,	Ei	[(Zn	−	i)3	]	=	6i	n2	,	Ei	[(Zn	−	i)4	]	=	24i	n3	+	12i	2	n2	+	2i	n,	Ei	[(Zn	−	i)5	]	=	120i	n4	+	120i	2	n3	+	30i	n2	,	Ei	[(Zn	−	i)6	]	=	720i	n5	+	1080i	2	n4	+	(120i	3	+	360i)	n3	+	60i	2	n2	+	2i	n.	384	16	Infinitely	Divisible	Distributions	˜	ν	◦	m−1	(ii)	The	canonical	triple	of	aX	+	d	is	(a	2	σ	2	,	b,	a	),	where	ma	:	R	→	R,	x	→	ax	is	the
multiplication	by	a	and	b˜	:=	ab	+	d	+	a		(1{|x|	0,	m,	n	∈	N.	If	μ	=	0,	then	f	dμ	=	0	for	all	f	;	hence	ν(Ω)	=	0	and	thus	ν	0	μ.	=	Yn	=	1		X	=	x]?	303	304	307	317	322	15	Characteristic	Functions	and	the	Central	Limit	Theorem	..	Consider	the	first	time	that	X	is	in	K:	τK	:=	inf{t	∈	I	:	Xt	∈	K}.	∈	L1	(P)	be	pairwise	independent	and	identically	distributed.
Later,	Ω	will	be	interpreted	as	the	space	of	elementary	events	and	A	will	be	the	system	of	observable	events.	Hence,	by	(i),	for	any	ε	>	0,				(1	−	ε)	g	1Bnε	dμ	fn	dμ	≥	=	N		(1	−	ε)	αi	μ(Ai	∩	Bnε	)	i=1	n→∞	−→	N			(1	−	ε)	αi	μ(Ai	)	=	(1	−	ε)	g	dμ.	However,	is	this	still	true	if	we	remove	a	single	edge	from	the	lattice	L2	of	Z2	?	A	family	of	random	variables	X
=	(Xt	,	t	∈	I	)	(on	(Ω,	F	,	P))	with	values	in	(E,	E)	is	called	a	stochastic	process	with	index	set	(or	time	set)	I	and	range	E.	,	xn	.	,	λN	.	.);	hence			n→∞	Pπ	[X	∈	A		X0	,	.	Then	we	construct	a	version	of	X	that	has	continuous	paths,	the	so-called	Wiener	process	or	Brownian	motion.	Hence	the	map	En	→	[0,	1],	ν		→	P[ξn	(Y	)	=	ν		]	is	maximal	at	ν		=	ν.	For	n	∈
N,	define	the	class	of	cylinder	sets	that	depend	only	on	the	first	n	coordinates	An	:=	{[ω1	,	.	By	properties	(P2)	and	(P3),	the	random	variables	(Xn	(k),	k	=	1,	.	♦	Theorem	1.18	(∩-closed	λ-system)	Let	D	⊂	2Ω	be	a	λ-system.	Theorem	2.7	(Borel–Cantelli	lemma)	Let	A1	,	A2	,	.	However,	in	general,	τ	−	s	is	not.	Hence	the	waiting	time	for	the	next	click	is
exponentially	distributed	with	parameter	α.	A	As	functions	of	B,	both	sides	are	finite	measures	on	B(R)	that	coincide	on	the	∩stable	generator	(−∞,	r],	r	∈	Q	.	18.1	Periodicity	of	Markov	Chains	1/2	3	1	437	2	1/2	5	1	6	1	1	1	4	1	1	8	1	7	Fig.	This	property	is	called	infinite	divisibility	and	is	shared	by	other	probability	distributions	such	as	the	Poisson
distribution	and	the	Gamma	distribution.	Hence,	by	Theorem	8.14(ii)	(monotonicity	of	the	conditional	expectation),	there	is	a	null	set	Ar,s	∈	F	with	F	(r,	ω)	≤	F	(s,	ω)	for	all	ω	∈	Ω	\	Ar,s	.	♦	Example	17.7	(See	Example	9.5	and	Theorem	5.36)	Let	θ	>	0	and	νtθ	({k})	=	k	k	e−θt	t	k!θ	,	k	∈	N0	,	the	convolution	semigroup	of	the	Poisson	distribution.	Hint:
For	continuous	f	:	[0,	∞)	→	[0,	∞),	let		∞	φf	(z)	=	t	z−1	f	(t)	dt	0	for	those	z	∈	C	for	which	the	integral	is	well-defined.	Assume	Xn	−→	X	and	d(Xn	,	Yn	)	−→	0	in	D	probability.	This	conclusion	from	the	convergence	theorem	for	backwards	martingales	will	be	used	in	an	essential	way	in	the	next	section.	By	the	induction	hypothesis,	E[X2k	]	=	(−1)k	u(2k)
(0)	for	all	k	=	1,	.	Replacing	g	by	g˜	:=	|g|	sign(f	)	(note	that	g	˜	p	=	gp	),	we	obtain	κ(f	)p	gp					≥		f	g˜	dμ	=	fg1	.	For	any	p	∈	[0,	1],	define	⊗n	Pp	=	(Berp	)⊗n	=	(1	−	p)δ0	+	pδ1	.	“(i)	⇒	(ii)”	By	Theorem	7.7(iii),	for	any	x0	∈	I	,	the	map	x	→	ϕ(x0	)	+	(x	−	x0	)	D	+	ϕ(x0	)	is	in	L(ϕ).	Furthermore,	show	that	such	a	process	can	be	constructed	in	such	a	way
that	almost	surely	the	map	t	→	Xt	is	monotone	increasing	and	right	continuous.	Now	let	l	∈	{1,	.	Then	there	would	be	an	ε	>	0	and	an	A	∈	A	with	μ(A)	>	0	such	that	εμ(E)	≤	νs	(E)	for	all	E	⊂	A,	E	∈	A.	By	Example	7.39,	this	implies	that	X	is	uniformly	integrable.	i=1	Now	⎧	|Xi−1	|	+	Ri	,	⎪	⎪	⎨	|Xi	|	=	|Xi−1	|	−	Ri	,	⎪	⎪	⎩	1,	if	Xi−1	>	0,	if	Xi−1	<	0,	if	Xi−1
=	0.	♠	Applying	Lévy’s	continuity	theorem	to	Example	15.16,	we	get	a	theorem	of	Pólya.	One	way	to	access	an	online	phone	book	is	through	the	browser	of	your	mobile	device.	2.3	Binary	tree.	Note	that	log(1	+	x)	≤	x	for	x	>	−1	with	equality	if	and	only	if	x	=	0.	Hence	D	−	ϕ(x)	and	D	+	ϕ(x)	are	the	minimal	and	maximal	slopes	of	a	tangent	at	x.	∞	(iv)
Let	x1	,	x2	,	.	The	class	of	Lipschitz-continuous	functions	is	a	separating	family	for	finite	measures	and	for	Radon	measures.	Consider					the	measures	μ	and	ν		that	are	restricted	to	F	.	Hence	3	S˜	dP	=	∞	n=1	(1	−	2	n−1	)	p(1	−	p)n−1	=	−∞	since	p	≤	12	.	Then:	*	)	(i)	Var[X]	=	E	(X	−	E[X])2	≥	0.	(5.20)	Write	n		1(ti−1	,ti	]	(Xl	).	By	the	dominated
convergence	theorem	(Corollary	6.26),	we	get		F	(xn	)	=	n→∞	fn	dμ	−→		f	(	·,	x0	)	dμ	=	F	(x0	).	As	μ	is	(finitely)	subadditive	(see	Lemma	1.31(iii)),	we	obtain	0	ε	ε		μ((a,	b])	≤	+	μ((aε	,	b])	≤	+	μ((a(k),	bε	(k)])	2	2	K	k=1	ε	≤	+	2	K0			ε2	−k−1		+	μ((a(k),	b(k)])	≤	ε	+	k=1	∞		μ((a(k),	b(k)]).	Cov[Xi	,	Xj	]	=	Ci,j	for	all	i,	j	=	1,	.	Since	Ei	is	a	generator	of	Ai	,	we
have	(XjJ	)−1	(Aj	)	∈	AJ	for	all	Aj	∈	Aj	,	and	hence	AJ	⊂	AJ	.	Then	*	)	P	Sn	=	0	for	infinitely	many	n	∈	N	=	1.	|x|3	Then	E[X12	]	=	∞	but	there	are	numbers	A1	,	A2	,	.	Clearly,	x	0	=	(1,	0,	.	350	15	Characteristic	Functions	and	the	Central	Limit	Theorem	Lemma	15.31	For	t	∈	R	and	n	∈	N,	we	have			n−1		n		it	e	−	1	−	it	−	.	For	every	x	∈	Zd	,	we	define	the
(random)	open	cluster	of	x;	that	is,	the	connected	component	of	x	in	the	graph	(Zd	,	E	p	):	C	p	(x)	:=	{y	∈	Zd	:	x	←→p	y}.	♦	Proof	This	is	left	as	an	exercise.	Hence	X	is	stationary	if	and	only	if	(Ω,	A,	P,	τ	)	is	a	measure-preserving	dynamical	system.	Define	m	=	m(ν)	:=	ν({1})	−	ν({−1}).	(iii)	The	set	of	all	probability	measures	on	a	measurable	space	is	a
convex	set.	P	j	∈J	k∈K	j	∈J	k∈K	j	∈Jk	k∈K	Example	2.27	If	(Xn	)n∈N	is	an	independent	family	of	real	random	variables,	then	also	(Yn	)n∈N	=	(X2n	−	X2n−1	)n∈N	is	independent.	fdd	Proof	Let	k	∈	N	and	t1	,	.	For	example,	we	study	percolation	theory	at	the	point	where	we	barely	have	measures,	random	variables,	and	independence;	not	even	the
integral	is	needed.	Starting	from	a	normed	vector	space	X	(here	X	=	Cb	(E)	with	the	norm		·	∞	),	we	define	the	n→∞	weak∗	-topology	on	the	dual	space	X	by	writing	μn	−→	μ	if	and	only	if	n→∞	each	μ	defines	a	continuous	linear	μn	(x)	−→	μ(x)	for	all	x	∈	X.	If	X	has	period	d	≥	2,	and	if	n	∈	N	is	not	a	multiple	of	d,	then,	by	Theorem	17.52,	;	;	;δx	pn	−	π	;	≥
|pn	(x,	x)	−	π({x})|	=	π({x})	>	0.	(	'	Hence,	for	A	=	0,	14	,	we	have	A	∩	τr−kn	(A)	=	∅.	Proof	Since	E	⊂	σ	(X1	,	X2	,	.	Theorem	21.20	(Lévy’s	arcsine	law)	Let	T	>	0	and	ζT	:=	sup{t	≤	T	:	Bt	=	0}.	In	order	to	show	that	μ∗	is	an	outer	measure,	it	only	remains	to	check	that	μ∗	is	σ	-subadditive.	Takeaways	A	reversible	Markov	chain	is	stationary	and	fulfills
an	even	stronger	equilibrium	condition:	The	condition	of	detailed	balance	says	that	on	average	the	Markov	chain	jumps	from	x	to	y	as	often	as	it	jumps	from	y	to	x	(for	all	x	and	y).	Proof	Let	α	:=	sup	ϕ(A)	:	A	∈	A	.	A	parameter	of	this	distribution	is	the	inverse	temperature	β	=	T1	≥	0	(with	T	the	absolute	temperature).	In	the	latter	case,	we	also	get
convergence	of	the	Markov	chain	to	the	invariant	distribution	(in	distribution).	Thus,	for	every	ε	>	0,	there	exists	a	compact	set	A	⊂	C([0,	∞))	with	Pi	(A)	>	1	−	ε	for	every	i	∈	I	.	Secondly,	the	network	can	be	reduced	in	a	series	of	elementary	steps:	Resolving	parallel	connections,	resolving	serial	connections	and	resolving	intermediate	points	using	the
star-triangle	transformation.	If	f1	and	f2	are	densities	of	ν	with	respect	to	μ,	then	f1	=	f2	μ-almost	everywhere.	(18.8)	In	particular,	π	is	invariant	(check	this!).	We	construct	a	filtration	F	=	(Fn	)n∈N	by	letting	Fn	:=	σ	({A1	,	.	A	map	f	:	[0,	∞)	→	E	is	called	RCLL	(right	continuous	with	left	limits)	or	càdlàg	(continue	à	droit,	limites	à	gauche)	if	f	(t)	=	f
(t+)	:=	lims↓t	f	(s)	for	every	t	≥	0	and	if,	for	every	t	>	0,	the	left-sided	limit	f	(t−)	:=	lims↑t	f	(s)	exists	and	is	finite.	k=0	By	Lemma	20.15,	(Yn	)n∈N	is	uniformly	integrable,	and	by	Birkhoff’s	ergodic	n→∞	theorem,	we	have	Yn	−→	0	almost	surely.	426	17	Markov	Chains	Consider	now	the	signed	measure	μ	=	π	−	ν.	18.2.	For	x	∈	E,	define	X0x	=	x	and	x
Xnx	=	Rn	(Xn−1	)	for	n	∈	N.	The	moduli	of	the	eigenvalues	are	given	by	|λk	|	=	f	(2πk/N),	where	f	(ϑ)	=	2	1	−	4r(1	−	r)	sin(ϑ)2	for	ϑ	∈	R.	Then	μ	is	a	Lebesgue–Stieltjes	measure	if	and	only	if	the	sequence	(xn	)n∈N	does	not	have	a	limit	point.	Here	α,	β	<	−1	and	c	=	(2α	ζ	(−α)	+	(1	−	2β	)ζ(−β))−1	(ζ	is	the	Riemann	zeta	function)	is	the	normalization
constant.	On	the	other,	the	strong	law	of	large	numbers	claims	n→∞	that	for	fixed	ω,	we	have	Sn	(ω)/n	−→	3.5	(Fig.	Therefore,	Xt	=	X	Reflection	Why	cannot	we	drop	the	assumption	that	t	→	E[Xt	]	be	right	continuous?	μ	is	upper	semicontinuous.	(ii)	If	p0	+p1	=	1,	then	all	of	the	statements	are	obvious.	2	Then	X	is	a	martingale;	however,	lim	supn→∞
Xn	=	∞	and	lim	infn→∞	Xn	=	−∞.	Note	that	τx1	>	0	even	if	we	start	the	chain	at	X0	=	x.	Assume	that	F1	,	F2	,	.	,	Xtk	).	In	other	words,	if	Z,	Z	1	,	.	♦	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	170	Example	7.13	Let	G	=	[0,	∞)×[0,	∞),	α	∈	(0,	1)	and	ϕ(x,	y)	=	x	α	y	1−α	.	X	is	called	(with	respect	to	F)	a	martingale		if	E[Xt		Fs	]	=	Xs	for	all	s,	t	∈	I	with
t	>	s,	submartingale		if	E[Xt		Fs	]	≥	Xs	for	all	s,	t	∈	I	with	t	>	s,	supermartingale		if	E[Xt		Fs	]	≤	Xs	for	all	s,	t	∈	I	with	t	>	s.	In	other	words,	we	have	ft	dνn	−→	ft	(0)	=	−t	2	/2.	Later	we	will	encounter	a	different	(but	equivalent)	definition	that	will,	however,	rely	on	the	notion	of	an	integral	that	is	not	yet	available	to	us	at	this	point	(see	Definition	14.20).
The	general	solution	is	unknown;	however,	for	the	case	r	=	2,	Sylvester	[163]	showed	that	N	=	(k1	/dx	−	1)(k2	/dx	−	1)	is	minimal.	3	6	2	Thus,	for	|t	−	s|	<	δ	by	Lemma	15.20,	|ϕμ	(t)	−	ϕμ	(s)|	≤	ε.	i=1	j	=1	Theorem	5.8	(Cauchy–Schwarz	inequality)	If	X,	Y	∈	L2	(P),	then	Cov[X,	Y	]	2	≤	Var[X]	Var[Y	].	j	=1	i=1	Proof	If	μ(Ai	∩	Bj	)	>	0	for	some	i	and	j	,	then
Ai	∩	Bj	=	∅,	and	f	(ω)	=	αi	=	βj	for	any	ω	∈	Ai	∩	Bj	.	are	E1	-valued	random	variables	with	P[X	∈	Uϕ	]	=	0	and	D	D	Xn	−→	X,	then	ϕ(Xn	)	−→	ϕ(X).	Theorem	15.2	(Stone–Weierstraß)	Let	E	be	a	compact	Hausdorff	space.	116	5	Moments	and	Laws	of	Large	Numbers	n	∞	Proof	Define	Sn	=	i=1	Xi	for	n	∈	N0	.	9.1	Processes,	Filtrations,	Stopping	Times	We
introduce	the	fundamental	technical	terms	for	the	investigation	of	stochastic	processes	(including	martingales).	Thus	we	define	R	:=	R	∪	{−∞,	+∞}.	♣	Exercise	2.2.3	(Multinomial	distribution)	Let	m	∈	N	and	let	p	=	(p1	,	.	♣	Exercise	12.1.2	Derive	equation	(12.4)	formally.	.)	∈	E	N	,	let	ξn	(x)	:=	n1	nl=1	δxl	be	the	empirical	distribution	of	x1	,	.	,	d	−	1)
be	another	decomposition	that	satisUniqueness	Let	(E	0	=	∅	(otherwise	fies	(18.5)	and	(18.6).	Hence	ϕexp2	(t)	=	ϕexpθ	(t)	ϕexpθ	(−t)	=	θ	1	1	1	.	By	Ohm’s	rule,	we	get	u(1)	=	u(0)	+	I	(x1	)	R(0,	1),	u(2)	=	u(1)	+	I	(x1	)	R(1,	2)	x0	=	1	C(0,	1)	u(0)	=	0	C(1,	2)	x1	=	6	C(5,	6)	u(6)	=	1	Fig.	It	was	a	single	printed	card	with	some	numbers	printed	on	it.	+	Tnr	,
n	∈	N}	and	let	S	:=	{T1s	+	.	By	the	Radon–Nikodym	theorem	(Corollary	7.34)	(applied	to	the	measures	ν	−	and	ν	+	;	see	Exercise	7.5.1),	ν	admits	a	density	with	respect	to	μ;	that	is,	a	measurable	function	f	with	ν	=	f	μ.	For	measurable	maps	f	:	E	n	→	E		and	F	:	E	N	→	E		,	define	the	maps	f		and	F		by	f		(x)	=	f	(x		)	and	F		(x)	=	F	(x		).	Now	let	z	:=	x	−	y.
Consider	now	the	situation	that	we	studied	with	the	summation	formula	for	conditional	probabilities.	♦	A	We	want	to	extend	the	real	line	by	the	points	−∞	and	+∞.	Hint:	Use	Markov’s	inequality	for	f	(x)	=	eγ	x	and	choose	the	optimal	γ	.	Then		lim	sup	μn	(F	)	≤	inf	lim	ε>0	n→∞	n→∞		ρF,ε	dμn	=	inf	ρF,ε	dμ	=	μ(F	)	ε>0	ε→0	since	ρF,ε	(x)	−→	1F	(x)	for	all
x	∈	E.	+	Hence	the	integral	is	an	extension	of	the	map	I	from	E	to	the	set	of	nonnegative	measurable	functions.	Now	apply	Corollary	15.33	to	the	random	variable	X	with	respect	to	the	probability	measure	P[	·	|Y	∈	A].	To	this	end,	consider	the	map	φn	:	[0,	1)	→	{0,	1}n		x	→	1[1/2,1)(x),	1[1/2,1)(τr	(x)),	.	Consider	the	class	of	sets	DE	=	A	∈	A	:	μ(A	∩	E)	=
ν(A	∩	E)	.	Use	a	suitable	orthonormal	basis	on	[0,	1]d	to	show:	(i)	There	is	a	Gaussian	process	(Wt	)t	∈[0,1]d	with	covariance	function	Cov[Wt	,	Ws	]	=	d			ti	∧	si	.	The	outcomes	of	the	other	experiments	do	not	play	a	role	for	the	occurrence	of	this	event.	(T	owerproperty)	E[E[X	|F	]|G]	=	E[E[X	|G]|F	]	=	E[X	|G].		1	We	will	show	that	P[B]	=	1	if	and	only	if
∞	n=0	wn	<	∞.			Proof	Clearly,	X−1	(E		)	⊂	X−1	σ	(E		)	=	σ	X−1	(σ	(E		))	.	Output	F	(∗).	We	will	obtain	1	−	F	(x1	,	x1	)	as	the	limit	of	the	probability	that	a	random	walk	started	at	x1	hits	A0	before	returning	to	x1	as	A0	↓	∅.	n→∞	Definition	13.17	Let	X,	X1	,	X2	,	.	For	x	=	(x1	,	x2	,	.	13.3	Prohorov’s	Theorem	293	The	other	implication	in	Prohorov’s
theorem	is	more	difficult	to	prove,	especially	in	the	case	of	a	general	metric	space.	Since	all	eigenvalues	are	different,	every	eigenvalue	has	multiplicity	1.	i=1	This	formula	defines	a	content	μ	on	the	semiring	A,	and	our	aim	is	to	extend	μ	in	a	unique	way	to	a	probability	measure	on	the	σ	-algebra	σ	(A)	that	is	generated	by	A.	Write	degHL	(h)	for	the
degree	of	h	∈	HL	;	that	is,	the	number	of	neighbors	of	h	in	HL	.	616	24	The	Poisson	Point	Process	Exercise	24.1.1Let	X1	,	X2	,	.	n→∞	n→∞	142	5	Moments	and	Laws	of	Large	Numbers	Using	the	Poisson	approximation	theorem	(Theorem	3.7),	we	infer	that,	for	any	l	∈	N0	,	)	*	P[Nt	=	l]	=	lim	P	Ntn	=	l	=	Poiαt	({l}).	♦		Reflection	Why	is	there	no	infinite
product	measure	if	e	p(e)	∈	(0,	∞)	\	{1}?	Using	the	strong	Markov	property,	we	get	that,	for	all	z	∈	N0	,	P0	[B]	≥	P0	[Zn+1	>	Zn	for	all	n	≥	τz	]	=	Pz	[A]	≥	1	−	21−z	,	and	thus	P0	[B]	=	1.	Consider	the	class	of	sets	A	:=	V	∩	C	:	V	⊂	E	open,	C	⊂	E	closed	.	Theorem	5.36	The	family	(Nt	,	t	≥	0)	is	a	Poisson	process	with	intensity	α.			Corollary	1.87	With	the
above	notation,	τ¯		=	τ	and	hence	B	R		=	B(R).	n=1	Example	12.15	Let	X1	,	X2	,	.	♣	Exercise	11.2.2	X1	,	X2	,	.	For	example,	the	assumption	that	the	random	variables	be	identically	distributed	can	be	waived	if	other	assumptions	are	introduced	such	as	bounded	variances.	We	infer	Pp	[NL1	≤	NL0	−	1]	≥	Pp	[A2L,0]	>	0,	which	leads	to	a	contradiction.
Let	ρK,ε	be	the	map	from	Lemma	13.10.	The	CFP	of	CPoiν	is	given	by		ϕν	(t)	=	exp		(eit	x	−	1)	ν(dx)	.	Theorem	17.14	If	I	⊂	[0,	∞)	is	countable	and	closed	under	addition,	then	every	Markov	process	(Xn	)n∈I	with	distributions	(Px	)x∈E	has	the	strong	Markov	property.	Theorem	15.13	(Characteristic	functions	of	some	distributions)	For	some	distributions
P	with	density	x	→	f	(x)	on	R	or	weights	P	({k}),	k	∈	N0	,	we	state	the	characteristic	function	ϕ(t)	explicitly:	[−a,	a]	R	{0,	.	+	xk	).	,	N},	and	the	transition	matrix	is	of	the	form	⎧	⎪	⎪	⎨	r,	1	−	r,	p(i,	j	)	=	⎪	1,	⎪	⎩	0,	if	j	=	i	+	1	∈	{2,	.	(21.26)	542	21	Brownian	Motion	We	call		t	0		f	(s)	dWs	:=	I	f	1[0,t	]	,	t	∈	[0,	1],	f	∈	L2	([0,	1]),	the	stochastic	integral	of	f
with	√	respect	to	W	.	k=1	520	21	Brownian	Motion	Now	fix	γ	∈	(0,	β/α)	to	obtain	P[Bn	]	≤	∞		P[Am	]	≤	C	m=n	2−(β−αγ	)n	n→∞	−→	0,	1	−	2αγ	−β	(21.6)	hence	P[N]	=	0.	,	n}	geometric	distribution	γp	on	N0	−	on	N	negative	binomial	distribution	(or	Pascal	distribution)	br,p	0	Poisson	distribution	Poiλ	on	N0	hypergeometric	distribution	HypB,W	;n	on
{0,	.	It	is	reasonable	to	assume	that	a	market	gives	no	opportunity	for	an	arbitrage.	Denote	by	B	+	(E)	the	set	of	measurable	maps	E	→	[0,	∞]	and	by	BbR	(E)	the	set	of	bounded	measurable	maps	f	∈	B	+	(E),	3	E	→	R	with	compact	support.	,	n	:	Xk	=	i}	for	i	=	1,	.	Hence	(An	(ϕ))n≥k	is	a	backwards	martingale	with	respect	to	(E−n	)n∈−N	.	Theorem8.29
(Regular	conditional	distributions	in	R)	Let	Y	:	(Ω,	A)	→	R,	B(R)	be	real-valued.	Therefore,	L[X	|Ξ∞	]	=	Ξ∞	Remark	12.27	(i)	In	the	case	considered	in	the	previous	theorem,	by	the	strong	law	of	large	numbers,	for	any	bounded	continuous	function	f	:	E	→	R,		n→∞	f	dΞn	−→		f	dΞ∞	almost	surely.	Indeed,	letting	A	=	j	∈J	Aj	,	P[A|F	]	=	1A	=		j	∈J	1Aj	=		)		*	P
Aj		F	almost	surely.	By	(11.1),	we	have	E[X∞	1B	]	=	Q(B)	for	all	B	∈	n∈N	Fn	and	thus	also	for	all	B	∈	F	.	n∈N	Hence	we	only	have	to	show	3	f	dμ	≤	sup	3	fn	dμ.	7.1	Definitions	..	29	Using	the	values	of	R		(0,	x),	R		(1,	x)	and	R		(0,	1)	and	equation	(19.14),	we	compute	the	effective	resistances	in	the	reduced	network	(and	hence	in	the	original	network):	
Reff	(0	↔	x)	=		Reff	(1	↔	x)	=		Reff	(0	↔	1)	=	32	+	27	26	+	27	8	+	27	−1	1	27	8	+	27	26	1	27	32	+	27	8	1	27	26	+	27	32	=	17	,	24	=	5	,	6	=	29	.	24.3	The	Poisson–Dirichlet	Distribution	.	Proof	We	show	equality	by	showing	the	two	inequalities	separately.	Since	Λ(0)	=	0,	we	have	Λ∗	(x)	≥	0	for	every	x	∈	R.	However,	if	the	σ	-algebra	A	can	be
approximated	by	countably	many	A	sufficiently	well,	then	there	is	hope.	That	is,	(Y1	,	.	On	the	other	hand,			if	X	has	the	Markov	property,	then	(see	(8.6))	P[Xt	=	i		Xsn	](ω)	=	P[Xt	=	i		Xsn	=	in	]	for	almost	all	ω	∈	{Xsn	=	in	}.	These	sets	are	not	easy	to	construct	like,	for	example,	Vitali	sets	that	can	be	found	in	calculus	books	(see	also	[37,	Theorem
3.4.4]).	In	the	next	theorem,	we	will	see	that	this	is	still	true	even	if	ϕ	is	not	twice	continuously	differentiable	when	we	pass	to	the	right-sided	derivative	D	+	ϕ	(or	to	the	left-sided	derivative),	which	we	show	always	exists.	Then,	for	B	∈	A,	we	would	have			(f	+	ε	1A	)	dμ	=	f	dμ	+	εμ(A	∩	B)	B	B	≤	νa	(B)	+	νs	(A	∩	B)	≤	νa	(B)	+	νs	(B)	=	ν(B).	(2n)!	The	two
processes	(Xn	)n∈N0	and	(Yt	)t	∈[0,∞)	thus	have	the	same	Green	function.	30	1	Basic	Measure	Theory	Let	A,	A1	,	A2	,	.	are	i.i.d.	and	∼	Rad1/2	:	k=1	P[R1	=	1]	=	P[R1	=	−1]	=	1	.	Proof	The	two		statements	arec	immediate	consequences	of	de	Morgan’s	rule	Ai	).	,	N	−	1}	the	Markov	chain	with	transition	matrix	p(x,	y)	=	1{y=x+1(mod	N)}	.	The	ring-
shaped	superconductors	have	melted	down	to	single	points.	However,	G(∞)	=	0	<	lim	supn→∞	Gn	(∞)	=	1;	hence	we	do	not	have	weak	convergence	here	either.	Hence,	let	f	:	RN	→	R	be	continuous	and	bounded	and	F	(B)	=	f	(Bt1	,	.	∈	[0,	1]	are	such	that	∞		pk	=	1.	However,	it	has	the	advantage	that	it	can	be	performed	without	going	through	all	the
network	reduction	steps	if,	for	some	reason,	we	know	the	effective	resistances	already.	♦	Definition	5.22	(Empirical	distribution	function)	Let	X1	,	X2	,	.	Hence,	it	only	remains	to	show	that	I˜	=	Λ∗	.	Then	τn	is	the	time	of	the	nth	return	of	S	to	0.	At	time	s,	what	is	the	probability	that	we	have	to	wait	another	t	time	units	(or	longer)	for	the	next	click?	“	⇐
”	Let	X	be	aperiodic.	Now	assume	that	(17.33)	holds	for	some	given	t	∈	N0	.	Consequently,	for	such	a	random	walk,	one	out	of	three	alternatives	holds:	(i)	The	random	walk	goes	to	∞	at	positive	speed.	Formally,	we	call	three	events	A1	,	A2	and	A3	(stochastically)	independent	if	P[Ai	∩	Aj	]	=	P[Ai	]	·	P[Aj	]	for	all	i,	j	∈	{1,	2,	3},	i	=	j,	(2.2)	and	P[A1	∩	A2
∩	A3	]	=	P[A1	]	·	P[A2	]	·	P[A3	].	,	2n	.	76	2	Independence	Such	a	family	(Ye	)e∈E	exists	by	Theorem	2.19.	m→∞	m→∞	However,	by	definition,	α	≥	ϕ(Ω	+	);	hence	α	=	ϕ(Ω	+	).	To	this	end,	we	need	a	representation	of	convex	functions	of	many	variables	as	a	supremum	of	affine	linear	functions.	=	F{1,...,n}	(x,	.	Exercise	14.1.1	Show	that	Ai	=	i∈I		ZJ	.
Then,	for	any	ε	>	0,	|Sn	|	1/2	(log(n))(1/2)+ε	n→∞	n	lim	sup	=	0	almost	surely.	1	Exercise	4.2.1	Let	(Ω,	A,	μ)	be	a	measure	space	and	that	3	let	f	∈	L3	(μ).	Show	that	μ	∈	M	is	extremal	if	and	only	if	τ	is	ergodic	with	respect	to	μ.	;	;	3	3	For	f¯	∈	Lp	(μ),	define	;f¯;p	=	f	p	for	any	f	∈	f¯.	We	construct	the	Brownian	bridge	as	follows.	This	approach	allows	for	an
independent	proof	of	de	Finetti’s	theorem.	(iii)	Any	countable	(respectively	finite)	union	of	sets	in	A	can	be	expressed	as	a	countable	(respectively	finite)	disjoint	union	of	sets	in	A.	If	the	test	gives	an	alarm,	what	is	the	probability	that	the	device	just	tested	is	indeed	defective?	n∈N	n	n	512	20	Ergodic	Theory	Definition	20.34	(Kolmogorov–Sinai	entropy)
The	entropy	of	a	(general)	measure-preserving	dynamical	system	(Ω,	A,	P,	τ	)	is	h(P,	τ	)	=	sup	h(P,	τ	;	P),	P	where	the	supremum	is	taken	over	all	finite	measurable	partitions	of	Ω.	However,	now		H	(x	i	)	−	H	(x)	=	1{x(j	)=−x(i)}	−	j	:	j	∼i	=	−2		1{x(j	)=x(i)}	j	:	j	∼i				1	.	Describe	p	formally	and	show	that	p	is	aperiodic	and	irreducible.	be	real	random	n	
variables.	,	Bτ	n	+tN	)		Fτ	n	)	*	=	EBτ	n	f	(Bt1	,	.	The	procedure	we	used	here	to	derive	Pólya’s	theorem	has	the	disadvantage	that	it	relies	on	the	local	central	limit	theorem,	which	we	have	not	proved	(and	will	not).	(ii)	Let	X	be	exponentially	distributed	with	parameter	θ	>	0.	Reflection	In	Theorem	1.53,	in	general,	μ	cannot	be	extended	to	a	measure
on	all	of	2Ω	.	“	⇐	”	Now	assume	that	α	and	ν	are	given.	be	i.i.d.	random	variables	with	values	in	Σ	and	with	distribution	PX1	=	μ.	Hence	also	the	countable	union	of	these	sets	is	in	Ft	:		{τK	≤	t}	=	{Xs	∈	K}	∈	Ft	.	The	above	requirements	translate	to:	(NI	,	I	∈	I)	being	a	family	of	random	variables	with	values	in	N0	and	with	the	following	properties:	(P1)
NI	∪J	=	NI	+	NJ	if	I	∩	J	=	∅	and	I	∪	J	∈	I.	5.)	Let	A3L:=			x	1	,x	2	,x	3	∈BL	\BL−1	i=j				3	{C	p	(x	i	)	∩	C	p	(x	j	)	=	∅}	∩	{#C	p	(x	i	)	=	∞}	i=1	be	the	event	where	there	are	three	points	on	the	boundary	of	BL	that	lie	in	different	infinite	open	clusters.	be	i.i.d.	Rd	-valued	random	variables	and	let	Snx	=	x	+	n		Yi	for	x	∈	Rd	and	n	∈	N0	.	Theorem	12.24	(de
Finetti)	The	family	X	=	(Xn	)n∈N	is	exchangeable	if	and	only	if	there	exists	a	σ	-algebra	A	⊂	F	such	that	(Xn	)n∈N	is	i.i.d.	given	A.	Let	A˜	i	⊂	E	for	any	1	n	e∈E	e	e	i=1	i	∈	N,	and	let	Ai	be	the	event	where	A˜	i	occurs	in	the	ith	experiment;	that	is,	=	Ai	=	ω	∈	Ω	:	ωi	∈	A˜	i	[ω1	,	.	5.3	for	a	computer	simulation	of	a	Poisson	process.	For	n	∈	N,	define	Yn	=
2−n	2n	Y	!.	However,	An	(ϕ)	is	En	-measurable	and	hence	⎤	⎡					*	)	1		1	ϕ(X	)En	⎦	=	ϕ(X	).	We	define	the	convolution	of	μ	and	ν	as	μ	∗	ν	=	PX+Y	.	By	(21.5)	and	(21.11),	we	Hence	)X	*		is	a	modification	of	X.	18.2	Coupling	and	Convergence	Theorem	443	Corollary	18.10	If	X	is	an	irreducible	random	walk	on	Zd	,	then	every	bounded	harmonic	function	is
constant.	Defining	c+	=	α	ν([1,	∞))	and	c−	:=	αν((−∞,	−1]),	we	get	(16.22)	and	thus	(iii)	and	(i).	Assume	that	initially	all	edges	have	resistance	1.	(1.12)	k=1	For	this	purpose	we	use	a	compactness	argument	to	reduce	(1.12)	to	finite	additivity.	Then	cX	∈	L1	(P)	and	X	+	Y	∈	L1	(P)	as	well	as	E[cX]	=	c	E[X]	and	E[X	+	Y	]	=	E[X]	+	E[Y	].	“(iii)	⇒	(ii)”
Assume	(iii)	and	μ(Ω)	<	∞.	Theorem	3.11	(Extinction	probability	of	the	Galton–Watson	process)	Assume	p1	=	1.	Jensen’s	inequality	(Theorem	8.20)	then	yields,	for	t	>	s,			E[ϕ(Xt	)		Fs	]	≥	ϕ(E[Xt		Fs	])	=	ϕ(Xs	).	110	4	The	Integral	Theorem	4.26	Let	f	:	Ω	→	R	be	measurable	and	f	≥	0	almost	everywhere.	For	Markov	chains,	the	entropy	can	be	computed
explicitly.	Finally,	for	x	∈	E	let	SAn	(x)	=	y	∈	E	:	(pA	)n	(x,	y)	>	0	,	for	n	∈	N0	and	SA	(x)	=	∞		SAn	(x)	=	y	∈	E	:	FA	(x,	y)	>	0	.	The	distribution	of	(IA1	,	.	Hence,	let	A	⊂	E	be	open.	Hence	now	consider	the	event	B	:=	{E[X	|F	]	is	an	interior	point	of	I	}.	The	sets	A	∈	τ	are	called	open,	and	the	sets	A	⊂	Ω	with	Ac	∈	τ	are	called	closed.	The	following	theorem,
however,	shows	that	the	measure	of	a	set	from	σ	(A)	can	be	well	approximated	by	finite	and	countable	operations	with	sets	from	A.	n=0	Corollary	17.49	If	X	is	positive	recurrent,	then	π	:=	distribution	for	any	x	∈	E.	19.9)	if	the	resistances	R1	,	R2	,	R3	,	R	Ri	R˜	i	=	δ	for	any	i	=	1,	2,	3,	(19.18)	where		δ	=	R1	R2	R3	R1−1	+	R2−1	+	R3−1	=	2	R	3	1	R	R	.
Without	loss	of	generality,	assume	μ	(An	)	<	∞	and	hence	U(An	)	=	∅	for	all	n	∈	N.	Since	ϕ		(0)	<	0,	we	have	τ	>	0.	Then	h	≡	1	serves	the	purpose.	By	virtue	of	Lévy’s	continuity	theorem,	one	can	show	that	(see	Exercise	16.1.2)	ϕ(t)	=	0	for	all	t	∈	R	if	ϕ	is	infinitely	divisible.	n	Together	with	Theorem	12.17,	we	conclude	that		*	)	n→∞	An	(ϕk−1	)	An	(fk	)
−→	E	ϕk	(X1	,	.	♠♠♠	With	a	lemma,	we	prepare	for	an	alternative	proof	of	Lebesgue’s	decomposition	theorem	(Theorem	7.33).	∞	Define	X	:=	n=1	λn	Xn	.	In	all,	then,	for	θ	,	we	get	N	−	1	different	values	(note	that	the	complex	conjugates	of	the	values	considered	here	lead	to	the	same	values	λn	),	θn	=	e(n/N)π	i	for	n	=	1,	.	♣	Exercise	18.2.4	Let	X	be	a
Markov	chain	on	Z2	with	transition	matrix	⎧1	if	x1	=	0,	y	−	x2	=	1,	⎪	4,	⎪	⎪	⎪	⎪	⎨	1	,	if	x1	=	0	and	y1	=	x1	±	1,	x2	=	y2	,	4	p((x1	,	x2	),	(y1	,	y2	))	=	1	⎪	⎪	if	x1	=	0	and	y1	=	x1	,	x2	=	y2	,	⎪	2,	⎪	⎪	⎩	0,	else.	(This	is	simpler	than	in	Exercise	19.5.3!)	♣	Exercise	19.5.5	For	a	random	walk	on	the	graph	of	Fig.	We	establish	the	result	in	a	theorem.	17.7
Stochastic	Ordering	and	Coupling	433	Assume	that	(17.31)	and	(17.32)	hold.	In	order	for	this	to	hold	for	the	righthand	side,	by	Weierstraß’s	theorem	on	rearrangements	of	series,	the	series	has	to	converge	absolutely.	Use	Exercise	15.4.1	to	show	that	the	random	variables	X	:=	BZ	and	Y	:=	(1	−	B)Z	are	independent	with	X	∼	Γ1,r	and	Y	∼	Γ1,s	.	Hence
let	m	∈	N	and	0	=	t0	<	t1	<	.	Proof	Let	a	>	0	and	n	∈	N.	A	circle	is	a	self-avoiding	(finite)	path	that	ends	at	its	starting	point.	Then	the	usual	class	of	open	sets	is	the	topology	τ=		(x,r)∈F		Br	(x)	:	F	⊂	Ω	×	(0,	∞)	.	and	X˜	1	,	X˜	2	,	.	,	tn	},	we	have		κ(x,	·	)	◦	XJ−1	n−1	=	δx	⊗		κtk+1	−tk	.	and	This	implies	(i).	Definition19.1	Let	A	⊂	E.	.)	for	n	∈	N.	As	shown
in	the	first	part	of	this	proof,	almost	sure	convergence	of	∞	n=1	Xn	and	(i)	imply	that	∞		n=1	Yn	converges	almost	surely.	(16.9)	k=1	(In	∞contrast	to	the	situation	in	Theorem	16.14,	here	it	is	not	necessary	to	have	k=1	E[|Xk	−	αk	|]	<	∞.	♠♠	x↑1	Theorem	3.3	(Multiplicativity	of	generating	functions)	If	X1	,	.	Example	7.12	Let	X	be	a	real	random
variable	with	E[X2	]	<	∞,	I	=	R	and	ϕ(x)	=	x	2	.	In	fact,	X	is	stationary	if	only	Y	is	stationary.	Theorem	15.51	(Kolmogorov’s	three-series	theorem)	Let	X1	,	X2	,	.	This	is	a	microscopic	model	for	a	magnet	that	assumes	that	each	of	n	indistinguishable	magnetic	particles	has	one	of	two		possible	orientations	σi	∈	Σ	=	{−1,	+1}.	Then	X	is	a	Brownian	motion.
(17.2)	394	17	Markov	Chains	Conversely,	for	every	Markov	process	X,	Equation	(17.2)	defines	a	semigroup	of	stochastic	kernels.	Define	Xi,j	:=	E[Xi		Fj	].	With	the	Poisson	distribution,	we	have	encountered	such	a	limit	distribution	that	occurs	as	the	number	of	very	rare	events	when	the	number	of	possibilities	goes	to	infinity	(see	Theorem	3.7).	In	the
figures	we	label	each	edge	with	its	resistance	if	it	differs	(in	the	course	of	the	reduction)	from	1.	♦	Example	2.25	Let	μi	∈	R	and	σi2	>	0	for	i	∈	I	.	We	will	need	a	theorem	on	conservation	of	energy	and	Thomson’s	principle	(also	called	Dirichlet’s	principle)	on	the	minimization	of	the	energy	dissipation.	Evidently,	μ(∅)	˜	=	0,	and	it	is	simple	to	check	that
μ˜	is	σ	-finite.	Let	C	:=	(C(x,	y),	x,	y	∈	E)	be	a	family	of	weights	with	C(x,	y)	=	C(y,	x)	≥	0	for	all	x,	y	∈	E	and	C(x)	:=		C(x,	y)	<	∞	for	all	x	∈	E.	be	ranD	n→∞	dom	variables	with	values	in	E.	By	2		ak	x		+	Theorem	15.13,	μk	has	the	characteristic	function	ϕμk	(t)	=	1	−	|tak|	.	Definition	2.20	For	any	i	∈	I	,	let	Xi	be	a	real	random	variable.	♣	36	1	Basic
Measure	Theory	1.4	Measurable	Maps	A	major	task	of	mathematics	is	to	study	homomorphisms	between	objects;	that	is,	structure-preserving	maps.	Choose	a	subsequence	(fnk	)k∈N	such	that		μ	d(fn	,	fnk	)	>	2−k	<	2−k	for	all	n	≥	nk	.	Note	that	we	have	μ˜	n	(W	n	)	≤	μ˜	n+1	(W	n	),	but	equality	does	not	hold	in	general.	Of	course,	for	any	n,	the	actual
value	of	Sn	will	sometimes	be	smaller	than	n·E[X1	]	and	sometimes	larger.	Clearly,	p	is	irreducible,	and	p	is	aperiodic	if	and	only	if	N	is	odd.	In	either	case,	where	does	the	proof	of	Theorem	5.34	fail?	To	this	end,	we	have	to	modify	the	rescaled	processes	so	that	they	become	continuous.	n→∞		n→∞	meas	Letting	δ	↓	0	yields	μ	B	∩	{d(f,	fn	)	>	ε}	−→	0;
hence	fn	−→	f	.	for	k	=	0,	.	The	French	la	martingale	(originally	Provençal	martegalo,	named	after	the	town	Martiques)	in	equitation	means	“a	piece	of	rein	used	in	jumping	and	cross	country	riding”.	By	Lemma	14.30,	the	Chapman–Kolmogorov	equation	holds	since	(compare	Exercise	14.2.1(i))	κs	·	κt	(x,	dy)	=	δx	∗	(N0,s	∗	N0,t	)(dy)	=	δx	∗	N0,s+t	(dy)
=	κs+t	(x,	dy).	1	For	example,	the	function	f	:	[0,	∞)	→	R,	x	→	1+x	sin(x)	is	improperly	Riemann	3	integrable	but	is	not	Lebesgue	integrable	since	[0,∞)	|f	|	dλ	=	∞.	n=1	The	random	variables	1A	(Y1	),	1A	(Y2	),	.	19.6	A	tree	as	a	subgraph	of	Z3	on	which	random	walk	is	still	transient.	,	Xn	=	x	)	*	=	Pπ	Xk+1	=	x,	.	If	(fn	)n∈N	converges	a.e.,	then	we	also
say	that	a.s.	(fn	)n∈N	converges	almost	surely	(a.s.)	and	write	fn	−→	f	.	By	Lemma	21.36,	we	have	P	=	Q.	,	Xk	=	xk	]	·	Py	τx1	=	∞	=	Px	[X1	=	x1	,	.	Hence	ν	is	not	totally	continuous	with	respect	to	μ.	Clearly,	fn	−→	f	pointwise;	hence	f	is	the	characteristic	function	of	a	probability	measure	μ	=	w-lim	μn	on	R.	13.3	Prohorov’s	Theorem	.	(ii)	If	I	is	compact,
then	f	is	Hölder-continuous.	Thus,	for	every	Cauchy	sequence	(fN	)	in	(Ω,	d)	and	every	n	∈	N,	there	exists	a	gn	∈	Ω	with	N→∞	dn	(fN	,	gn	)	−→	0.	,	n}	(compare	(1.5)).	Hence	E[1A	Y	E[X	|F	]]	=	E[1A	Y	X].	Now	we	consider	one	model	in	greater	detail.	be	probability	measures	n→∞	on	a	Polish	space	E	with	μn	−→	μ.	Let	(Ω,	A,	P,	τ	)	be	the	corresponding
dynamical	system.	We	show	that	μ	(A)	≤		∞	∗	∗	n=1	μ	(An	).	♣	n→∞	n∈N	Exercise	13.2.13	Let	F,	F1	,	F2	,	.	Example	1.11	(i)	For	any	nonempty	set	Ω,	the	classes	A	=	{∅,	Ω}	and	A	=	2Ω	are	the	trivial	examples	of	algebras,	σ	-algebras	and	λ-systems.	We	can	generalize	this	concept	by	allowing	random	times	τ	instead	of	fixed	times	t.	For	n	∈	N,	we	have
n1	f	1{f	≥n}	≥	1{f	≥n}	.	We	owe	some	of	the	proofs	to	[89].	♣	356	15	Characteristic	Functions	and	the	Central	Limit	Theorem	15.5	The	Central	Limit	Theorem	In	the	strong	law	of	large	numbers,	we	saw	that,	for	large	n,	the	order	of	magnitude	of	the	sum	Sn	=	X1	+	.	(In	fact,	if	X˜	i	:=	Xi	−	x,	and	Λ˜	and	Λ˜	∗	are	defined	as	Λ	and	Λ∗	above	but	for	X˜	i
˜	=	Λ(t)−t	·x	and	thus	Λ˜	∗	(0)	=	supt	∈R	(−Λ(t))	˜	instead	of	Xi	,	then	Λ(t)	=	Λ∗	(x).)	23.1	Cramér’s	Theorem	591	Define	ϕ(t)	:=	eΛ(t	)	and	∗	(0)		:=	e−Λ	=	inf	ϕ(t).	Definition	1.79	(Generated	σ	-algebra)	Let	Ω	be	a	nonempty	set.	.)	∈	Cn,in	⊂	Bn	.	The	characteristic	2	2	function	ϕ(t)	=	eiμt	e−σ	t	/2	that	we	get	by	the	above	calculation	with	t	replaced	by	it
is	indeed	analytic.	(i)	If	there	exists	an	x0	∈	E	\	A	such	that	f	(x0	)	=	sup	f	(SA	(x0	)),	(19.5)	then	f	(y)	=	f	(x0	)	for	any	y	∈	SA	(x0	).	Remark	16.23	If	3μ	is	infinitely	divisible	with	Lévy	measure	ν	given	by	(16.22),	then	ψ(t)	:=	log	eit	x	μ(dx)	is	given	by	⎧	)		πα	*	+	−	⎨|t|α	Γ	(−α)	(c+	+	c−	)	cos	πα	,	α	=	1,	2	−	i	sign(t)	(c	−	c	)	sin	2	ψ(t)	=	)	*	⎩	−|t|(c+	+	c−	)
π2	+	i	sign(t)(c+	−	c−	)	log(|t|)	,	α	=	1.	be	independent	random	variables,	that	are	uniformly	distributed	on	(0,	1],	i.e.,	Xk	∼	U(0,1]	for	each	k.	If	in	(v)	pω	=	1	for	every	ω	∈	Ω,	then	μ	is	called	counting	measure	on	Ω.	Proof	(of	Theorem	7.33)	The	idea	goes	back	to	von	Neumann.	(For	periodic	X,	this	is	false.)	Dominated	convergence	thus	yields		)	)	*	*	lim
Pπ	Aε	∩	τ	−n	(B)	=	Eπ	1Aε	1{XN	=x}	π({y})Py	[B]	n→∞	x,y∈E	)	*	=	Pπ	Aε	Pπ	[B].	We	will	show	that	we	can	obtain	a	successful	coupling	by	coalescing	independent	chains.	11.3	Example:	Branching	Process	255	Proof	We	compute	the	conditional	expectation	for	n	∈	N0	:			E[Wn+1		Fn	]	=	m−(n+1)	E[Zn+1		Fn	]	.	.,	averaging	over	all	permutations	of	X1	,
.	♦	18	1	Basic	Measure	Theory	Definition	1.38	(i)	A	pair	(Ω,	A)	consisting	of	a	nonempty	set	Ω	and	a	σ	-algebra	A	⊂	2Ω	is	called	a	measurable	space.	Proof	The	claims	follow	immediately	from	Fubini’s	theorem.	The	parallelogram	law	yields	;	;2	;1	;	;	wm	−	wn		=	2	wm	−	x	+	2	wn	−	x	−	4	;	(wm	+	wn	)	−	x	;	;	.	The	following	theorem	is	of	independent
interest.	The	other	cases	can	be	proved	similarly.	Since	every	An	is	also	open,	A	can	be	covered	by	finitely	many	An	;	hence	(1.13)	holds.	L	(	St1	,	.	If	ν	∈	M1	(Σ),	then	we	define	the	relative	entropy	(or	Kullback–Leibler	information,	see	[104])	of	ν	given	μ	by				ν({x})	H	(ν	|μ)	:=	log	ν(dx).	Then	Y	is	a	martingale	and	Yt	≤	Xt	.	Reflection	For	real	valued
random	variables,	a	Skorohod	coupling	can	be	constructed	explicitly	using	the	distribution	functions.	Inductively,	we	define	relatively	compact	open	sets	Wn	↑	E	with	Wn	⊂	Wn+1	for	all	n	∈	N.	On	the	other	hand,	if	p0	=	0,	then	Zn	is	monotone	in	n;	hence	q	=	0.	The	unique	predictable	process	A	for	which	(Xn2	−	An	)n∈I	becomes	a	martingale	is	called
the	square	variation	process	of	X	and	is	denoted	by	()X*n	)n∈I	:=	A.	♣	14.2	Finite	Products	and	Transition	Kernels	Consider	now	the	situation	of	finitely	many	σ	-finite	measure	spaces	(Ωi	,	Ai	,	μi	),	i	=	1,	.	Definition	8.34	Two	measurable	spaces	(E,	E)	and	(E		,	E		)	are	called	isomorphic	if	there	exists	a	bijective	map	ϕ	:	E	→	E		such	that	ϕ	is	E	–	E		-
measurable	and	the	inverse	map	ϕ	−1	is	E		–	E-measurable.	♦	Example	17.19	(Computer	simulation)	Consider	the	situation	where	the	state	space	E	=	{1,	.	5.2	Weak	Law	of	Large	Numbers	.	+	Xn	)	−	n	the	number	of	black	balls	drawn	in	the	first	n	steps	minus	the	number	of	red	balls	drawn	in	these	steps.	As	a	limit	of	measurable	functions,	If	is
measurable.	Then	Fτ	:=	A	∈	F	:	A	∩	{τ	≤	t}	∈	Ft	for	any	t	∈	I	is	called	the	σ	-algebra	of	τ	-past.	Thus	we	can	compute	π(VT	)	by	applying	(9.4)	to	the	equivalent	martingale.	Consequently,	the	method	can	be	efficiently	implemented	only	if	there	is	more	structure.	Proof	We	have	to	show	that	the	increments	of	N	in	finitely	many	pairwise	disjoint	intervals
are	independent	and	Poisson	distributed.	Show	that	Xn	=	X0	almost	surely	for	all	n	∈	N0	.	This	can	be	generalized:	Lemma	7.49	Let	p,	q	∈	[1,	∞]	with	κ	:	Lq	(μ)	→	(Lp	(μ))		κ(f	)(g)	=	fg	dμ	1	p	+	1	q	=	1.	♣	Exercise	12.1.4	Let	X1	,	X2	,	X3	.	Replace	the	three	pairs	of	parallel	edges	by	single	edges	with	resistances	5	1	−1	1	−1	=	27	,	respectively.	Theorem
7.50	Let	p	∈	[1,	∞)	and	assume	p1	+	q1	=	1.	i=1	Taking	the	supremum	over	such	C	yields	β		∞	i=1		Ai	0	1	∞	∞			Ai	≤	β(Ai	).	ν	is	called	totally	continuous	with	respect	to	μ	if,	for	any	ε	>	0,	there	exists	a	δ	>	0	such	that	for	all	A	∈	A	μ(A)	<	δ	implies	ν(A)	<	ε.	For	λ-systems	the	proof	is	similar.	Remark	4.18	In	fact,		·	p	is	a	seminorm	on	Lp	(μ)	for	all	p	∈	[1,
∞].	n→∞	(ii)	For	every	t	∈	R,	the	limit	ψ(t)	=	lim	n(ϕn	(t)	−	1)	exists	and	ψ	is	continuous	n→∞	at	0.	Proof	Existence	x0	∈	E	and	let	Ei	:=	y	∈	E	:	Lx0	,y	=	i	for	i	=	0,	.	The	aim	of	this	book	is	to	present	the	central	objects	and	concepts	of	probability	theory:	random	variables,	independence,	laws	of	large	numbers	and	central	limit	theorems,	martingales,
exchangeability	and	infinite	divisibility,	Markov	chains	and	Markov	processes,	as	well	as	their	connection	with	discrete	potential	theory,	coupling,	ergodic	theory,	Brownian	motion	and	the	Itô	integral	(including	stochastic	differential	equations),	the	Poisson	point	process,	percolation,	and	the	theory	of	large	deviations.	As	X	is	transient,	we	have	P0	[τN
<	∞]	=	1	and	(as	in	(19.9))	)	*	Rw,eff	(0	↔	N)	Rw,eff	(0	↔	N)	=	.	Compare	Example	1.45.	♣	21.3	Strong	Markov	Property	Denote	by	Px	the	probability	measure	such	that	B	=	(Bt	)t	≥0	is	a	Brownian	motion	started	at	x	∈	R.	Hence	the	logarithms	could	be	applied	on	both	sides.	The	family	C	=	{fn	,	n	∈	N0	}	separates	points	and	is	closed	under
multiplication;	hence	it	is	a	separating	class	for	Mf	(E).	Thus	λ(U	\	A)	<	ε	for	the	open	set	U	:=	n∈N	Un	.	,	kn+1	},	we	get	1	−1	−1	k	−1	Skn	≤	kn+1	Skn	≤	l	−1	Sl	≤	kn−1	Skn+1	≤	(1	+	2ε)	kn+1	Skn+1	.	n=1	Indeed,	due	to	the	(finite)	subadditivity	of	μ	(see	Lemma	1.31(iii)),	this	implies	N	∞			μ(An	)	≤	μ(An	);	hence	μ	is	σ	-subadditive.	“(i)	⇒	(vii)”	This
is	clear	since	Cc	(E)	⊂	Cb	(E)	and	1	∈	Cb	(E).	,	xN	∈	{0,	1}	with	x1	+	.	By	Lemma	7.23,	this	map	is	also	continuous.	ν	is	called	the	canonical	measure	or	Lévy	measure	of	μ,	and	α	is	called	the	deterministic	part.	n→∞	Conclude	that	F	−1	(u)	−→	F	−1	(u)	for	Lebesgue	almost	all	u	∈	(0,	1).	For	n	∈	N,	define	the	estimated	value	1	I:n	:=	f	(Xi	).	Definition
5.1	Let	X	be	a	real-valued	random	variable.	B	∗	(Rn	)	is	called	the	σ	-algebra	of	Lebesgue	measurable	sets.	D	If	(i)	and	(ii)	hold,	then	Xλ	=	)λ,	X*	for	all	λ	∈	Rd	.	Theorem	20.21	Let	(Xn	)n∈N	be	an	integrable	ergodic	process	and	define	Sn	=	X1	+	.	By	Theorems	13.6	and	13.11,	the	same	holds	for	the	vague	limit	if	E	is	Polish	and	locally	compact.	(ii)	A	∩
B	∈	τ	for	any	A,	B	∈	τ	.	2	(17.9)	Now	assume	P[Y1	∈	{−1,	0,	1}]	=	1	and	a	∈	N.	Let	Π0,m	be	the	set	of	such	paths.	By	the	definition	of	Fτ	,	we	have	{τ	=	t}	∩	A	∈	Ft	for	all	t	∈	I	.	Again	probability	theory	comes	into	play	when	independence	enters	the	stage;	that	is,	when	we	exit	the	realm	of	linear	integration	theory.	Summing	up,	we	have	shown	the
following	theorem.	3∞	Let	g	∈	C0	(E),	g	≥	0.	We	are	mostly	interested	in	the	cases	I	=	N0	,	I	=	Z,	I	=	[0,	∞)	and	I	an	interval.	(Some	authors	call	such	a	process	a	Markov	chain	in	continuous	time.)	Let	x,	y	∈	E	with	x	=	y.	∈	A.	Remark	2.30	The	convolution	is	a	symmetric	operation:	μ	∗	ν	=	ν	∗	μ.	,	(N	−	1)/N,	1}	with	transition	matrix	p(x,	y)	=	bN,x
({Ny}).	Then	Yn	↑	Y	and	Yn	E[X	|F	]	↑	Y	E[X	|F	]	(since	E[X	|F	]	≥	0	by	(ii)).	(v)	Let	λ	∈	[0,	∞)	and	let	X	:	Ω	→	N0	be	such	that	P[X	=	n]	=	e−λ	λn	n!	for	any	n	∈	N0	.	+	Xn	for	any	n	∈	N.	Proof	Assume	(i).	m	(3.3)	m=0	(ii)	If	X,	Y	are	independent,	X	∼	bm,p	and	Y	∼	bn,p	,	then,	by	Theorem	3.3,	n	m	m+n	ψX+Y	(z)	=	pz	+	(1	−	p)	pz	+	(1	−	p)	=	pz	+	(1	−	p)	.
Formally,	both	objects	are	of	course	the	same.	Then	μ	∂(−∞,	x]	=	μ({x})	=	0.	,	Yn	be	independent	expoD	nentially	distributed	random	variables	with	PYk	=	expk	.	Corollary	1.84	(Trace	of	the	Borel	σ	-algebra)	Let	(Ω,	τ	)	be	a	topological	space	and	let	A	⊂	Ω	be	a	nonempty	subset	of	Ω.	This	is	the	case	if	E	\	A	decomposes	into	domains	between	which	the
chain	that	is	stopped	in	A	cannot	change.	On	B	we	have	τn	<	∞	for	every	n	∈	N0	and	hence	*	)	*	)	P	Sn	=	0	infinitely	often	=	P	τn	<	∞	for	all	n	∈	N	≥	P[B]	=	1.	a3	a4	t	342	15	Characteristic	Functions	and	the	Central	Limit	Theorem	summation,	for	all	k	=	1,	.	♣	12.2	Backwards	Martingales	263	Exercise	12.1.5	Show	that	for	all	n	∈	N	\	{1},	there	is	an
exchangeable	family	of	random	variables	X1	,	.	♣	Exercise	23.2.4	Compute	Λ	and	Λ∗	in	the	case	X1	∼	expθ	for	θ	>	0.	Then	there	exists	a	strong	Markov	process	(Xt	)t	≥0	with	RCLL	paths	and	transition	kernels	(κt	)t	≥0	.	♣	n→∞	Exercise	13.2.12	Let	X,	X1	,	X2	,	.		(T	riangleinequality)	E[|X|		F	]	≥	E[X	|F	].	However,	fy,n	is	a	function	of	Yn	,	say	fy,n	=
gy,n	◦	Yn	for	some	map	gy,n	:	{0,	1}En	→	{0,	1}.	Chapter	12	Backwards	Martingales	and	Exchangeability	With	many	data	acquisitions,	such	as	telephone	surveys,	the	order	in	which	the	data	come	does	not	matter.	,	N,	and	Rn	:=	max	j	=1,...,N−1					Fn	(xj	)	−	F	(xj	)	+	Fn	(xj	−)	−	F	(xj	−)	.	Assume	there	is	a	c	>	0	with	f	(e)	:=	Q({e})	≤	c	P	({e})	for	all	e
∈	E	with	P	({e})	>	0.	Any	such	point	is	connected	to	the	origin	by	a	path	without	selfintersections	π	that	starts	at	0	and	has	length	m	≥	n.	To	this	end,	let	A	∈	A	and	E	∈	2Ω	with	μ∗	(E)	<	∞.	Hence	the	family	(Pξn	(X)	)n∈N	is	tight.	This	implies	that	D	is	\-closed.	Furthermore,	let	Sn	=	X1	+	.	,	k]	>	0.	Averaging	over	all	choices	i1	,	.	Hence	we	aim	at
finding	smaller	(in	particular,	countable)	classes	of	sets	that	generate	the	Borel	σ	-algebra	and	that	are	more	amenable.	π	p({x})	=	y∈E	y∈E	466	19	Markov	Chains	and	Electrical	Networks	If	X	is	irreducible	and	recurrent,	then,	by	Remark	17.51,	π	is	thus	unique	up	to	constant	multiples.	Indeed,	evidently	σ	(Xn+1	,	Xn+2	,	.	If	x	>	K	is	a	point	of
continuity	of	F	,	then	0	=	lim	inf	Fnk	(−∞)	≥	lim	inf	Fnk	(x)	−	ε	k→∞	k→∞	=	F	(x)	−	ε	≥	F	(−∞)	−	ε	≥	−ε.	(iii)	A	family	(Xi	)i∈I	of	random	variables	is	called	identically	distributed	if	PXi	=	D	PXj	for	all	i,	j	∈	I	.	558	21	Brownian	Motion	Remark	21.49	(i)	By	using	higher	moments,	it	can	be	shown	that	the	paths	of	Y	are	Höldercontinuous	of	any	order	γ	∈	(0,
12	).	,	gm	,	g1	)	is	a	self-avoiding	path	starting	and	ending	in	g1	∈	TL	.	Furthermore,	we	construct	measures,	in	particular	probability	measures,	on	such	classes	of	sets.	Here	we	cite	without	proof	a	theorem	that	was	found	independently	by	Rademacher	[141]	and	Menshov	[113].	Define	the	time	of	first	excess	of	a	(truncated	at	(n	+	1)),	τ	:=	inf{m	≥	0
:	Xm	≥	a}	∧	(n	+	1).	The	momentousness	of	the	following	concept	will	become	manifest	only	gradually.	This	dual	space	is	defined	as	follows.	It	is	based	on	a	diagonal	sequence	argument	that	will	be	recycled	later	in	the	proof	of	Prohorov’s	theorem	in	the	general	case.	To	this	end,	associate	with	each	symbol	e	∈	E	a	sequence	of	zeros	and	ones	that
when	concatenated	yield	the	message.	(i)	Assume	that	X	is	a	real	random	variable	and	that	(Xnl	)l∈N	is	a	subsequence	such	that	l→∞	PXnl	−→	PX	weakly.	,	ik	≤	n,	E[F	(X1	,	.	(i)	Assume	there	exists	a	T	∈	N	with	τ	≤	T	.	i=1	n	We	call	μ	=:	μi	the	product	measure	of	the	measures	μ1	,	.	,	ωi	].	,	Bn	∈	B(E)	as	well	as	A	=	ni=0	Xt−1	(Bi	).	(ii)	If	dx	=	dy	for	all
x,	y	∈	E,	then	d	:=	dx	is	called	the	period	of	X.	Let	A	∈	A	with	μ(A)	=	0.	We	distinguish	two	cases:	Case	1:	t	<	n−1	.	Then	σ	E	=	σ	(E)	.	Then	X	is	also	a	(sub-,	super-)	martingale	with	respect	to	the	smaller	filtration	F.	p	q	Proof	Fix	y	∈	[0,	∞)	and	define	f	(x)	:=	Theorem	7.16	(Hölder’s	inequality)	Let	p,	q	∈	[1,	∞]	with	Lp	(μ),	g	∈	Lq	(μ).	♦	ν∈Ex	23.4
Varadhan’s	Lemma	and	Free	Energy	603	The	method	of	the	proof	that	we	applied	in	the	last	example	to	derive	the	LDP	with	rate	function	I˜	is	called	a	contraction	principle.	In	this	case,	p	is	not	aperiodic.	Hence,	the	Borel	σ	-algebra	equals	the	generated	λ-system:	B(Rn	)	=	δ(Ei	)	for	i	=	1,	2,	3,	5,	.	Rw	+	Rw	Rw	+	Rw	−	=	R	+	=	∞,	then	X	is	recurrent
and	hence	every	point	is	visited	(ii)	If	Rw	w	infinitely	often.	By	construction,	μi	(U	)	<	∞;	hence	1U	∈	L	(μi	)	for	i	=	1,	2.	,	m	and	tl	−	tl−1	≤	2−l	for	l	=	n,	.			1!	(n	−	1)!	n!	Proof	As	the	nth	derivative	of	eit	has	modulus	1,	this	follows	by	Taylor’s	formula.	Similarly	as	in	Remark	17.28,	we	define	independent	random	variables	T1	,	T2	,	.	The	main	goal	is	the
representation	theorem	for	continuous	linear	functionals	on	Hilbert	spaces	due	to	Riesz	and	Fréchet.	Then	the	sequence	X1	,	X2	,	.	For	the	convenience	of	the	reader,	we	recall	the	definition	of	a	topology.	(5.19)	5.5	The	Poisson	Process	143	This	is	equivalent	to	showing	that	for	each	choice	of	k1	,	.	On	the	other	hand,	if	there	was	a	self-avoiding	path
(g0	,	.	Then	κ1	·	κ2	=	μ	∗	ν.	Therefore,	P[ξn	(X)(K	c	)	>	ε]	≤	ε−1	E[ξn	(X)(K	c	)]	=	ε−1	P[X1	∈	K	c	]	≤	ε.	Proof	Let	En	↑	Ω	with	ν(En	)	<	∞,	n	∈	N.	Let	(X	,	Y		)	be	the	coupling	that	was	constructed	in	Step	2	and	let		τ	:=	inf	n	∈	N0	:	Xm	=	Ym	for	all	m	≥	n	.	be	independent,	exponentially	distributed	random	variables	with	PTn	=	expn2	.	Therefore,	there	is
a	constant	C	=	C(N,	x)	such	that	)	n	*	Ex	(Z¯	s+t	−	Z¯	sn	)4	≤	C	t	2	for	all	s,	t	∈	[0,	N]	with	t	E[X1	],	lim	n→∞	)	*	1	log	P	Sn	≥	xn	=	−I	(x)	:=	−Λ∗	(x).	-.-.	To	this	end,	we	first	introduce	the	notion	of	the	tail	σ	-algebra.	(2.8)	The	case	J		=	J	is	exactly	the	claim	we	have	to	show.	If	p	is	irreducible	and	aperiodic,	then	|λ2	|	<	1.	Furthermore,	∞				ε	2−n	=	ε.
The	3n	paths	leading	from	the	nodes	of	the	nth	generation	to	those	of	the	(n+1)th	generation	are	disjoint	paths,	each	of	length	2n−1	.	The	sequence	is	called	subadditive,	if	am+n	≤	am	+	an	for	all	m,	n	∈	N.	Each	of	the	offspring	gets	its	own	independent	exponential	lifetime.	If	we	x→∞	only	have	F	(∞)	≤	1	instead	of	F	(∞)	=	1,	then	F	is	called	a
(possibly)	defective	p.d.f.	If	μ	is	a	(sub-)	probability	measure	on	R,	B(R)	,	then	Fμ	:	x	→	μ((−∞,	x])	is	called	the	distribution	function	of	μ.	It	is	enough	to	show	that	there	exists	a	sequence	(H	n	)n∈N	of	bounded,	progressively	measurable	processes	such	that	(25.3)	holds.	Which	condition	of	the	theorem	would	be	violated?	θ	−t	Hence	the	distribution	of	X
is	characterized	by	its	moments.	+	Dn	for	n	∈	N0	.	Then	the	value	of	our	portfolio	is	described	by	a	discrete	stochastic	integral	which	is	again	a	martingale.	This	fact	is	the	basis	for	nonparametric	tests	on	the	equality	of	distributions.	As	x	→	d(x,	Aci	)	is	continuous	for	i	=	1,	2,	the	closed	subsets	B1	and	B2	of	C	are	compact.	If	we	define	S˜	:=	inf{Sn	:	n
∈	N},	then	indeed	*	)	)	*	P	S˜	=	1	−	2n−1	=	P	D1	=	.	∈	E	in	such	a	way	that	[ω1	,	.	Proof	For	any	n	∈	Z,	PX+Y	({n})	=	P[X	+	Y	=	n]	+		,	{X	=	m}	∩	{Y	=	n	−	m}	=P	m∈Z	=		)	*	P	{X	=	m}	∩	{Y	=	n	−	m}	m∈Z	=		PX	[{m}]	PY	[{n	−	m}]	=	(PX	∗	PY	)[{n}].	Hence	f	Ois	Hölder-continuous	of	order	γ	with	constant	C.	As	B	is	closed,	we	have	δ>0	Bδ	=	B.
19.2	Reversible	Markov	Chains	.	In	addition,	we	have	An	=	B∈Pn	B⊂An	Pn−	:=	{B	∈	Pn	:	ϕ(B)	<	0},	Pn+	:=	Pn	\	Pn−	and		Cn	:=	B.	This	is	the	coarsest	topology	such	that	for	all	f	∈	Cb	(E),	3	the	map	Mf	(E)	→	R,	μ	→	f	dμ	is	continuous.	We	knew	this	already	from	Theorem	9.35;	however,	here	we	could	also	quantify	how	much	f	(X)	differs	from	a
martingale.	(iv)	lim	inf	μn	(E)	≥	μ(E)	and	lim	sup	μn	(F	)	≤	μ(F	)	for	all	closed	F	⊂	E.	Takeaways	Weak	convergence	of	measures	is	defined	via	convergence	of	integrals	of	bounded	continuous	test	functions.	,	k	and	such	that	414	17	Markov	Chains	Px	[Xi	=	xi	for	all	i	=	1,	.	,	n	and	ϕ	is	linearly	interpolated	between	the	points	ak	,	•	ϕ(x)	=	0	for	|x|	>	an	,
and	•	ϕ	is	even	(that	is,	ϕ(x)	=	ϕ(−x)).	In	the	terminology	of	statistical	physics	this	means	that	the	time	average,	or	path	(Greek:	odos)	average,	equals	the	space	average.	Clearly,	we	need	a	certain	continuity	of	ϕ	at	least	at	those	points	where	the	limit	measure	puts	mass.	Clearly,	√	n→∞	P[|Xn,l	|	>	ε]	=	P[|Y1	|	>	εn	]	−→	0;	hence	(Xn,l	)	is	a	null	array.
We	define	θ	(p)	:=	P[#C	p	(0)	=	∞]	as	the	probability	that	the	origin	is	in	an	infinite	open	cluster.	)λ,	X*	∼	N)λ,μ*,)λ,Cλ*	for	every	λ	∈	Rd	.	.})	<	4ε	.	properties:	X	is	a	modification	of	X	♣	Exercise	21.4.4	Let	X	be	a	stochastic	process	with	values	in	a	Polish	space	E	and	+	with	RCLL	paths.	At	each	step,	the	walker	chooses	one	of	the	adjacent	open	edges
at	random	(with	equal	probability)	and	traverses	it.	Hence	we	restrict	ourselves	to	the	case	n	=	2.	3	f	dμ	and	3	g	dμ	is	Proof	(i)	3Clearly,	f	+	≤	g	+	a.e.,	hence	(f	+	−	g	+	)+	=	0	a.e.	By	Theorem	4.8,	we	get	(f	+	−	g	+	)+	dμ	=	0.	We	write		•	An	↑	A	and	say	that	(An	)n∈N	increases	to	A	if	A1	⊂	A2	⊂	.	+	xn	.	It	is	easy	to	check	that	the	map	κ	:	Rd	×	B(Rd
)⊗[0,∞)	,	(x,	A)	→	Px	[A]	is	a	stochastic	kernel.	The	idea	is	simple.	(ii)	What	is	the	probability	that	the	kth	person	gets	his	or	her	reserved	seat?	Lemma	23.12	For	every	n	∈	N	and	ν	∈	En	,	we	have	(n	+	1)−#Σ	e−n	H	(ν	|	μ)	≤	P[ξn	(X)	=	ν]	≤	e−n	H	(ν	|	μ)	.	The	space	(Ω,	d)	is	separable	and	hence	Polish.	By	the	monotonicity	principle,	the	effective
resistance	from	0	to	∞	can	be	bounded	by	Reff	(0	↔	∞)	=	lim	Reff	(0	↔	{−n,	n})	n→∞	≤	lim	Reff	(0	↔	n)	n→∞	=		∞			1−p	n	n=0	p	=	p	<	∞.	Let	X	and	Y	be	Rn	-valued	random	variables	with	densities	fX	and	fY	.	(iii)	μ	is	called	∅-continuous	if	(ii)	holds	for	A	=	∅.	163	163	165	172	175	179	186	8	Conditional	Expectations	.	In	particular,	for	γ	>	0,	n	∈	N	and
k	∈	{1,	.	Definition	20.24	A	measure-preserving	dynamical	system	(Ω,	A,	P,	τ	)	is	called	mixing	if	)	*	lim	P	A	∩	τ	−n	(B)	=	P[A]	P[B]	n→∞	for	all	A,	B	∈	A.	However,	the	distributions	of	Y	and	Z	do	not	coincide.	Then	(X	Y	)	∈	L1	(P)	and	E[XY	]	=	E[X]	E[Y	].	Proof	If	X	is	positive	recurrent,	then	I	=	∅	by	Corollary	17.49.	By	construction,	μ(E	\	E		)	=	0	for	all	μ
∈	F	.	of	random	variables.	Since	F	7.6	Supplement:	Dual	Spaces	189	Remark	7.51	For	p	=	∞,	the	statement	of	Theorem	7.50	is	false	in	general.	Then	X	:	Ω	→	Ω		is	A	–	2Ω	-measurable	if	and	only	if	X−1	({ω	})	∈	A	for	all	ω	∈	Ω		.	.,	we	have		ωi	→	1A	(ω1	,	ω2	)	μ3−i	(dω3−i	)	=	∞			1An	(ω1	,	ω2	)	μ3−i	(dω3−i	)	is	Ai	-measurable,	n=1	for	i	=	1,	2.	The	mean
magnetization	m	=	n1	ni=1	σi	describes	the	state	of	the	system	completely	(as	the	particles	are	indistinguishable).	Why?	Clearly,	An	is	independent	of	Fτn	and	thus	*	)		P	An		Fτn	=	P[An	]	>	ε.	If	(Xn	)n∈N0	is	a	stochastic	process	with	distributions	(Px	,	x	∈	E),	then	the	Markov	property	in	Definition	17.3(iii)	is	implied	by	the	existence	of	a	stochastic
kernel	κ1	:	E	×	B(E)	→	[0,	1]	with	the	property	that	for	every	A	∈	B(E),	every	x	∈	E	and	every	s	∈	I	,	we	have		*	)	Px	Xs+1	∈	A		Fs	=	κ1	(Xs	,	A).	Note	that	at	this	point	it	is	not	even	clear	that	the	paths	are	measurable	maps.	(ω1	,...,ωi	)∈E	i−1	×A˜	i	Intuitively,	the	family	(Ai	)i∈N	should	be	independent	if	the	definition	of	independence	makes	any	sense
at	all.	♦	x→∞	We	will	now	have	a	closer	look	at	the	case	where	μF	is	a	probability	measure.	We	say	that	σ	(X)	:=	X−1	(A	)	is	the	σ	-algebra	on	Ω	that	is	generated	by	X.	15.3	Lévy’s	Continuity	Theorem	.	Let	B	independent	Brownian	motion.	Check	that	Λ∗	has	its	unique	zero	at	E[X1	].	1.3	The	Measure	Extension	Theorem	23	where	inf	∅	=	∞.	Then	the
following	are	equivalent:	(i)	X	is	a	Brownian	motion.	For	any	bounded	measurable	function	ϕ	:	E	n	→	R	and	for	any		∈	S(n),	we	have					E[ϕ(X)	A]	=	E[ϕ(X	)	A].	They	in	turn	yield	the	triangle	inequality	for		·	p	and	help	in	determining	the	dual	space	of	Lp	(μ).	Let	Θ	be	the	longitude	and	let	Φ	be	the	latitude	of	X.	l=1	If	the	limit	ϕk	(t)	:=	limh→0	E[Yk	(t,	h,
X)]	exists,	then	ϕ	is	k-times	differentiable	at	t	with	ϕ	(k)(t)	=	ϕk	(t).	n=1	(5.7)	126	5	Moments	and	Laws	of	Large	Numbers	Thus,	by	the	Borel–Cantelli	lemma,	for	P-a.a.	ω,	there	is	an	n0	=	n0	(ω)	such	that					Skn	−n/4			−	E[X	]	1		<	(1	+	ε)	k	n	for	all	n	≥	n0	,	whence					lim	sup	kn−1	Skn	−	E[X1	]	=	0	almost	surely.	Hence	Monte	Carlo	simulation	should
be	applied	only	if	all	other	methods	fail.	k=1	Birkhoff’s	ergodic	theorem	yields	lim	inf	n→∞	1	Rn	≥	P[A|I]	a.s.	n	(20.5)	For	the	converse	inequality,	consider	Am	=	{Sl	=	0	for	l	=	1,	.	k	π)	Let	μk	∈	M1	(R)	be	the	distribution	on	R	with	density	π1	1−cos(a	.	Then	the	following	three	statements	are	equivalent.	Woyczy´nski	Case	Western	Reserve	University
Universitext	is	a	series	of	textbooks	that	presents	material	from	a	wide	variety	of	mathematical	disciplines	at	master’s	level	and	beyond.	However,	clearly	there	is	no	sequence	(bn	)n∈N	∈	1	with	∞		F	((an	)n∈N	)	=	am	bm	.	,	n,	n	∈	N)	by	Xn,l	=	n→∞	(Yl	−	E[Yl	])/σn	.	23.3).	In	particular,	we	define	Nt	:=	N(0,t	]	as	the	total	number	of	clicks	until	time	t.



Clearly,	μ({0})	=	0.	2	2	Note	that	this	is	the	rate	function	from	Theorem	23.1.	♦	Next	we	describe	formally	the	connection	between	the	LDPs	of	Sanov	and	Cramér	that	was	indicated	in	the	previous	example.	The	infinite	series	is	a	Gaussian	process	with	the	same	covariance	function	as	Brownian	motion.	(ii)	For	x	∈	I	◦	,	define	the	function	of	difference
quotients	gx	(y)	:=	ϕ(y)	−	ϕ(x)	y−x	for	y	∈	I	\	{x}.	By	the	Portemanteau	theorem	(Theorem	13.16(iv)),	for	any	N	∈	N,	μ(Acn,N	)	≥	lim	inf	μNk	(Acn,N	)	≥	lim	inf	μNk	(Acn,Nk	)	≥	δ/2.	504	20	Ergodic	Theory	Proof	Define	A	=	{Sn	=	0	for	all	n	∈	N}.	Let	A¯	k	=	{τ¯	=	k}	and	A¯	=	{τ¯	≤	n}.	Then	the	map	H	:	Ω	→	[0,	∞),	ω	→	d(f	(ω),	g(ω))	is	A	–	B([0,	∞))-
measurable.	Then	ν(A)	=	F	(1A	)	is	a	signed	content	on	A	and	we	have	|ν(A)|	≤	F	p	(μ(A))1/p	.	For	the	latter	property,	it	is	not	sufficient	that	the	chain	be	irreducible.	Upper	semicontinuity	of	μ	implies		n→∞		μ	Dn	(ε)	∩	A	−→	μ	D(ε)	∩	A	=	0	for	any	A	∈	A	with	μ(A)	<	∞.	n	n−1	k=0	In	particular,	if	τ	is	ergodic,	then	1	n	n−1		n→∞	Xk	−→	E[X0	]	in	Lp	(P).
(20.1)	Remark	20.2	If	I	=	N0	,	I	=	N	or	I	=	Z,	then	(20.1)	is	equivalent	to	L	[(Xn+1	)n∈I	]	=	L	[(Xn	)n∈I	]	.	Note	that	j	∈J	×E	=		j	j	∈J	(XjJ	)−1	(Ej	)	∈	AJ	,	j	∈J	hence	AJ	⊂	AJ	.	391	391	399	404	411	415	423	429	18	Convergence	of	Markov	Chains.	k=1	Theorem	14.32	(Fubini	for	transition	kernels)	Let	(Ωi	,	Ai	)	be	measurable	spaces,	i	=	1,	2.	Am	≤	lim	m=n
n→∞	∞		P[Am	]	=	0.	Definition	8.24	Let	Y	∈	L1	(P)	and	X	:	(Ω,	A)	→	(E,	E).	In	the	first	section,	we	give	the	basic	definitions	and	derive	simple	properties.	Then		{|f	|>	h}	δ(ε)	h	dμ	=	C	hence,	by	assumption,		{|f	|>	h}	3	{|f	|>	h}	|f	|	dμ	δ(ε)		h	dμ	≤	C		|f	|	dμ	≤	δ(ε);	<	ε.	Then,	in	2005,	the	demand	for	printed	phone	books	started	to	drop.	Now	define	N˜	t	=
Nt	for	t	=	T	and	let	N˜	T	=	0.	Assume	that	21.9	Pathwise	Convergence	of	Branching	Processes	559	(Zin	)i∈N0	,	n	∈	N	is	a	sequence	of	Galton–Watson	processes	with	Z0n	=	nx!.	“	⇐	”	Fix	an	n0	∈	N,	and	let	Hn	=	1{n=n0	}	.	If	p	∈	(0,	1),	then	Berq	0	Berp	.	♦	Example	12.16	(Strong	law	of	large	numbers)	If	Z1	,	Z2	,	.	If	β	>	1,	then	(23.23)	β,0	β,0	β,0	has
two	other	solutions,	m−	∈	(−1,	0)	and	m+	=	−m−	,	whose	values	can	only	be	computed	numerically	(Fig.	14.2	Finite	Products	and	Transition	Kernels	.	Proof	This	is	an	immediate	consequence	of	Theorem	24.5.	Definition	24.10	Let	μ	∈	M(E).	We	start	with	a	lemma	that	is	due	to	Varadhan	[167].	Definition	6.8	(Mean	convergence)	Let	f,	f1	,	f2	,	.
Theorem	21.17	(Paley–Wiener–Zygmund	[126])	For	every	γ	>	12	,	almost	surely	the	paths	of	Brownian	motion	(Bt	)t	≥0	are	not	Hölder-continuous	of	order	γ	at	any	point.	Show	that	p	is	the	transition	matrix	of	an	irreducible,	aperiodic	random	walk	and	compute	the	invariant	distribution	and	the	exponential	rate	of	convergence.	Proof	Let	N	⊂	Ω	be	a
null	set	such	that	fn	(ω)	↑	f	(ω)	for	all	ω	∈	N	c	.	Applying	Prohorov’s	theorem	(i.e.,	Corollary	13.30)	to	the	measures	(μk	1W	n	)k∈N	,	for	each	n	∈	N,	we	can	choose	a	sequence	(kln	)l∈N	and	a	measure	μ˜	n	:=	w-lim	μkln	1W	n	whose	support	lies	in	W	n	.	Hence	there	exists	a	ck	∈	N	and	sets	Ck,1	,	.	,	Xn	=	x	|Xk	=	x	Pπ	[Xk	=	x]	)	*	=	π({x})	Px	X1	,	.
Lemma	1.52	If	μ∗	is	an	outer	measure,	then	M(μ∗	)	is	a	σ	-algebra.	Remark	13.27	If	E	is	Polish,	then	by	Lemma	13.5,	every	singleton	{μ}	⊂	Mf	(E)	is	tight	and	thus	so	is	every	finite	family.	(i)	Show	the	chain	rule	for	the	Radon–Nikodym	derivative:	dν	dμ	dν	=	dα	dμ	dα	(ii)	Show	that	f	:=	dν	d(μ+ν)	exists	and	that	dν	dμ	α-a.e.	=	f	1−f	holds	μ-a.e.	♣	7.6
Supplement:	Dual	Spaces	By	the	Riesz–Fréchet	theorem	(Theorem	7.26),	every	continuous	linear	functional	F	:	L2	(μ)	→	R	has	a	representation	F	(g)	=	)f,	g*	for	some	f	∈	L2	(μ).	Now	fix	ω	∈	Ω	\	N	and	choose	n0	=	n0	(ω)	such	that	∞		An	.	,	Xn−k	=	x	)	*	=	π({x})	Px	τx1	≥	n	−	k	+	1	.	For	nonnegative	functions,	the	Lebesgue	integral	can	be	computed	via
a	kind	of	partial	integration	formula	(Theorem	4.26).	Assume	that	for	i	=	1,	.	At	which	point	would	the	proof	fail?	Show	the	statement	analogous	to	Exercise	8.3.6.	♣		Exercise	8.3.8	Show	that	(R,	B(R))	and	Rn	,	B(Rn	)	are	isomorphic.	Hence	*	)	*	)	*	)	E	Xσ	1{σ	m	−	1}	,	k=1	and	each	of	the	events	is	in	Fm−1	.	Define	gn	:=	f	(b)	1{b}	+	n		n	n	,t	n	)	,	(inf	f
([ti−1	,	tin	)))	1[ti−1	i	i=1	hn	:=	f	(b)	1{b}	+	n		n	n	,t	n	)	.	n→∞	(21.34)	Proof	Owing	to	(21.33)	and	Theorem	21.38,	it	is	enough	to	show	that	(L[S¯	n	],	n	∈	N)	is	tight.	As	ψ	is	strictly	convex	and	since	ψ(0)	≥	0,	there	is	a	unique	r	∈	[0,	1)	such	that	ψ(r)	=	r.	,	Dn−1	only.	Show		for	any	ε	>	0,	there	is	an	A	∈	A	with	μ(A)	<	∞	and		A	f	dμ	−	f	dμ	<	ε.	Rw	+	Rw
−	=	∞	and	R	+	=	∞,	then	lim	inf	X	=	−∞	and	lim	sup	X	=	∞	(ii)	If	Rw	n	n	w	n→∞	almost	surely.	The	a.s.	limit	W∞	=	lim	Wn	exists	and	n→∞	m>1	⇐⇒	E[W∞	]	=	1	⇐⇒	E[W∞	]	>	0.	n=1	∗	Let	A	∈	A.	F	is	called	symmetric	if	F	is	n-symmetric	for	all	n	∈	N.	Hence,	for	a	>	0,		sup	f	∈F	{|f	|≥a}	|f	|	dμ	≤	1	sup	Ka	f	∈F	≤	1	sup	Ka	f	∈F		{|f	|≥a}	H	(|f	|)	dμ		a→∞	H
(|f	|)	dμ	−→	0.	(iii)	(σ	-∪-stability)	Let	A1	,	A2	,	.	be	probability	distribution	functions	on	R,	and	n→∞	assume	Fn	⇒	F	.	We	conclude	that	h(P,	τr	)	=	h(P,	τr	;	P)	=	0.	Then	X	−1	∞		n=1	hence	∞	n=1		An	=	∞		X−1	(An	)	∈	σ	(X−1	(E		));	n=1	An	∈	A0	.	∈	2E	.	,	E[Xn	])	∈	∂G	is	a	bit	more	tricky	than	in	the	onedimensional	case	since	∂G	can	have	flat	pieces	that
in	turn,	however,	are	convex.	(ii)	We	define	the	indicator	function	on	the	set	A	by	1A	(x)	:=	1,	if	x	∈	A,	0,	if	x	∈	A.	In	fact,	we	will	show	a	slightly	stronger	statement	in	Theorem	1.53.	It	remains	to	show	that	ft	is	continuous	at	0.	Recall	that	N	=	{f	∈	L2	(μ)	:	)f,	f	*	=	0}	is	the	subspace	of	functions	that	equal	zero	almost	everywhere.	That	is,	we	have	F
(−∞)	=	0.	Denote	by	'			(	LX	(f	)	=	E	exp	−	f	dX	,	f	∈	B	+	(E),	the	Laplace	transform	of	X	and	by	'			(	ϕX	(f	)	=	E	exp	i	f	dX	,	f	∈	BbR	(E),	the	characteristic	function	of	X.	In	this	case,	the	formulas	for	the	second	moments	of	sums	are	particularly	simple.	Thus	fz	+	gz	and	H	=	infz∈F	(fz	+	gz	)	are	measurable.	Tn	is	the	time	of	the	nth	click.	Later	we	will	see
that	the	assumption	that	E	is	finite	can	be	dropped.	+	Yn2	.	Now,	for	any	i	∈	I	,	let	βi	=	{Bε	(xi	)	:	xi	∈	Di	,	ε	∈	Q+	}	be	a	countable	base	of	the	topology	of	Ωi	consisting	of	ε-balls.	Clearly,	X	and	X¯	have	the	same	harmonic	functions.	n→∞	D	(ii)	Fn	−→	F	.	Hence	Theorem	2.16	yields	the	claim.	Here	R1	=	1,	R2	=	2,	R3	=	1,	δ	=	5,	R	2	=	δ/R2	=	5/2	and	R	3
=	δ/R3	=	5.	7.5	Supplement:	Signed	Measures	.	Indeed,	if		1		1		ε					An	:=	n		Sn	>	ε	and	A	=	lim	sup	n		Sn	>	0	,	then	clearly	n→∞	A=		m∈N	1/m	lim	sup	An	n→∞	;	(	'	hence	P	lim	sup	Aεn	=	0	for	ε	>	0.	The	set	of	such	rectangular	cylinders	will	be	denoted	by	ZJR	.	If	sup	E[|Xn	|r	]	<	∞,	then	E[|X|p	]	=	lim	E[|Xn	|p	].	(i)	If	X	is	a	random	variable	with	|X|	≤	1
a.s.,	then	there	is	a	random	variable	Y	with	values	in	{−1,	+1}	and	with	E[Y	|X]	=	X.	This	shows	(LDP	2).	Successively	draw	without	replacement	all	of	the	balls	and	define	Xn	:=	1,	if	the	nth	ball	is	black,	0,	else.		Together	with	z	=	x,	it	follows	that	d	(Lx,y	+	Ly,x	).	20.3	Examples	Example	20.17	Let	(X,	(Px	)x∈E	)	be	a	positive	recurrent,	irreducible
Markov	chain	on	the	countable	space	E.	Then	μ(N)	=	0	and	n→∞	fn	(ω)	−→	f	(ω)	for	any	ω	∈	Ω	\	N.	Let	|X|	=	M	+	A	be	Doob’s	decomposition	of	|X|.	Hence	there	exist	En	↑	E	with	μ(En	)	<	∞	for	every	n	∈	N.	,	hn	)	starting	and	ending	in	some	point	h0	=	hn	=	x	∈	TL	.	Also	L1	-convergence	implies	stochastic	convergence.	♣	1.2	Set	Functions	We	aim	at
assigning	to	each	“event”	(which	will	be	formalised	later)	a	number	that	can	be	interpreted	as	the	probability	for	the	event	to	occur.	Furthermore,	given	Z,	the	sequence	X1	,	X2	,	.	We	can	weaken	the	condition	in	Theorem	5.16	in	a	different	direction	by	requiring	integrability	only	instead	of	square	integrability	of	the	random	variables.	Hence,	A	∈	Fσ
⊂	Fτ	+	.	Proof	It	suffices	to	check	that	the	Chapman–Kolmogorov	equation	κt	·	κs	=	κs+t	holds.	(ii)	By	(i),	we	have		lim	n→∞			fn	dμ	=	sup	fn	dμ	≤	f	dμ.	(i)	The	family	(P[X0i	∈	·	],	i	∈	I	)	of	initial	distributions	is	tight.	To	this	end,	consider	independent	random	variables	T1s	,	T1r	,	T2s	,	T2r	,	.	Example	2.17	Let	E	be	a	countable	set	and	let	(Xi	)i∈I	be
random	variables	with	values	in	(E,	2E	).	Now	consider	K	=	C.	♣	r	d	λd	(C)	r	d	λd	(C)	Exercise	13.1.8	Similarly	as	in	Corollary	13.7,	show	the	following:	Let	E	be	a	σ	compact	polish	space	and	let	μ	be	a	measure	on	E.	Exercise	2.4.1	Let	T	be	the	infinite	binary	tree	(Fig.	Theorem	5.29	Let	X1	,	X2	,	.	To	this	end,	let	(νt	)t	≥0	be	a	convolution	semigroup	on
Rd	and	let	κt	(x,	dy)	=	δx	∗	νt	(dy).	Show	that	με	:=	12	N−1,ε	+	12	N1,ε	satisfies	an	LDP	with	good	rate	function	I	(x)	=	12	min((x	+	1)2	,	(x	−	1)2	).	(i)	If	we	assume	that	for	any	i	=	1,	2,	3	the	event	Ai	depends	only	on	the	outcome	of	the	ith	roll,	then	the	events	A1	,	A2	and	A3	are	independent.	♣	4.2	Monotone	Convergence	and	Fatou’s	Lemma	What
are	the	conditions	that	allow	the	interchange	of	limit	and	integral?	As	f	is	harmonic	on	E	\	A,	we	have	pA	f	=	f	on	E.	Until	now,	we	have	not	assumed	that	X	is	a	martingale.	Define	ν˜	n	∈	M1	([0,	∞))	−x	by	ν˜	n	(dx)	:=	1−e	un	(1)	νn	(dx).	2,	here	the	random	variables	need	not	be	independent.	,	n}	\	J	.	Assume	that	one	of	the	following	conditions	holds.	9–
20,	and	23.	Let	ϕk	(x1	,	.	h1	(ω1	)h2	(ω2	)	Hence,	it	is	enough	to	show	the	statement	for	the	finite	measures	μ˜	i	:=	hi	μi	instead	of	μi	,	i	=	1,	2.	As	an	application	of	the	Lindeberg–Feller	theorem,	we	give	the	so-called	threeseries	theorem,	which	is	due	to	Kolmogorov.	,	6},	ω2	∈	{1,	2,	3}	.	(ii)	Let	μ,	μ1	,	μ2	,	.	Here	the	variance	of	the	individual	random
walk	step	is	σ	2	:=	4r(1	−	r).	Clearly,	(Y1	,	.	.)	∈	A}.	(21.18)	530	21	Brownian	Motion	Furthermore,		Fτ	n	↓	Fτ	+	:=	Fσ	⊃	Fτ	.	Remark	17.4	We	will	see	that	the	existence	of	the	transition	kernels	(κt	)	implies	the	existence	of	the	kernel	κ.	Now	we	want	to	compute	the	price	of	a	European	call	option	VT	:=	(XT	−	K)+	explicitly.	It	is	conjectured	that	θ	(pc	)
=	0	holds	in	any	dimension	d	≥	2.	k	The	other	inclusions	Ei	⊂	σ	(Ej	)	can	be	shown	similarly.	Let	A	⊂	E	be	such	that	A	=	∅	and	E	\	A	is	finite.	n→∞	Hence	PNt	=	Poiα	t	.	For	f	∈	L1	(μ),	we	define	the	integral	of	f	with	respect	to	μ	by			f	(ω)	μ(dω)	:=		f	dμ	:=	+	f	dμ	−		f	−	dμ.	(v)	ϕ	is	differentiable	at	x	if	and	only	if	D	−	ϕ(x)	=	D	+	ϕ(x).	In	that	form,	the
theorem	goes	back	to	Choquet	and	Deny	[24],	see	also	[144].	The	situation	becomes	even	more	puzzling	if	we	restrict	the	random	walk	to,	e.g.,	the	upper	half	plane	{(x,	y)	:	x	∈	Z,	y	∈	N0	}	of	Z2	.	If	there	exists	a	successful	coupling,	then	every	bounded	harmonic	function	is	constant.	♣	Chapter	14	Probability	Measures	on	Product	Spaces	As	a
motivation,	consider	the	following	example.	The	Fig.	If	K	=	C,	then	in	addition	assume	that	C	is	closed	under	complex	conjugation	(that	is,	if	f	∈	C,	then	the	complex	conjugate	function	f	is	also	in	C).	We	can	assume	that	ψ	=	1B	for	some	B	∈	T	.	,	n	−	1.	Thus	the	random	walk	with	weights	C	is	reversible.	(iv)	Consider	the	infinite	product	measures	(see
Theorem	1.64)	(Berp	)⊗N	and	(Berq	)⊗N	on	Ω	=	{0,	1}N	.		(v)	If	lim	F	(x)	−	F	(−x)	=	1,	then	μF	is	a	probability	measure.	A	little	bit	of	combinatorics	shows	that	the	probability	of	drawing	exactly	b	∈	{0,	.	Exercise	13.1.1	(i)	Show	that	C([0,	1])	has	a	separable	dense	subset.	(11.1)	C∈Zm	:	C⊂B	In	particular,	X	is	an	F-martingale.	i=1	Proof	Let	μ˜	be	the
restriction	of	μ	to	Z	R	.	20.2	Ergodic	Theorems	.	k	,	With	this	definition,	1	Cw	(i,	i	+	1)	=	=	wi+	Cw	(i)	i	+	1	i	Cw	(i,	i	−	1)	=	=	wi−	.	As	most	applications	only	need	(i)	⇒	(ii),	we	only	prove	that	implication.	From	this	(12.2)	follows.	Example	9.41	Consider	the	very	simple	martingale	X	=	(Xn	)n=0,1	with	only	two	time	points.	♣	Exercise	4.3.3	If	f	:	[0,	1]	→
R	is	Riemann	integrable,	then	f	is	Lebesgue	measurable.	We	therefore	obtain	the	rather	intuitive	statement	that	as	n	→	∞	the	distributions	of	k-samples	with	replacement	and	without	replacement,	respectively,	become	the	same:	;	;	lim	sup	;μn,k	(x)	−	νn,k	(x);T	V	=	0.	y∈Zd		Now	let	A	=	y∈Zd	{#C	p	(y)	=	∞}.	29	Clearly,	the	latter	computation	is	more
complicated	than	using	the	resistances	R		from	the	reduced	network	directly.	7.5	Supplement:	Signed	Measures	183	n	=	C	∪	.	The	distribution	of	a	random	measure	is	characterised	by	its	characteristic	function	as	well	as	by	its	Laplace	transform.	Then	ψPoiλ	(z)	=	∞		n=0	e−λ	(λz)n	=	eλ(z−1).	The	same	statements	hold	for	λ-systems.	Hence	e∈E	pe	=
1.	♣	212	8	Conditional	Expectations	Exercise	8.3.7	Let	E	be	a	Polish	space	and	let	P	,	Q	∈	M1	(R).	a	4.3	Lebesgue	Integral	Versus	Riemann	Integral	109	Example	4.24	Let	f	:	[0,	1]	→	R,	x	→	1Q	.	Hint:	Use	a	similar	argument	as	in	the	proof	of	Theorem	2.45.	(2.14)	The	fundamental	question	is:	How	large	are	θ	(p)	and	ψ(p)	depending	on	p?	<	tn	,	we	have
that	(Xti	−	Xti−1	)i=1,...,n	is	independent,	(iii)	a	Gaussian	process	if	X	is	real-valued	and	for	all	n	∈	N	and	t1	,	.	Now	the	first	inequality	of	(4.7)	follows	from		f		dμ	=	∞		μ({f		=	k})	·	k	=	k=1	∞		k		3	f		dμ	≤	μ({f		=	k})	k=1	n=1	=	∞	∞			μ({f		=	k})	n=1	k=n	=	∞		μ({f		≥	n})	=	n=1	∞		μ({f	≥	n}).	Furthermore,	x	=	X0	∈	{0,	1}Λ	is	the	initial	state.	Hence	(P2)
holds.	♣	1	−	cos(x)	πx	2	Exercise	16.2.3	Let	Φ	be	the	distribution	function	of	the	standard	normal	distribution	N0,1	and	let	F	:	R	→	[0,	1]	be	defined	by		2	1	−	Φ	x	−1/2	,	if	x	>	0,	F	(x)	=	0,	else.	Particularly	helpful	is	a	moment	criterion	that	postulates	that	moments	of	increments	over	small	intervals	decay	quickly	as	the	intervals	get	smaller.	Thus	A	∈
Fτ	.	Then	we	present	the	theorem	that	justifies	our	hope.	To	this	end,	we	extend	the	corresponding	theorem	(Theorem	6.25)	on	convergence	with	respect	to		·	1	.	Then	1K	≤	ρK,δ	≤	1L	;	hence	ρK,δ	∈	Cc	(E)	and	thus			lim	inf	μn	(G)	≥	lim	inf	ρK,δ	dμn	=	ρK,δ	dμ	≥	μ(K)	≥	μ(G)	−	ε.	Thus,	by	the	Proof	By	Theorem	4.26,	we	have	n=1	Borel–Cantelli	lemma,	)
*	P	Xn	=	Yn	for	infinitely	many	n	=	0.	(21.10)	In	other	words,	for	dyadic	rationals	D,	X(ω)	is	(globally)	Hölder-γ	-continuous.	Let	m	:=	E[X1,1	]	<	∞	be	the	expected	number	of	offspring	of	an	individual	and	let	σ	2	:=	Var[X1,1	]	∈	(0,	∞)	be	its	variance.	By	the	monotone	convergence	theorem,	we	get	n→∞	)	*	α	t	=	E	[Nt	]	=	lim	E	Ntn	=	lim	pn	2n	.	(iv)	Let
θ	>	0	and	let	X	be	exponentially	distributed,	X	∼	expθ	.	2.4	Example:	Percolation	73	Exercise	2.3.1	Let	(Xn	)n∈N	be	an	independent	family	of	Rad1/2	random	variables	(i.e.,	P[Xn	=	−1]	=	P[Xn	=	+1]	=	12	)	and	let	Sn	=	X1	+	.	Then	there	are	ε	>	0,	f	∈	Cb	(E)	and	(nk	)k∈N	with	nk	↑	∞	and	such	that							f	dμn	−	f	dμ	>	ε	k			for	all	k	∈	N.	In	prose,	almost
surely	eventually	only	balls	of	one	color	will	be	drawn.	Thus	(Xi,j	,	(i,	j	)	∈	I	×	J	)	is	uniformly	integrable	by	Theorem	6.19.	More	precisely,	up	to	the	first	summand,	it	is	the	Karhunen–Loève	expansion	of	the	Brownian	bridge	(Xt	−	tX1	)t	∈[0,1]	(see,	e.g.,	[1,	Chapter	3.3]).	k	k=0	(x)	(Negative	binomial	distribution)	By	the	generalized	binomial	theorem
(Lemma	3.5),	for	all	x	∈	C	with	|x|	<	1,	(1	−	x)	−r		∞			−r	=	(−x)k	.	Denote	by	c(e)	∈	{0,	1}l(e)	the	code	of	e,	where	l(e)	is	its	length.	(i)	Show	that	P[{Φ	∈	·	}|Θ	=	θ	]	for	almost	all	θ	has	the	density	14	|	cos(φ)|	for	φ	∈	[−π,	π).	Using	(19.13),	the	probability	that	the	random	walk	visits	1	before	0	is	P	=	27	32	27	32	+	27	26	=	13	.	For	n	∈	N,	denote	by	Pn
the	projection	of	P	on	E	n	=	E	{0,...,n−1}	;	that	is,	(	'	Pn	({(e0	,	.	Using	Fatou’s	lemma,	we	infer	E[Xτ	]	≤	lim	inf	E[Xτ	∧n	]	≤	E[X0	]	<	∞.	Further,	let	φ	:	E	→	R	be	continuous	and	assume	that		inf	lim	sup	ε	log	M>0	ε→0	eφ(x)/ε	1{φ(x)≥M}	με	(dx)	=	−∞.	While	these	theorems	work	with	real	random	variables,	we	will	also	see	limit	theorems	where	the
random	variables	take	values	in	more	general	spaces	such	as	the	space	of	continuous	functions	when	we	model	the	path	of	the	random	motion	of	a	particle.	Klenke,	Probability	Theory,	Universitext,	327	328	15	Characteristic	Functions	and	the	Central	Limit	Theorem	exp(z1	)	·	exp(z2	).	♦	Example	1.40	(Product	measure,	Bernoulli	measure)	We
construct	a	measure	for	an	infinitely	often	repeated	random	experiment	with	finitely	many	possible	outcomes.	♣	Exercise	5.3.3	Let	E	be	a	finite	set	and	let	p	be	a	probability	vector	on	E.	1.2	Set	Functions	17	Hence	μ	is	σ	-subadditive.	Compute	the	entropy	of	the	bivariate	chain	on	E1	×	E2	with	transition	matrix	p	given	by	p((x1	,	x2	),	(y1	,	y2	))	=	p1
(x1	,	y1	)p2	(x2	,	y2	).	n→∞	n→∞	(ii)	Fn	⇒	F	if	and	only	if	d(Fn	,	F	)	−→	0.	Define	a	content	μ	on	A	=	{[ω1	,	.	♦	Example	20.10	Let	X	=	(Xn	)n∈N0	be	a	stochastic	process	with	values	in	a	Polish	space	E.	Then	μ∗	(A	∪	B)	=	μ∗	(A	∩	(A	∪	B))	+	μ∗	(Ac	∩	(A	∪	B))	=	μ∗	(A)	+	μ∗	(B).	388	(i)	(ii)	(iii)	(iv)	16	Infinitely	Divisible	Distributions	In	the	case	In	the	case
In	the	case	In	the	case	α	α	α	α	∈	(0,	1),	let	bn	≡	0.	66	2	Independence	Proof	For	k	∈	K,	let	Zk	=	0	1	Aj	:	Aj	∈	σ	(Xj	),	#{j	∈	Ik	:	Aj	=	Ω}	<	∞	j	∈Ik	be	the	semiring	of	finite-dimensional	rectangular	cylinder	sets.	Reflection	Check	that	nearest	neighbour	random	walk	on	an	infinite	binary	tree	(see	Fig.	At	a	second	stage,	start	a	random	walk	on	the	random
subgraph	of	open	edges.	The	effective	resistance	from	0	to	∞	can	be	computed	by	the	formulas	for	parallel	and	sequence	connections,	∞	Reff	(0	↔	∞)	=	1	R(i,	i	+	1)	=	∞.	17.1	Definitions	and	Construction	397	Using	the	tower	property	of	the	conditional	expectation	and	Theorem	17.9	in	the	third	equality,	we	thus	get	)		*		)		*	Ex	f	(Xτ	+t	)t	∈I		Fτ	=	1{τ
=s}	Ex	f	(Xs+t	)t	∈I		Fτ	s∈I	=		'	)			*		(	Ex	1{τ	=s}	Ex	f	(Xs+t	)t	∈I		Fs		Fτ	s∈I	=		'	)	*		(	Ex	1{τ	=s}	EXs	f	(Xt	)t	∈I		Fτ	s∈I	)	*	=	EXτ	f	(Xt	)t	∈I	.	be	independent	exponentially	distributed	random	variables	with	parameter	1.	Using	the	Arzelà–Ascoli	characterization	of	the	compactness	of	A,	we	infer	(i)	and	(ii).	Proof	Without	loss	of	generality,	we	can
assume	that	X	takes	values	in	E	:=	[0,	1].	Up	to	the	order,	the	resulting	distribution	is	thus	the	generalized	hypergeometric	distribution	(see(1.19)	on	page	48).	(ii)	For	t	>	s	≥	0,	the	difference	Nt	−	Ns	is	Poisson-distributed	with	parameter	α(t	−	s);	that	is,	P[Nt	−	Ns	=	k]	=	e−α(t	−s)	(α(t	−	s))k	k!	for	all	k	∈	N0	.	Proof	(of	Theorem	16.5)	As	every
CPoiνn	is	infinitely	divisible,	by	Corollary	16.9,	the	weak	limit	is	also	infinitely	divisible.	Define	f	(x)	:=	g(x),	Ex	[g(Xτ	)],	if	x	∈	A,	(19.1)	if	x	∈	E	\	A.	Assume	that	E[X1	]	=	0	and	P[X1	=	0]	<	1.	Rephrased	to	the	language	of	financial	markets	this	means:	If	the	price	of	a	risky	asset	is	given	by	a	binary	splitting	process	than	there	is	a	hedging	strategy	for
any	contingent	claim.	Let	X0	,	X1	,	.	Definition	14.49	(Convolution	semigroup)	Let	I	⊂	[0,	∞)	be	a	semigroup.	+	xk	for	k	=	0,	.	Hence	;	n	;	;X	−	Xn−1	;	≤	2−(n+1)/2	max	|ξn,k	|,	k	=	1,	.	Proof	We	follow	the	exposition	in	Dieudonné	[34,	Chapter	VII.3].	Then	we	have	equality	in	(17.8).	If	you’re	looking	on	a	site	with	a	map	function,	you	may	also	see	a	map
with	the	location	pinned	and	an	option	to	get	turn-by-turn	directions	to	the	place	you’re	calling.Reverse	Phone	Number	LookupA	reverse	phone	number	lookup	is	done	when	you	have	only	a	phone	number	and	want	to	know	who	it	belongs	to	before	you	call.	In	this	case,	uniqueness	of	this	martingale	is	equivalent	to	completeness	of	the	market	(“the
fundamental	theorem	of	asset	pricing”	by	Harrison–Pliska	[68]).	We	consider	(wi−	)i∈Z	as	an	environment	in	which	X	walks	and	later	choose	the	environment	at	random.	Therefore,	B	⊃	i∈N	Bi	.	i=1	If	all	spaces	involved	equal	(Ω0	,	A0	,	μ0	),	then	we	write	μ⊗n	0	:=	n	/	μ0	.	♣	ω	→	sup	ω(t)	:	t	∈	[0,	∞)	,	546	21	Brownian	Motion	21.7	Convergence	of
Probability	Measures	on	C([0,	∞))	Let	X	and	(Xn	)n∈N	be	random	variables	with	values	in	C([0,	∞))	(i.e.,	continuous	stochastic	processes)	with	distributions	PX	and	(PXn	)n∈N	.	.	.	As	F	is	tight,	for	every	ε	>	0,	there	is	a	K	<	∞	with	Fn	(∞)	−	Fn	(x)	<	ε	for	all	n	∈	N	and	x	>	K.	(8.14)	206	8	Conditional	Expectations	By	construction,	F˜	(	·,	ω)	is	monotone
increasing	and	right	continuous.	Then	there	is	an	A	∈	A	with	μ(A)	>	0	and	an	ε	>	0	with	εμ(E)	≤	ν(E)	for	all	E	∈	A	with	E	⊂	A.	Now	we	introduce	the	hypothesis	that	the	energy	Un	(x)	of	a	state	has	the	form	Un	(x)	=	nU	(x),	where	U	(x)	is	the	average	energy	of	one	particle	of	the	ensemble	in	state	x.	Then,	by	Theorem	5.6(i),			0	≤	Var[X	+	θ	Y	]	Var[Y	]	=
Var[X]	+	2θ	Cov[X,	Y	]	+	θ	2	Var[Y	]	Var[Y	]	=	Var[X]	Var[Y	]	−	Cov[X,	Y	]2	with	equality	if	and	only	if	X	+	θ	Y	is	a.s.	constant.	Further,	let	f	:	E	→	R	be	measurable	and	E[|f	(X)|]	<	∞.	A	similar	formula	holds	if	p	is	not	reversible;	however,	with	a	correction	term	of	order	at	most	nV	−1	.	Economically	speaking,	the	European	call	gives	the	buyer	the	right
(but	not	the	obligation)	to	buy	one	stock	at	time	T	at	price	K	(from	the	issuer	of	the	option).	21.8	Donsker’s	Theorem	549	21.8	Donsker’s	Theorem	Let	Y1	,	Y2	,	.	Hence	μ	is	also	inner	regular.	Theorem	19.2	(Superposition	principle)	Assume	f	and	g	are	harmonic	on	E	\	A	and	let	α,	β	∈	R.	Further,	let	T	=	∞	n=1	σ	(Xm	,	m	≥	n)	be	the	tail	σ	-algebra		of	X1
,	X2	,	.	Further,	let	g	:	I	→	R,	i	→	E[X	|Bi	].	In	the	following,	let	X,	X1	,	X2	,	.	(	27	+	1)−1	=	27	(	25	=	27	and	(	19	+	125	32	,	54	+	2	)	26	513	)	8		In	the	reduced	network,	we	have	the	resistances	R		(0,	x)	=	27	32	and	R	(x,	1)	=	27	26	.	Hence	the	“conditional	distribution	of	(Y1	,	.	n→∞	n→∞	4.2	Monotone	Convergence	and	Fatou’s	Lemma	105	Proof	By
considering	(fn	−	f	)n∈N	,	we	may	assume	fn	≥	0	a.e.	for	all	n	∈	N.	−	=	CPoi	for	some	ν	∈	M	(N).	On	the	edge	set	E,	define	the	translation	τ	:	E	→	E	by	τ	()x,	y*)	=	)x	+	u1	,	y	+	u1	*.	Theorem	5.6	Let	X	∈	L2	(P).	Here	F	((x1	,	x2	))	:=	min(F1	(x1	),	F2	(x2	))	defines	a	distribution	function	on	R	×	R	(see	Exercise	1.5.5)	that	corresponds	to	a	coupling	ϕ	with
ϕ(L)	=	1.	Water	can	flow	only	through	the	remaining	tubes.	If	there	exists	a	sequence	TN	→	∞	with	E[XTN	]	≥	E[X0	],	then	X	is	a	martingale.	Hence	the	bivariate	process	is	indeed	a	coupling	with	transition	matrix	p.	Using	Markov	chains	we	construct	a	coupling	to	prove	a	theorem	on	the	stochastic	ordering	of	binomial	distributions.	Definition	16.1	A
measure	μ	∈	M1	(R)	is	called	infinitely	divisible	if,	for	every	n	∈	N,	there	is	a	μn	∈	M1	(R)	such	that	μ∗n	n	=	μ.	,	tn	},	we	have	Pμ	◦	XJ−1	=	μ	⊗	n−1	k=0	κtk+1	−tk	.	(ii)	(Monotonicity)	If	X	≥	Y	a.s.,	then	E[X	|F	]	≥	E[	Y	|F	].	432	17	Markov	Chains	The	following	theorem	was	shown	by	Strassen	[161]	in	larger	generality	for	integral	orders.	In	this	case,
we	write	X	∼	Nμ,C	.	Hence,	by	Theorem	17.11,	X	is	a	Markov	chain	with	transition	matrix	p.	(i)	(Xi	)i∈I	is	exchangeable.	HypB1	,...,Bk	;n	{(b1,	.	2	−1	Step	6.	Then	H	n	∈	E,	and	we	have	Htn	(ω)	−→	Ht	(ω)	for	all	t	>	0	and	ω	∈	Ω.	11.1	Doob’s	Inequality	.	(i)	Show	that	the	distribution	of	(Xn	)n∈Z	is	uniquely	determined	by	the	values	mn	:=	E[X1	·	X2	·	·	·
Xn	],	n	∈	N.	for	some	r	∈	N.	Is	this	random	walk	recurrent	or	transient?	♣	Exercise	13.1.6	Let	μ	be	a	Radon	measure	on	Rd	and	let	A	∈	B(Rd	)	be	a	μ-null	set.	9.1	Processes,	Filtrations,	Stopping	Times	215	Example	9.8	(i)	The	Poisson	process	with	intensity	θ	and	the	random	walk	on	Z	are	processes	with	stationary	independent	increments.	,	An	to	occur
jointly	vanishes	as	n	→	∞.	♣	Exercise	8.2.5	Show	the	conditional	Markov	inequality:	For	monotone	increasing	f	:	[0,	∞)	→	[0,	∞)	and	ε	>	0	with	f	(ε)	>	0,		*	)	)	*	E	f	(|X|)		F	P	|X|	≥	ε	|F	≤	.	We	start	this	section	by	presenting	as	the	main	result	Prohorov’s	theorem	[136].	The	other	claims	are	evident.	Now	let	s	∈	K	and	n	≥	n0	.	Thus,	from	(10.6),	we	recover
the	statements	of	Theorem	10.4	and	Example	10.8.	Later	we	will	derive	a	formula	similar	to	(10.6)	for	stochastic	processes	in	continuous	time	(see	Sect.	Independence	of	random	variables	can	be	characterised	via	product	formulas	for	their	joint	distribution	functions	(Theorem	2.21),	densities	(Corollary	2.22)	or	weight	functions	(exercise!).	Takeaways
A	random	variable	X	is	called	infinitely	divisible	if	for	any	n	∈	N	it	can	be	written	as	a	sum	of	n	independent	and	identically	distributed	random	variables.	5.1	Rolling	a	die	n	times:	Probabilities	for	Sn	/n.	In	particular,	pk	(x,	y)	>	0.	216	6	i=1	i=1	(ii)	Consider	now	the	events	A1	:=	{ω	∈	Ω	:	ω1	=	ω2	},	A2	:=	{ω	∈	Ω	:	ω2	=	ω3	},	A3	:=	{ω	∈	Ω	:	ω1	=	ω3
}.	♣	17.5	Application:	Recurrence	and	Transience	of	Random	Walks	In	this	section,	we	study	recurrence	and	transience	of	random	walks	on	the	Ddimensional	integer	lattice	ZD	,	D	=	1,	2,	.	Corollary	16.8	Let	ϕ	:	R	→	C	be	continuous	at	0.	(iii)	Compute	mXYδ	,	and	show	that	mXYδ	→	mX	for	δ	↓	0.	We	will	see	that	every	signed	measure	has	such	a
representation.	Thus	the	Morse	code	can	be	interpreted	as	a	ternary	prefix	code.	Takeaways	A	coupling	is	a	probability	measure	on	a	product	space	with	given	marginals.	Summing	over	the	connected	components	Z	of	HL	with	at	least	one	point	in	TL	,	we	obtain	#	u	∈	HL	:	degHL	(u)	=	1	≥	#TL	.	Hence	we	will	consider	different	methods	of	proof	that
yield	further	insight	into	the	problem.	Let	C	⊂	Rd	be	bounded,	convex	and	open	with	0	∈	C.	If	X	and	Y	are	independent,	then	ϕX+Y	=	ϕX	·	ϕY	.	If	the	Markov	chain	X	with	weights	C	is	recurrent,	then	the	Markov	chain	X	with	weights	C		is	also	recurrent.	24.	Theorem	15.11	(Discrete	Fourier	inversion	formula)	Let	μ	∈	Mf	(Zd	)	with	characteristic
function	ϕμ	.	Proof	First	note	that	Uϕ	⊂	E1	is	Borel	measurable	by	Exercise	1.1.3.	Hence	the	conditions	make	sense.	Proof	Let	x,	y	∈	E,	x	=	y,	be	such	that	F	(x,	y)	>	0.	For	the	sake	of	distinction,	we	sometimes	call	λ	the	Lebesgue–Borel	measure	and	λ∗	the	Lebesgue	measure.	i=1	We	aim	at	extending	μ	to	a	measure	on	σ	(A).	Lemma	20.15	Let	p	≥	1
and	let	X0	,	X1	,	.	As	the	family	(Pn	)n∈N	is	tight,	by	Theorem	15.22,	(ϕn)n∈N	is	uniformly	equicontinuous.	Then,	for	all	n	∈	N,		)		*	0.8	γ	sup	P	Sn∗	≤	x	−	Φ(x)	≤	3	√	.	For	ε	>	0,	let	Aε	=	{x	∈	I	:	D	+	ϕ(x)	≥	ε	+	limy↑x	D	+	ϕ(y)}	be	the	set	of	points	of	discontinuity	of	size	at	least	ε.	,	ωl−1	))	fl−1	(ωl−1	)	P		(d(ω0	,	.	Now,	let	m,	n	∈	N	with	m	≥	n.	5.1
Moments	.	Since	we	have	X	≥	Y	,	we	get	E[1A	(X	−	Y	)]	≥	0	and	thus	P[A]	=	0.	,	Xn	be	i.i.d.	random	variables	with	distribution	μ.	be	i.i.d.	random	variables	with	density	f	(x)	=	1	1R\[−1,1]	(x).	Hence,	by	Lemma	15.12(v),	n(1	−	|ϕn	(2t)|2	)	≤	4n(1	−	|ϕn	(t)|2	)	also	is	bounded;	thus	|ϕ(2t)|2	≥	lim	inf	exp(4n(|ϕn	(t)|2	−	1))	=	(|ϕ(t)|2	)4	.	For	every	t	∈	I	,
choose	ε(t)	>	0	and	C(t)	<	∞	such	that	|f	(r)	−	f	(s)|	≤	C(t)	·	|r	−	s|γ	for	all	r,	s	∈	Ut	:=	Uε(t	)(t).	n→∞	(i)	Show	that	E[Xτ	m	|Fσ	n	]	−→	E[Xτ	m	|Fσ	]	almost	surely	and	in	L1	as	well	as	n→∞	Xσn	−→	Xσ	almost	surely	and	in	L1	.	Hence,	for	x	∈	E	\	A,	f	(x)	=	Ex	[g(Xτ	)]	=	=		y∈E		)	*	Ex	g(Xτ	);	X1	=	y	y∈E		)	*		p(x,	y)	Ex	g(Xτ	)		X1	=	y	=	p(x,	y)	f	(y)	=	pf	(x).	Let
(Xn,i	)n∈N0	,	i∈N	be	i.i.d.	random	variables	with	P[X1,1	=	k]	=	pk	for	k	∈	N0	.	(ii)	If	A	=	2Ω	or	A	=	{∅,	Ω		},	then	any	map	X	:	Ω	→	Ω		is	A	–	A	-measurable.	406	17	Markov	Chains	If	we	let	rs	=	ps	−	p	s	,	then	rs	∞	≤	2	and	q∞	≤	2λ;	hence		sup	rs	∞	≤	sup	s≤t	s≤t	s	0	qru	∞	du		≤	q∞	sup	s≤t	s	0	ru	∞	du	≤	2λt	sup	rs	∞	.	as	in	(5.13)	does	then	yield	P[A]
From	Kolmogorov’s	inequality,	we	derive	the	following	sharpening	of	the	strong	law	of	large	numbers.	j	∈J	j	∈J	Remark	14.5	The	concept	of	the	product-σ	-algebra	is	similar	to	that	of	the	product	topology:	If	((Ωi	,	τi	),	i	∈	I	)	are	topological	spaces,	then	the	product	topology	τ	on	Ω	=	×	Ωi	is	the	coarsest	topology	with	respect	to	which	all	coordinate
maps	i∈I	Xi	:	Ω	−→	Ωi	are	continuous.	We	say	that	(μn	)n∈N	converges	vaguely	to	μ,	n→∞	formally	μn	−→	μ	(vaguely)	or	μ	=	v-lim	μn	,	if	n→∞		n→∞	f	dμn	−→		f	dμ	for	any	f	∈	Cc	(E).	,	ωn	∈	E,	let	[ω1	,	.	,	ek	∈	E	be	the	atoms	ofΞN	and	let	N1	,	.	The	existence	is	nontrivial	as	there	can	be	uncountably	many	events	B	and	the	conditional	probability	is
defined	only	up	to	null	sets.	n→∞	−1/2	−n	n	for	any	n	∈	N,	and	(iii)	Choose	anf	∈	C([0,	1])		with	f	(2	)	=	(−1)	Cn	3	does	not	converge	to	zero.	(As	Σ	is	finite,	in	E	vague	convergence,	weak	convergence	and	convergence	in	total	variation	coincide.)	Further,	let			En	:=	μ	∈	M1	(Σ)	:	nμ({x})	∈	N0	for	every	x	∈	Σ	be	the	range	of	the	random	variables	ξn	(X).
(ii)	If	in	addition	X	is	adapted	to	the	filtration	F,	then	for	any	t	≥	0,	the	map	Ω	×	[0,	t]	→	E,	(ω,	s)	→	Xs	(ω)	is	Ft	⊗	B([0,	t])	–	B(E)	measurable.	For	measures	on	(E,	E),	we	introduce	the	following	notions	of	regularity.	The	next	goal	is	to	characterize	σ	-subadditivity	by	a	certain	continuity	property	(Theorem	1.36).	18.4	Speed	of	Convergence	455	Case	2:
N	even.	1	Furthermore,	#(Ai	∩	Aj	)	=	6	if	i	=	j	;	hence	P[Ai	∩	Aj	]	=	36	.	Assume	(iii).	For	any	i	∈	I	,	let	(Ωi	,	Ai	)	be	a	measurable	space	and	let	Xi	:	Ω	→	Ωi	be	an	arbitrary	map.	Only	1[1/2,1)(x)	changes	the	value	exactly	once.	If	x−	=	0	or	x+	=	0,	then	inf(I	(C))	=	0,	and	(LDP	2)	holds	trivially.	Hence	E[X]	=	nE[Y1	]	=	np,	(5.3)	Var[X]	=	nVar[Y1	]	=	np(1
−	p).	1.1	are	sensible.	It	is	also	induced	by	finite	dimensional	cylinder	sets.	,	XN	be	independent	with	E[Xi	]	=	0,	i	=	1,	.	Then	σ	(X−1	(E		))	=	X−1	(σ	(E		))	and	hence	X	is	A	-	σ	(E		)-measurable	⇐⇒	X−1	(E		)	∈	A	for	all	E		∈	E		.	Proof	“	⇒	”	Let	X	be	exchangeable	and	let	A	=	E	or	A	=	T	.	15.1	The	characteristic	function	ϕ	from	Example	15.16	with	n	=	4.	,
XN−1	)	∈	·	|X0	=	x,	XN	=	y]	=	PU	x,y,n	for	all	x,	y	∈	Zd	with	pN	(x,	y)	>	0	and	for	all	n	∈	N0	.	Thus,	without	loss	of	generality	assume	that	all	measures	are	in	M≤1	(E).	We	have	to	show	that	there	exists	a	vaguely	convergent	subsequence.	In	particular,	Rd	,	Zd	,	RN	,	(C([0,	1]),		·	∞	)	and	so	forth	are	Polish.	Then		−k	E[Yk	(t,	h,	X)]	=	k!	h	k−1		)	*	hl	ϕ(t	+
h)	−	ϕ(t)	−	E	eit	X	(iX)l	l!		.	n∈N	k=n	Thus	ν	0	μ.	,	Xn	/n).	Lp	-ergodic	As	a	consequence,	we	obtain	the	statistical	ergodic	theorem,	or	theorem,	that	was	found	by	von	Neumann	in	1931	right	before	Birkhoff	proved	his	ergodic	theorem,	but	was	published	only	later	in	[122].	24	1	Basic	Measure	Theory	(iii)	(π-system)	Let	A,	B	∈	M(μ∗	)	and	E	∈	2Ω	.	,
θkN−1	.	Example	17.5	Let	Y1	,	Y2	,	.	The	convolution	of	the	transition	probabilities	translates	into	powers	of	the	characteristic	function;	hence	φ	n	(t)	=		ei)t,x*	pn	(0,	x).	♦	As	in	Example	17.6,	we	will	construct	a	Markov	process	for	a	more	general	Markov	semigroup	of	stochastic	kernels.	Hence,	for	i	∈	Λ	and	σ	∈	{−1,	+1},		π(x	i,σ	x−i	)	=	=	π(x	i,σ	)
π({x	i,−1	,	x	i,+1	})	e−βH	(x	i,σ	)	e−βH	(x	)	+	e−βH	(x	)		'	(−1	=	1	+	exp	β	H	(x	i,σ	)	−	H	(x	i,−σ	)	i,−1	i,+1		'		(−1	=	1	+	exp	2β	j	:	j	∼i	(1{x(j	)=σ	}	−	12	)	.	This	is	a	property	of	continuity	that	cannot	be	deduced	from	the	axioms	of	a	content	and	thus	must	be	postulated	separately.	Hence	we	now	consider	f	and	g	as	equivalent	if	f	=	g	almost	everywhere.
The	same	calculation	¯	≤	t	−2	Var[Sn	].	Hence,	it	is	enough	to	show	that	μ1	(K)	=	μ2	(K)	for	any	compact	set	K.	By	induction,	we	get	P1	[Xt	>	n]	=	fn	(t)	=	(1	−	e−t	)n	for	all	n	∈	N,	t	≥	0.	In	this	case,	(Ω,	A,	P,	τ	)	is	called	a	measure-preserving	dynamical	system.	♦	Example	12.29	(Pólya’s	urn	model)	(See	Example	14.41,	compare	also	[17,	135]	and
[58].)	Consider	an	urn	with	a	total	of	N	balls	among	which	M	are	black	and	M	−	N	are	white.	Equip	(as	in	Theorem	1.64)	the	probability	space	Ω	=	E	N	with	the	σ	-algebra	A	=	σ	({[ω1	,	.	Hence	we	assume	(1	−	p1	)n1	=	(1	−	p2	)n2	.	(ii)	Let	r,	s	>	0	and	let	βr,s	be	the	distribution	on	[0,	1]	with	density	x	→	Γ	(r	+	s)	r−1	x	(1	−	x)s−1	.	21.1	Continuous
Versions	..	We	have	to	show	that	M(μ∗	)	⊃	σ	(A).	<	tn	from	I	,	and	letting	J	:=	{t0	,	.	n=1	Define	Bn	:=	En	∩	A	∈	A	.	It	shares	the	main	properties	of	ordinary	expectations	(linearity,	triangle	inequality,	monotone	and	dominated	convergence,	Jensen’s	inequality)	and	in	addition	has	the	so-called	tower	property.	Let	X	be	an	Rd	-valued	random	variable
such	that			1%	&	−1/2	P[X	≤	x]	=	det(2π	Σ)	exp	−	t	−	μ,	Σ	−1	(t	−	μ)	λd	(dt)	2	(−∞,x]	for	x	∈	Rd	(where	)	·	,	·	*	denotes	the	inner	product	in	Rd	).	1.4	Measurable	Maps	.	♣	8.3	Regular	Conditional	Distribution	Let	X	be	a	random	variable	with	values	in	a	measurable	space	(E,	E).	Klenke,	Probability	Theory,	Universitext,	273	274	13	Convergence	of
Measures	13.1	A	Topology	Primer	Excursively,	we	present	some	definitions	and	facts	from	point	set	topology.	If	f		is	integrable,	then	we	3	3		can	define	the	integral	f	dμ	:=	f	dμ.	,	Xjn	)].	+	Xn	for	every	n	∈	N.	(ii)	For	a	random	walk	started	at	a,	show	that	the	√probability	Pa	[τz	<	τa	]	of	visiting	z	before	returning	to	a	is	Pa	[τz	<	τa	]	=	1/	3.	The	next
corollary	shows	that	the	conditional	expectation	is	in	fact	this	minimizer.	However,	the	first	person	is	absent-minded	and	takes	a	seat	at	random.	For	example,	for	the	Gamma	distribution,	we	get	α	=	0	and	nΓθ,1/n	(A)	=	θ	1/n	Γ	(1/n)/n		n→∞	x	(1/n)−1	e−θx	dx	−→	A		x	−1	e−θx	dx,	A	hence	ν(dx)	=	x	−1	e−θx	dx.	For	every	Ik	3	3	k=0	∞	k	∈	N,	we	have
E[Xk	]	=	Ik	x	ν(dx);	hence	k=1	E[Xk	]	=	(0,1)	x	ν(dx)	<	∞.	By	Theorem	16.6,	we	372	16	Infinitely	Divisible	Distributions	n→∞	n→∞	have	en(ϕn	−1)	−→	ϕ.	We	follow	the	proof	in	[39,	Section	2.4].	Since	fn	=	fn	+	f1	a.e.	and	f	=	f		+	f1	a.e.,	Theorem	4.9(iii)	implies			fn	dμ	=		f1	dμ	+	n→∞	fn	dμ	−→			f1	dμ	+	f		dμ	=		f	dμ.	This	is	the	filtration	generated	by	Y	;
thus	Y	is	also	a	G-backwards	martingale	(see	Remark	9.29).	18.4	Speed	of	Convergence	.	(ii)	If	r	=	12	,	then	X	is	null	recurrent.	,	ωn	]	:	(1	−	p)δ0	+	p	δ1	ω1	,	.	♦	In	order	to	formulate	Fubini’s	theorem	rigorously,	we	need	the	following	definition.	Sometimes	q	is	also	called	the	generator	of	the	semigroup	(pt	)t	≥0	.	If	Fx	1	,x	2	,x	3	occurs,	then	we	can
find	a	point	y	∈	BL	that	is	the	starting	point	of	three	mutually	disjoint	(not	necessarily	open)	paths	π1	,	π2	and	π3	that	end	at	x	1	,	x	2	and	x	3	.	♣	404	17	Markov	Chains	17.3	Discrete	Markov	Processes	in	Continuous	Time	Let	E	be	countable	and	let	(Xt	)t	∈[0,∞)	be	a	Markov	process	on	E	with	transition	probabilities	pt	(x,	y)	=	Px	[Xt	=	y]	(for	x,	y	∈	E).
♣	Exercise	13.1.3	(Lusin’s	theorem)	Let	Ω	be	a	Polish	space,	let	μ	be	a	finite	measure	on	(Ω,	B(Ω))	and	let	f	:	Ω	→	R	be	a	map.	n=0	Case	2:	x	=	z.	We	have	seen	how	σ	-additivity	follows	from	additivity	(which	is	easier	to	check)	and	continuity	(Theorem	1.36).	Definition	1.27	Let	A	⊂	2Ω	and	let	μ	:	A	→	[0,	∞]	be	a	set	function.	,	Xsn	=	in	=	P	Xt	=	i		Xsn	=
in	.	That	is,	lim	supn→∞	Xn	=	∞	and	lim	infn→∞	Xn	=	−∞	a.s.	We	now	consider	the	situation	where	the	sequence	w	=	(wi−	)i∈Z	is	also	random.	The	general	case	can	be	inferred	inductively.	n→∞	(ii)	For	any	λ	∈	Rd	,	there	is	a	random	variable	Xλ	such	that	)λ,	Xn	*	⇒	Xλ	.	For	which	values	of	p	and	q	do	we	db	.♣	have	bn,p	0	bn,q	?	,	n}	be	the	set	of	all
sequences	whose	first	n	values	are	ω1	,	.	At	the	points	x0	∈	A,	we	apply	the	voltages	u(x0	)	(e.g.,	using	batteries).	¯	♣	Exercise	18.2.3	Let	X	be	an	arbitrary	aperiodic	irreducible	recurrent	random	walk	on	Zd	.	(iii)	For	τ	+	s,	this	is	a	consequence	of	(9.18)	(with	the	stopping	time	σ	≡	s).	Theorem	8.37	(Regular	conditional	distribution)	Let	F	⊂	A	be	a	sub-
σ	algebra.	be	independent	random	variables	(and	independent	of	Y1	,	Y2	,	.	(ii)	If	A,	B	∈	D	with	A	⊂	B,	then	I1B\A	=	I1B	−	I1A	is	measurable,	where	we	used	the	fact	that	κ	is	finite;	hence	B	\	A	∈	D.	We	conclude	q	=	1.	We	construct	a	probability	measure	P	on	(Ω,	A)	such	that	the	stochastic	process	X	has	independent,	stationary,	normally	distributed
increments	(recall	Definition	9.7).	+	Xn	=	n1/α	X1	.	Assume	that	lim	infh↓0	ϕ(x	−	h)	≤	ϕ(x)	−	ε	for	some	ε	>	0.	8	♣	Exercise	17.6.2	Let	X	=	(Xt	)t	≥0	be	a	Markov	chain	on	E	in	continuous	time	with	Q-matrix	q.	It	is	enough	to	show	(Steps	1–3	below)	that	μ∗	is	an	outer	measure	(see	Definition	1.46)	and	that	(Step	4)	the	σ	-algebra	of	μ∗	-measurable	sets
(see	Definition	1.48	and	Lemma	1.52)	contains	the	closed	sets	and	thus	E.	Hence	in	fact	νs	⊥	μ.	Probability	generating	functions	are	an	important	tool	for	the	investigation	of	branching	processes.	and	Finally,	let	ψZn	be	the	p.g.f.	of	Zn	.	For	these	s,	t,	we	thus	have	|f	(s)	−	f	(t)|	=	lim	|fn	(s)	−	fn	(t)|	≤	ε.	Assume	in	addition	that	I	is	a	current	flow	(that	is,
it	satisfies	Ohm’s	rule	with	some	potential	u	that	is	constant	both	on	A0	and	on	A1	).	i=1	By	Kolmogorov’s	0-1	law	(Theorem	2.37),	the	tail	σ	-algebra	T	is	trivial;	hence	we	have		E[Z1		T	]	=	E[Z1	]	almost	surely.	In	both	cases,	determine	the	conditional	distribution	of	Θ	given	R	=	r.	Definition	2.44	The	critical	value	pc	for	percolation	is	defined	as	pc	=
inf{p	∈	[0,	1]	:	θ	(p)	>	0}	=	sup{p	∈	[0,	1]	:	θ	(p)	=	0}	=	inf{p	∈	[0,	1]	:	ψ(p)	=	1}	=	sup{p	∈	[0,	1]	:	ψ(p)	=	0}.	i=1	Zn	can	be	interpreted	as	the	number	of	individuals	in	the	nth	generation	of	a	randomly	developing	population.	Intuitively,	this	fits	well	with	our	idea	that	the	Y1	,	.	The	so-called	Wasserstein	metric	on	M1	(E)	is	defined	by	0	dW	(P	,	Q)	:=
inf	1	(x,	y)	ϕ(d(x,	y))	:	ϕ	∈	K(P	,	Q)	.	Hence	μ˜	R	is	a	σ	-finite,	additive,	σ	-subadditive	set	function	on	the	semiring	Z	with	μ(∅)	˜	=	0.	See,	e.g.,	[147,	Chapter	III.7ff].	The	function	z	→	zr−1	exp(−z)	is	holomorphic	in	the	right	complex	plane.	˜	(ii)	Define	G	:=	(I	−	p)−1	.	,	Xk	)	and	such		k→∞	that	P[A		Ak	]	−→	0.	By	symmetry,	we	also	get	αm	≤	αn	.	Let	us
take	a	moment’s	thought	and	look	back	at	how	we	derived	the	strong	Markov	property	of	Brownian	motion	in	Sect.	Clearly,	3	form	on	Cb	(E)	by	f	→	μ(f	)	:=	f	dμ.	Monotone	convergence	(Theorem	4.20)	now	yields	f	q	≤	F	p	<	∞;	hence	f	∈	Lq	(μ).	Hence,	in	the	recurrent	case,	the	set	grows	sublinearly.	1	21.5	Construction	via	L2	-Approximation	539	by
(21.24)	(and	Theorem	21.11),	X	is	a	Brownian	motion.	There	are	37	pockets	(in	European	roulettes),	18	of	which	are	red,	18	are	black	and	one	is	green	(the	zero).	n→∞		(ii)	The	map	s	:	RN	→	[0,	∞],	x	→	∞	¯	the	value	i=1	|xi	|	is	symmetric.	Let	(Xn,i	)n,i∈N0	k=0	be	an	independent	family	of	random	variables	with	P[Xn,i	=	k]	=	pk	for	all	i,	k,	n	∈	N0	.
Hence,	for	every	ω	∈	B	\	N,	we	have			ϕ	E[X	|F	](ω)	=	ψω	E[X	|F	](ω)	)	*	≤	sup	ψω	(x)	=	sup	ψω	(x)	≤	E	ϕ(X)|F	(ω).	Then	fF	=	dQ	F	dP	F	.	,	tn	∈	I	with	t0	<	t1	<	.	First	infer	that	(X1	,	.	19.12).	Theorem	1.26	Let	A	⊂	Ω	be	a	nonempty	set	and	let	A	be	a	σ	-algebra	on	Ω	or		any	of	the	classes	of	Definitions	1.6–1.9.	Then	A	is	a	class	of	sets	of	the	same	type	A
as	A;	however,	on	A	instead	of	Ω.	For	the	subspace	K	⊂	∞	of	convergent	sequences,	F	:	K	→	R,	(an	)n∈N	→	lim	an	is	a	continuous	linear	functional.	Hence	∞			An	=	n=1	∞		c	Acn	∈	A.	We	have	shown	that	E1	⊂	σ	(E4	).	fn	is	called	the	Bernstein	polynomial	of	order	n.	25.3	The	Itô	Formula	..	(ii)	Var[X]	=	0	⇐⇒	X	=	E[X]	almost	surely.*	)	(iii)	The	map	f	:	R	→
R,	x	→	E	(X	−	x)2	is	minimal	at	x0	=	E[X]	with	f	(E[X])	=	Var[X].	Hence,	as	the	state	space	we	get	E	=	M1	(Σ),	equipped	with	the	metric	of	total	variation	d(μ,	ν)	=	μ	−	νT	V	.	Then	Xτ	=	E[XT		Fτ	]	and,	in	particular,	E[Xτ	]	=	E[X0	].	(7.9)	Remark	7.36	The	definition	of	total	continuity	is	similar	to	that	of	uniform	integrability	(see	Theorem	6.24(iii)),	at
least	for	finite	μ.	Proof	For	ω˜	1	,	define	the	embedding	map	i	:	Ω2	→	Ω1	×	Ω2	by	i(ω2	)	=	(ω˜	1	,	ω2	).	μx	)	*	is	an	invariant	Ex	τx1	Theorem	17.50	If	X	is	irreducible,	then	X	has	at	most	one	invariant	distribution.	15.1	for	an	example	with	n	=	4.	♦	Example	12.28	Let	(Xn	)n∈N	be	exchangeable	and	assume	Xn	∈	{0,	1}.	2.1	Independence	of	Events	We
consider	two	events	A	and	B	as	(stochastically)	independent	if	the	occurrence	of	A	does	not	change	the	probability	that	B	also	occurs.	Thus,	for	every	n	∈	N,	writing	Cn	:=	E[X12n	]	=	(2n)!	2n	n!	<	∞,	we	have	(	'	√	'	2n	(	=	Cn	|t	−	s|n	.	196	8	Conditional	Expectations	Proof	Uniqueness	Let	Y	and	Y		be	random	variables	that	fulfill	(i)	and	(ii).	n→∞	n→∞
n→∞	D	Corollary	13.19	If	Xn	−→	X	in	probability,	then	Xn	−→	X,	n	→	∞.	,	Sn	}	n	k=1	Xk	for	20.4	Application:	Recurrence	of	Random	Walks	503	denote	the	range	of	S;	that	is,	the	number	of	distinct	points	visited	by	S	up	to	time	n.	,	Xtn	∈	An		)	*	Px	Xt0	∈	A0	,	.	Hence	E[ϕ(X)−	]	≤	E[(aX	+	b)−	]	≤	|b|	+	|a|	·	E[|X|]	<	∞.	(17.27)	It	can	be	shown	that	(this	is
the	Kantorovich–Rubinstein	theorem	[84];	see	also	[37,	pages	420ff])	0	dW	(P	,	Q)	=	sup	1	f	d(P	−	Q)	:	f	∈	Lip1	(E;	R)	.	♦	Theorem	6.7	Let	A1	,	A2	,	.	19.5	Network	Reduction	.	Theorem	1.60		The	map	μ	→	Fμ	is	a	bijection	from	the	set	of	probability	measures	on	R,	B(R)	to	the	set	of	probability	distribution	functions,	respectively	from	the	set	of	sub-
probability	measures	to	the	set	of	defective	distribution	functions.	Then	C	⊂	B	is	compact	and	μ(B	\	C)	<	ε.	Consider	a	gamble	in	a	casino	where	in	each	round	the	player’s	bet	either	gets	doubled	or	lost.	(In	fact,	we	could	use	the	theory	of	branching	processes	to	show	that	pc	=	12	.)	(iii)	For	p	∈	(pc	,	1),	show	that	with	positive	probability	there	are	at
least	two	infinite	connected	components.	Let	λ	∈	Rd	and	s	∈	R.	fdd	fdd	n→∞	n→∞	fdd	fdd	Lemma	21.36	Pn	−→	P	and	Pn	−→	Q	imply	P	=	Q.	♦	Theorem	12.10	Let	X	=	(Xn	)n∈N	be	exchangeable.	Then,	for	ε	∈	(0,	1),			μ	B	∩	{d(f,	fn	)	>	ε}	≤	δ	+	μ	AN	∩	{d(f,	fn	)	>	ε}	≤	δ	+	ε−1	d˜N	(f,	fn	)	−→	δ.	n→∞	1≤l≤kn	Definition	15.41	A	centered	array	of	random
variables	(Xn,l	)	with	Xn,l	∈	L2	(P)	for	every	n	∈	N	and	l	=	1,	.	Now	we	can	study	random	variables	with	values	in	M1	(E),	so-called	random	measures	(compare	also	Sect.	Then,	for	every	x	∈	E	and	δ	>	0,	I	(x)	≥	inf	I	(Bδ	(x))		≥	−	lim	inf	ε	log	με	(Bδ	(x))	ε→0		≥	−	lim	sup	ε	log	με	Bδ	(x)	ε→0		δ→0	≥	inf	J	Bδ	(x)	−→	J	(x).	3	3	(i)	(Monotonicity)	If	f	≤	g	almost
everywhere,	then3	f	dμ	≤3	g	dμ.	,	Xtn	)	is	n-dimensional	normally	distributed.	340	15	Characteristic	Functions	and	the	Central	Limit	Theorem	−	∗	b−	=	b−	(v)	br,p	r+s,p	for	r,	s	>	0	and	p	∈	(0,	1].	Remark	1.17	The	following	three	statements	hold:	(i)	E	⊂	σ	(E).	Furthermore,	a(x)	¯	:=	lim	sup	an	(x)	defines	a	symmetric	map	RN	→	R	∪	{−∞,	+∞}.	Fix	ε	>
0	and	choose	aε	∈	(a,	b)	such	that	F	(aε	)	−	F	(a)	<	ε/2.	∪	An	)	<	∞.	Proof	Let	μ1	,	μ2	∈	Mf	(Rd	)	with	ϕμ1	(t)	=	ϕμ2	(t)	for	all	t	∈	Rd	.	If	f	≥	0	or	f	∈	L1	(μ1	⊗	μ2	),	then		ω1	→	f	(ω1	,	ω2	)	μ2	(dω2	)	is	μ1	-a.e.	defined	and	A1	-measurable,	(14.6)		ω2	→	f	(ω1	,	ω2	)	μ1	(dω1	)	is	μ2	-a.e.	defined	and	A2	-measurable,	and		Ω1	×Ω2				f	d(μ1	⊗	μ2	)	=	f	(ω1	,	ω2	)
μ2	(dω2	)		Ω1		Ω2	=		f	(ω1	,	ω2	)	μ1	(dω1	)	Ω2	μ1	(dω1	)	(14.7)	μ2	(dω2	).	For	every	M	∈	N,	we	have	Px1	[τAn0	≤	M]	≤	M		n→∞	Px1	[Xk	∈	An0	]	−→	0.	(2.1)	Example	2.1	(Rolling	a	die	twice)	Consider	the	random	experiment	of	rolling	a	die	twice.	Definition	13.9	Let	F	⊂	M(E)	be	a	family	of	Radon	measures.	Hence	A	∈	Ai	for	any	i	∈	I	.	We	say	that	X	is
integrable	if	E[X]	∈	M(E).	Then	PX	=:	Berp	is	called	the	Bernoulli	distribution	with	parameter	p;	formally	Berp	=	(1	−	p)	δ0	+	p	δ1	.	∈	Lp	(μ).	17.3	Discrete	Markov	Processes	in	Continuous	Time	405	Proof	Let	I	be	the	unit	matrix	on	E.	Theorem	1.19	(Dynkin’s	π-λ	theorem)	If	E	⊂	2Ω	is	a	π-system,	then	σ	(E)	=	δ(E).	It	remains	to	show	that	κ	is	a
stochastic	kernel.	be	independent	random	variables	with	distribution	P	.	,	Xk	)	∈	Ck	}	for	all	k	∈	N.	376	16	Infinitely	Divisible	Distributions	Definition	16.16	A	σ	-finite	measure	ν	on	R	is	called	a	canonical	measure	if	ν({0})	=	0	and			2	(16.10)	x	∧	1	ν(dx)	<	∞.	If	A	∈	I,	then,	for	every	n	∈	N,	A	=	τ	−n	(A)	=	{ω	:	τ	n	(ω)	∈	A}	∈	σ	(Xn	,	Xn+1	,	.	The
uniqueness	of	the	decomposition	is	trivial.	Then	0	≤	Zn	≤	2Y	and	Zn	−→	0.	Thus,	again	by	Lemma	14.23,	the	map		ω0	→	κ1	⊗	κ2	(ω0	,	A)	=	κ1	(ω0	,	dω1	)	gA	(ω0	,	ω1	)	is	well-defined	and	A0	-measurable.	16.1	Lévy–Khinchin	Formula	For	the	sake	of	brevity,	in	this	section,	we	use	the	shorthand	“CFP”	for	“characteristic	function	of	a	probability
measure	on	R”.	,	An	∈	Bb	(E)	are	arbitrary,	then	there	exist	2n	−	1	pairwise	disjoint	sets	B1	,	.	∪	FN	∈	σ	(A1	∪	.	We	come	back	to	this	in	Example	3.4(iv).	Clearly,	the	value	of	N	does	not	change	if	we	shift	all	edges	simultaneously.	The	problem	of	finding	the	smallest	number	N	such	that	any	n	dx	,	n	≥	N	can	be	written	as	a	nonnegative	integer	linear
combination	of	k1	,	.	n→∞	If	x∗	∈	R,	then	'	1(	=1	P[X∗	≤	x∗	]	=	lim	P	X∗	≤	x∗	+	n→∞	n	and	'	1(	P[X∗	<	x∗	]	=	lim	P	X∗	≤	x∗	−	=	0.	As	a	shorthand,	we	say	that	a	family	(Xi	)i∈I	is	“i.i.d.”	(for	“independent	and	identically	distributed”)	if	(Xi	)i∈I	is	independent	and	if	PXi	=	PXj	for	all	i,	j	∈	I	.	Lemma	14.30	(Kernels	and	convolution)	Let	μ	and	ν	be
probability	measures	on	Rd	and	define	the	kernels	κi	:	(Rd	,	B(Rd	))	→	(Rd	,	B(Rd	)),	i	=	1,	2,	by	κ1	(x,	dy)	=	μ(dy)	and	κ2	(y,	dz)	=	(δy	∗	ν)(dz).	Then	A3L,0	⊂		Fx	1	,x	2	,x	3	.	For	A	∈	F	,	r	∈	Q	and	B	=	(−∞,	r],	by	(8.16),			κ(ω,	B)	P[dω]	=	A	)	*	)	*	P	Y	∈	B	|F	dP	=	P	A	∩	{Y	∈	B}	.	(ii)	Let	r	>	p	>	0.	26.2	Weak	Solutions	and	the	Martingale	Problem	...	We
enter	the	realm	of	probability	theory	exactly	at	this	point,	where	we	define	independence	of	events	and	random	variables.	The	following	is	an	important	tool	to	check	weak	relative	compactness.	19.6	Random	Walk	in	a	Random	Environment	(Compare	[143,	175]	and	[76,	77,	96].)	Consider	a	Markov	chain	X	on	Z	that	at	each	step	makes	a	jump	either	to
the	left	(with	probability	wi−	)	or	to	the	right	(with	probability	wi+	)	if	X	is	at	i	∈	Z.	The	invariant	measures	are	the	nonnegative	linear	combinations	of	the	measures	μ1	and	μ2	given	by	μ1	({x})	≡	1	and	μ2	({x})	=	(r/(1	−	r))x	,	x	∈	Z.	(iii)	The	Cauchy	distribution	Caua	with	density	x	→	(aπ)−1	(1	+	(x/a)2	)−1	is	infinitely	divisible	with	Caua	=	Cau∗n	a/n	.
The	metric	d	from	(1.9)	induces	the	product	topology	on	Ω;	hence,	as	remarked	in	Example	1.40,	(Ω,	d)	is	a	compact	metric	space.	˜	Now	x	→	G(x,	y)	is	harmonic	on	E	\	A.	In	particular	(as	the	Beta	distribution	is	continuous	and,	in	particular,	does	not	have	atoms	at	0	or	1),	almost	surely	we	draw	infinitely	many	balls	of	each	color.	n→∞	fdd	Proof	As	in
(21.44)	for	0	≤	t1	≤	t2	,	λ1	,	λ2	≥	0	and	x	≥	0,	we	get	,	+			(	'	'	(	˜n		˜n	−	λ	Z˜	n	+λ	Z˜	n	lim	Ex	e	1	t1	2	t2	=	lim	Ex	Ex	e−λ2	Zt2	Z˜	tn1	e−λ1	Zt1	n→∞	n→∞	+		=	lim	Ex	exp	−		,	λ2	−λ1	Z˜	tn1	n	˜	Z	e	n→∞	λ2	(t2	−	t1	)	+	1	t1			⎛	⎞	λ2	+	λ	x	1	λ2	(t2	−t1	)+1	⎠		=	exp	⎝−		λ2	+	λ	t	+	1	1	1	λ2	(t2	−t1	)+1	)	*	=	Ex	exp(−(λ1	Yt1	+	λ2	Yt2	))	.	Then,	by	Theorem
1.96,	there	exists	a	sequence	of	simple	functions	(fn	)n∈N	with	fn	↑	f	.	Since	μ	is	∅-continuous,	ν	is	also	∅-continuous	and	is	thus	a	signed	measure	on	A.	Give	an	example	of	a	measure-preserving	dynamical	system	that	is	ergodic	but	not	weakly	mixing.	Similarly,	(14.7)	holds.	In	contrast	to	the	original	model,	we	do	not	simply	add	one	ball	of	the	same
color	as	the	ball	that	we	return.	,	xk	)	=	k		fi	(xi	)	for	any	k	∈	N.	Hence	the	aim	is	to	study	the	3	φ	asymptotics	of	Zε	:=	eφ(x)/ε	με	(dx)	as	ε	→	0.	If	in	Theorem	20.20	the	random	variables	Xn	are	not	integer-valued,	then	there	is	no	hope	that	Sn	=	0	for	any	n	∈	N	with	positive	probability.	Assume	that	Xˆ	0	=	X0	and	Xˇ	0	=	0.	10].	However,	this	was	the
claim.	For	S,	T	>	0,	by	Lemma	21.5,	two	such	modifications	XS	and	XT	are	indistinguishable	on	[0,	S	∧	T	];	hence			ΩS,T	:=	there	is	a	t	∈	[0,	S	∧	T	]	with	XtT	=	XtS		is	a	null	set	and	thus	also	Ω∞	:=	ΩS,T	is	a	null	set.	20.5	Mixing	Ergodicity	provides	a	weak	notion	of	“independence”	or	“mixing”.	,	E[Xn	]).	Furthermore,	we	compute	the	conditional
distribution	of	the	individual	random	variables.	Now	define	κY,F	(ω,	A)	=	κY		,F	(ω,	ϕ(A))	for	A	∈	E.	Via	the	connection	with	subordinators,	in	the	third	section,	we	construct	two	distributions	that	play	prominent	roles	in	population	genetics:	the	Poisson–Dirichlet	distribution	and	the	GEM	distribution.	Ik,n	n→∞	Show	that	fn	(x)	−→	f	(x)	for	λ-almost	all	x
∈	[0,	1].	Proof	For	k	≤	n,	we	have	Mn	(τ	(ω))	≥	Sk	(τ	(ω)).	Proof	(i)	(i)	(ii)	(iii)	(iii)	“	⇒	”	This	is	trivial.	On	the	other	hand,	σ	(Y	m	,	m	≥	n)	=	F2−n+1	;	hence	F0+	=		t	>0	Ft	=		F2−n+1	=	T	n∈N	is	P-trivial.	Under	certain	moment	conditions,	a	stochastic	process	X	allows	for	a	modification	X˜	that	is	continuous	and	equals	X	with	probability	1	at	any	given
time.	In	this	case,	t	→	N	t	is	monotone	but	it	is	not	right	continuous,	although	(i)	and	(ii)	hold.	1.	Let	(An	)n∈N	be	a	sequence	in	A	with	α	=	lim	ϕ(An	).	Let	F	∈	(Lp	(μ))	.	By	Weierstraß’s	approximation	theorem	(Example	5.15),	there	is√a	sequence	(pn	)n∈N	of	polynomials	that	approach	the	map	[0,	1]	→	[0,	1],	t	→	t	uniformly.	However,	in	the	special	case
where	the	content	was	defined	on	an	algebra	in	the	first	place,	the	measure	on	sets	of	the	σ	-algebra	can	be	approximated	arbitrarily	well	by	sets	from	the	algebra.	229	229	233	239	11	Martingale	Convergence	Theorems	and	Their	Applications	.	Define	ϕ	+	(A)	:=	ϕ(A	∩	Ω	+	)	and	ϕ	−	(A)	:=	−ϕ(A	∩	Ω	−	).	,	n		Ξ∞	=	(12.5)	l=1	Drawing	without
replacements	thus	asymptotically	turns	into	drawing	with	replacements.	|n|→∞	Hence	τ	is	mixing.	and	∞		0	Fn	=	n=1	1	sup	Skε	>	0	k	k∈N	1	0	=	1	1	sup	Sk	>	ε	∩	F	=	F,	k∈N	k	*	n→∞	)	*	)	hence	Fn	↑	F	.	However,	for	d	≥	2,	the	condition	F1	≥	F2	is	weaker	than	μ1	≤st	μ2	.	1+(δ/2)	n→∞	Var[Sn	]	lim	(15.7)	l=1	Lemma	15.42	The	Lyapunov	condition
implies	the	Lindeberg	condition.	Furthermore,	for	every	t	∈	I	,	By	(i),	we	have	P[N]		Nt	∩	R	⊂		(Nr	∩	R)	⊂	N.	(ii)	I	⊂	R	is	a	(possibly	unbounded)	interval	and	X	and	Y	are	almost	surely	right	continuous.	For	any	choice	of	sets	Ai	∈	Ei	,	i	∈	N,	the	family	(Ai	)i∈N	is	independent;	hence	(Ei	)i∈N	is	independent.	Remark	5.2	(i)	The	definition	in	(ii)	is	sensible
since,	by	virtue	of	Theorem	4.19,	X	∈	Ln	(P)	implies	that	Mk	<	∞	for	all	k	=	1,	.	Now	that	we	have	established	(iii),	by	Exercise	6.1.4,	we	see	that	∞	n=1	(Yn	−	E[Yn	])	converges	almost	surely.	,	xn	)	with	x0	=	x	and	xn	=	y.	(i)	In	both	cases,	√	determine	the	conditional	distribution	of	Y	given	X	=	x.	On	the	other	hand,	any	predictable	H	has	the	form	Hn	=
Fn	(D1	,	.	Note	that	in	the	last	step,	we	used	the	fact	that	p	−	p/q	=	1.	The	rate	for	the	decay	can	be	computed	via	the	Legendre	transform	of	the	logarithmic	moment	generating	function.	,	d	−	1).	It	is	enough	to	show	that			sup	fn	dμ	≥	g	dμ.	472	19	Markov	Chains	and	Electrical	Networks	Definition	19.21	Let	I	be	a	flow	on	E	\	A.	Example	9.13Let	I	=
N0	and	let	Y1	,	Y2	,	.	Let	p	be	a	probability	vector	on	E	1	×	E	2	with	marginals	p1	and	p2	.	Now,	if	Kn	↑	∞,	n	→	∞,	then	for	every	N	>	0,	we	have	+	P			sup	U¯	tKn	,n		>	ε	t	∈[0,N]	,	≤	*	n→∞	)	N	Var	Z1Kn	−→	0,	ε2	σ	2	hence	U¯	Kn	,n	⇒	0	in	C([0,	∞)).	By	induction,	we	get	rs	=	0	hence	p	s	≥	0.	In	particular,	independent	square	integrable	random	variables
are	uncorrelated.	j	∈J	j	∈J		/	R	(ii)	Ai	=	σ	(Z	)	=	σ	Z	E	,R	.	Hence	E[Xm	1B	]	=		C∈Zm	:	P[C]>0	Q(C)	P[C	∩	B]	=	P[C]		Q(C)	=	Q(B).	♣	Exercise	3.3.2	Assume	that	we	have	a	branching	process	Z	=	(Zn	)n∈N0	with	Z0	=	1	whose	offspring	distribution	is	given	by	pk	=	13	·	(2/3)k	,	k	∈	N0	.	,	N},	then	in	the	new	generation	it	will	be	random	and	binomially
distributed	with	parameters	N	and	k/N.	with	PX	=	μ	and	PXn	=	μn	for	n→∞	every	n	∈	N	such	that	Xn	−→	X	almost	surely.	From	an	abstract	point	of	view,	the	integral	is	monotone	and	linear	and	fulfills	the	triangle	inequality,	which	allows	to	use	it	to	define	normed	vector	spaces	of	functions.	Then	+	,		+	,				Bk	=	P	Aj	=	P[Aj	]	=	P[Aj	]	=	P[Bk	].	©	1996-
2014,	Amazon.com,	Inc.	:(y,	x)	F	Therefore,	⎡	μx	({y})	=	Ex⎣	τx1	−1		n=0	⎤		:(x,	y)	⎢	⎥	F	1{Xn	=y}	⎦	=	Ex⎣	1{Xn	=y}	;	τx1	>	τy1	⎦	=	<	∞.	(17.6)	Remark	17.13	If	I	is	countable,	then	the	strong	Markov	property	holds	if	and	only	if,	for	every	almost	surely	finite	stopping	time	τ	,	we	have		*	)	)	*	Lx	(Xτ	+t	)t	∈I		Fτ	=	LXτ	(Xt	)t	∈I	:=	κ(Xτ	,	·	).	,	∈	A	with	An	↑
Ω	and	μ(An	)	<	∞	for	all	n	∈	N.	n	n−1	P[A]	=	k=0	Thus	P[A]	∈	{0,	1};	hence	I	is	trivial	and	therefore	τ	is	ergodic.	It	takes	a	little	more	work	to	show	that	there	exists	a	countable	set	G	⊂	X		that	is	uniquely	determined	by	X	g	,	g	∈	G,	and	is	an	RCLL	C0	(E)	and	a	process	X	version	of	X.	Hence,	in	(14.19)	we	can	replace	the	normal	distribution	by	any
parameterized	family	of	distributions	(νt	,	t	≥	0)	with	the	property	νt	+s	=	νt	∗	νs	.	Takeaways	Two	events	A	and	B	are	independent	if	P[A	∩	B]	=	P[A]	·	P[B].	,	μn	on	arbitrary	(even	different)	measurable	spaces.	n=1	∗	(G	n	).	♣	Exercise	8.1.2	Consider	a	theatre	with	n	seats	that	is	fully	booked	for	this	evening.	At	the	second	stage,	given	W	,	we
construct	a	Markov	chain	X	on	Z	with	transition	matrix	⎧	−	⎪	⎨	Wi	,	if	j	=	i	−	1,	pW	(i,	j	)	=	Wi+	,	if	j	=	i	+	1,	⎪	⎩	0,	else.	X	is	called	lattice	distributed	if	there	are	a,	d	∈	R	such	that	P[X	∈	a	+	dZ]	=	1.	be	i.i.d.	real	random	variables	with	characteristic	function	ϕ.	The	event	{L	>	−∞}	is	invariant	and	hence	has	probability	0	or	1.	Indeed,	the	value	of	the
left-hand	side	does	not	change	if	we	change	the	order	of	the	sets	A1	,	A2	,	.	We	formulate	this	principle	as	a	theorem.	(13.3)	Arguing	as	above,	this	will	show	that	μ1	(K)	=	μ2	(K)	and	will	hence	conclude	the	proof.	(ii)	Let	Y	∼	N0,1	.	≤	mn	≤	0,	where	mk	:=	yakk	−y	−ak−1	is	the	slope	on	the	kth	interval.	(17.18)		−α	<	∞	if	and	only	if	α	>	1.	(i)	(ii)	(iii)
(iv)	μn	({k})	μn	(A)	ψn	(z)	ψn	(z)	n→∞	−→	−→	n→∞	−→	n→∞	−→	n→∞	μ({k})	μ(A)	ψ(z)	ψ(z)	for	all	k	∈	N0	.	Hence	μ(A1	)	=	lim	μ(A1	\	An	)	=	μ(A1	)	−	lim	μ(An	).	Let	X	be	a	random	walk	on	E	with	weights	C	=	(C(x,	y),	x,	y	∈	E)	and	hence	with	transition	probabilities	p(x,	y)	=	C(x,	y)/C(x)	(compare	Definition	19.11).	Indeed,	it	is	easy	to	check	that	P[A]	=
P[B]	=	1	1	2	and	P[A	∩	B]	=	4	.	Let	B1	,	B2	,	.	Show	that	dP	(μ,	ν)	=	dP	(μ,	ν)	=	dP	(ν,	μ)	for	all	μ,	ν	∈	M1	(E).	<	tn	,	PXt	−Xs	=	N0,t	−s	for	all	t	>	s.	In	the	special	case	I	=	N0	,	X	is	called	a	Markov	chain.	For	any	two	points	x,	y	∈	Z,	we	thus	have	P(x,y)[τ˜	<	∞]	=	Px−y	[Zn	=	0	for	some	n	∈	N0	]	=	1.	Then	M	is	adapted	to	F	and				E[Mn		Fn−1	]	=	Mn−1
−	E[Xn−1	(In	)		Fn−1	]	+	E[Xn−1	(In	+	Nn	)		Fn−1	]			=	Mn−1	−	P[In	=	i]	Xn−1	(i)	+	P[In	+	Nn	=	i]	Xn−1	(i)	i∈Λ	i∈Λ	=	Mn−1	since	P[In	=	i]	=	P[In	+	Nn	=	i]	=	L−d	for	all	i	∈	Λ.	For	x	∈	R,	define		fX	(x)	=	R	f	(x,	y)	λ(dy).	Show	that	A	is	an	Abelian	algebraic	ring	with	multiplication	“	∩	”	and	addition	“		”.	Since	1A	X	∈	L1	(P),	we	have	X	∈	L1	(P[	·	|A]).
Define	the	linearly	interpolated	processes				1	Z¯	tn	:=	t	−	n−1	tn!	Z	nt	n!+1	−	Z	nt	n!	+	Z	nt	n!	.	Building	finite	sums,	(14.6)	and	(14.7)	also	hold	if	f	is	a	simple	function.	,	jn	},	we	have	Pμ	◦	XJ−1	=	μ	⊗	n−1	k=0	κjk	,jk+1	.	On	locally	compact	spaces,	also	Lipschitz	continuous	functions	with	compact	support	form	a	separating	class.	Let	B	∈	A	with	μ(B)
<	∞.	By	stationarity,	P[σn	<	∞]	=	1	for	every	n	∈	N0	;	hence	P[B]	=	1.	∞		Hence,	let	A1	,	A2	,	.	This	is	defined	by	dP	(μ,	ν)	:=	max{dP	(μ,	ν),	dP	(ν,	μ)},	(13.4)	where	dP	(μ,	ν)	:=	inf{ε	>	0	:	μ(B)	≤	ν(B	ε	)	+	ε	for	any	B	∈	B(E)},	(13.5)	and	where	B	ε	=	{x	:	d(x,	B)	<	ε};	see,	e.g.,	[14,	Appendix	III,	Theorem	5].	Proof	By	Remark	21.10,	X	is	characterized	by
(ii).	Let	P0	be	a	probability	measure	on	(Ω0	,	A0	).	In	this	case,			g	d(f	μ)	=	(gf	)	dμ.	♦	Definition	9.12	(Predictable)	Let	I	=	N0	or	I	=	N.	♠	40	1	Basic	Measure	Theory	Theorem	1.88	(Measurability	of	continuous	maps)	Let	(Ω,	τ	)	and	(Ω		,	τ		)	be	topological	spaces	and	let	f	:	Ω	→	Ω		be	a	continuous	map.	,	n,	the	sequence	(Pnk	)n∈N	of	kth	marginal
distributions	is	tight.	18.3	State	space	decomposition	of	a	Markov	chain	with	period	d	=	3.	Since	E	is	complete,	the	limit	f	(ω)	:=	limn→∞	fn	(ω)	exists.	Hence	we	get	(by	Theorem	6.25)	fn	−	f	p	=	gn	1	−→	0.	An	algebra	on	a	finite	set	Ω	is	a	σ	-algebra.	Theorem	13.11	Let	(E,	d)	be	a	metric	space.	21.9	Pathwise	Convergence	of	Branching	Processes	553
Remark:	The	distribution	of	M	can	be	expressed	by	the	Kolmogorov–Smirnov	formula	([101]	and	[157];	see,	e.g.,	[133])	P[M	>	x]	=	2	∞		2	2	(−1)n−1	e−2n	x	.	8.3	Regular	Conditional	Distribution	.	k=0	Hence	τAn0	↑	∞	almost	surely,	and	thus	Fn	↓	{τx1	=	∞}	(up	to	a	null	set).	Instead,	we	choose	representatively	one	case.	Now	let	A	∈	G.	Let	U	be	a
random	variable	that	is	uniformly	distributed	on	(0,	1).	18.3	for	an	illustration	of	the	state	space	decomposition	of	a	periodic	Markov	chain.	Let	ϕ	:	I	→	R	be	continuous	and	in	the	interior	I	◦	twice	continuously	differentiable	with	second	derivative	ϕ		.	Now,	given	Θ,	is	Φ	uniformly	distributed	on	[−π,	π)?	In	order	to	compute	Doob’s	decomposition	of	Y	,
define	the	first	and	second	discrete	derivatives	of	f	:	f		(x)	:=	f	(x	+	1)	−	f	(x	−	1)	2	and	f		(x)	:=	f	(x	−	1)	+	f	(x	+	1)	−	2f	(x).	Proof.	Frequency	0.0978	0.0251	0.0079	0.0002	0.07	0.0727	0.0615	0.0435	0.0067	0.0189	0.0003	0.0004	0.0113	5.4	Speed	of	Convergence	in	the	Strong	LLN	135	Here	‘.’	denotes	a	short	signal	while	‘-’	denotes	a	long	signal.	Now
find	an	example	that	shows	that	the	conclusion	of	Kolmogorov’s	0–1	law	need	not	hold	under	this	assumption.	♣	Exercise	9.2.3	Show	that	the	claim	of	Theorem	9.35	continues	to	hold	if	X	is	only	a	submartingale	but	if	ϕ	is	in	addition	assumed	to	be	monotone	increasing.	,	Xk	=	xk	]	(1	−	F	(y,	x))	.	The	set	of	such	cylinder	sets	is	denoted	by	ZJ	.
Takeaways	The	ergodic	theorem	yields	a	law	of	large	numbers	for	the	occupation	times	of	a	positive	recurrent	Markov	chain.	Hence	W	is	bounded	m−1	in	L2	and	Theorem	11.10	yields	Wn	→	W∞	in	L2	and	thus	in	L1	.	However,	the	computations	used	in	Sect.	Proof	Fix	ε	>	0,	and	choose	δ	>	0	such	that	|fn	(t)	−	fn	(s)|	<	ε	for	all	n	∈	N	and	all	s,	t	∈	E
with	d(s,	t)	<	δ.	Then:	(i)	(ii)	(iii)	(iv)	(v)	|ϕX	(t)|	≤	1	for	all	t	∈	Rd	and	ϕX	(0)	=	1.	The	chain	should	be	designed	so	that	at	each	step,	only	a	small	number	of	transitions	are	possible	446	18	Convergence	of	Markov	Chains	in	order	to	ensure	that	the	procedure	described	in	Example	17.19	works	efficiently.	Thus	A	\	B	=	A	\	(A	∩	B)	∈	D.	17.7	Stochastic
Ordering	and	Coupling	.	Theorem	15.15	(i)	Let	μ1	,	μ2	,	.	(5.1)	i,j	In	particular,	Var[αX]	=	α	2	Var[X]	and	the	Bienaymé	formula	holds,	Var	m		i=1	.	Then	ϕ	is	convex	if	and	only	if	ϕ		(x)	≥	0	for	all	x	∈	I	◦	.	(note	that	there	are	4(2n	+	1)	edges	that	connect		(0	↔	∞)	=	Reff	∞		n=0	1	=	∞.	Inductively,	we	get	Var[Wn	]	=	σ	2	n+1		k=2	m−k	≤	σ2	m	<	∞.	First
consider	the	case	K	=	R.	Basic	number	theory	then	yields	that,	for	every	n	≥	n	:=	r	·	x	i=1	(ki	/dx	),	there	are	numbers	m1	,	.	.+	Xn	)/n	−→	m	in	probability.	Indeed,	in	this	case,	D	:=	A2	∈	A2	:	ω1	→	κ(ω1	,	A2	)	is	A1	-measurable	is	a	λ-system	(exercise!).	The	gene	frequencies	k/N	in	this	model	can	be	described	by	a	Markov	chain	X	on	E	=	{0,	1/N,	.
Lemma	14.23	Let	κ	be	a	finite	transition	kernel	from	(Ω1	,	A1	)	to	(Ω2	,	A2	)	and	let	f	:	Ω1	×	Ω2	→	[0,	∞]	be	measurable	with	respect	to	A1	⊗	A2	−	B([0,	∞]).	Here	we	denoted	I	(x)	:=		y∈E	I	(x,	y)	and	I	(A)	:=		x∈A	I	(x).	15.1	Separating	Classes	of	Functions	333	Proof	By	the	dominated	convergence	theorem,		[−π,π)d	e−i)t,x*	ϕμ	(t)	dt	=	⎛		[−π,π)d	e−i)t,x*
⎝	lim	n→∞		=	lim	n→∞	[−π,π)d	=		e−i)t,x*	μ({y})	⎞	ei)t,y*	μ({y})⎠	dt	|y|≤n		ei)t,y*	μ({y})	dt	|y|≤n		y∈Zd		[−π,π)d	ei)t,y−x*	dt.	+	Xn	is	(nσ	2	,	nb,	nν).	Proof	(i)	We	always	have	E[ϕ(Xt	)−	]	<	∞	(Theorem	7.9);	hence,	by	assumption,	E[|ϕ(Xt	)|]	<	∞	for	all	t	∈	I	.	Using	the	approximation	theorems	for	measures,	it	can	be	shown	that	there	is	always	a
countably	generated	σ	-algebra	G	⊂	F	such	that	for	any	A	∈	F	,	there	is	a	B	∈	G	with	P[A		B]	=	0.	.}	↑	Z	and		,	n	∈	N	is	a	consistent	family.	Then	there	is	a	k	∈	N	and	states	x1	,	.	Then,	for	g	∈	Ef	,		F	(g)	=	gf	dμ.	,	gxn	).	By	the	definition	of	En	,	the	map	F	:	E	N	→	R	is	measurable,	n-symmetric	and	bounded.	Then	τ	is	measure-preserving.	Then	we	have	A	\
An	↓	∅	and	n→∞	μ(A)	−	μ(An	)	=	μ(A	\	An	)	−→	0.	Then,	by	Ohm’s	rule,	the	current	flow	along	the	ith	wire	is	Ii	=	u(1)−u(0)	=	R1i	.	As	μ	is	additive,	we	obtain	μ(A	∪	B)	=	μ(A)	+	μ(B	\	A)	μ(B)	=	μ(A	∩	B)	+	μ(B	\	A).	♦	Takeaways	The	set	of	points	visited	by	a	random	walk	within	the	first	n	steps	grows	with	n	at	a	speed	that	is	the	probability	of	no	return.
♦	Reflection	In	the	previous	example	one	might	be	tempted	to	assume	that	the	Yi	are	uncorrelated	instead	of	independent.	In	order	to	get	an	aperiodic	chain,	for	ε	>	0,	define	the	transition	matrix	pε	:=	(1	−	ε)p	+	εI,	where	I	is	the	unit	matrix	on	E.	n→∞	(i)	μ	is	called	lower	semicontinuous	if	μ(An	)	−→	μ(A)	for	any	A	∈	A	and	any	sequence	(An	)n∈N	in	A
with	An	↑	A.	♣	Exercise	21.5.6	Let	t	∈	(0,	1)	and	f0	(x)	:=	t	as	well	as	fn	(x)	:=	Show	that	∞	2	sin(nπ	t)	cos(nπ	x)	nπ	n=0	fn	(x)	for	n	∈	N,	x	∈	[0,	1].	Indeed,	An	:=	{n,	n	+	1,	.	By	)x,	y*	=	)y,	x*	∈	K,	denote	an	(undirected)	edge	that	connects	x	with	y.	,	N	−	2,	(18.12)	and	λxN−1	=	rxN−2	.	We	infer	that	*	n→∞	)	n	StnN	)	−→	L[(Bt1	,	.	In	particular,	we	know
that,	for	small	ε	>	0,	the	mass	of	με	is	concentrated	around	the	zeros	of	I	.	♦	Takeaways	In	order	to	compute	characteristic	functions,	in	many	cases	it	is	enough	to	have	a	table	of	characteristic	functions	for	some	repertoire	of	standard	distributions	and	to	know	how	characteristic	functions	transform	under	linear	maps	and	independent	sums.	As	F	is
continuous,	the	kernel	W	:=	F	−1	({0})	is	a	closed	(proper)	linear	subspace	of	V	.	,	Mn,T	,n	are	independent	and	Poiλ/n	-distributed.	show	that	f	d(Cn	ϕn	)	n∈N	(iv)	Use	this	construction	to	contradict	the	assumption	of	metrizability.	of	compact	sets	in	E	such	that		μ(Knc	)	<	n1	for	all	μ	∈	F	and	all	n	∈	N.	This	is	the	so-called	Doob	decomposition.
Macroscopically,	the	individual	spins	cannot	be	observed	but	the	average	magnetization	can;	that	is,	the	modulus	of	the	average	of	all	spins,	mΛ	(β)	=		x∈E				1					π(x)		x(i)	.	Let	kn	=	n	and	Xn,l	=	√Yln	.	This	justifies	the	term	reversible.	♦	Remark	9.3	Following	a	certain	tradition,	we	will	often	denote	a	stochastic	process	by	X	=	(Xt	)t	∈I	if	we	want	to
emphasize	the	“time	evolution”	aspect	rather	than	the	formal	notion	of	a	family	of	random	variables.	By	Exercise	19.1.1	(with	A	=	{3,	5},	x	=	2	and	y	=	3),	the	probability	of	visiting	3	before	5	is	P	=	G(2,	3)	=	13	29	.	,	N,	ε	>	0,	be	nonnegative	numbers.	Hence	Ω	=	{1,	.	♣	Exercise	4.1.2	(Sequence	spaces)	Now	we	do	not	assume	μ(Ω)	<	∞.	For	the	first
part	of	(iii),	see,	eg.	13.4.	In	order	to	formulate	(and	prove)	this	statement	(de	Finetti’s	theorem)	rigorously	in	Sect.	n=0	Hence	there	exists	a	nontrivial		invariant	measure	μ	(that	is,	μ({0})	can	be	chosen	∞	strictly	positive)	if	and	only	if	n=0	pn	=	0.	2	♦	i=0	Example	19.27	Asymmetric	simple	random	walk	on	E	=	Z	with	p(x,	x	+	1)	=	p	∈	(	12	,	1),	p(x,	x
−	1)	=	1	−	p	is	transient.	n→∞	x∈R	Proof	Fix	x	∈	R	and	let	Yn	(x)	=	1(−∞,x]	(Xn	)	and	Zn	(x)	=	1(−∞,x)	(Xn	)	for	n	∈	N.	,	Yn	)	are	determined.	Then	the	following	implications	hold:	(i)	⇐⇒	(ii)	⇐⇒	(iii)	⇒	(iv)	⇐⇒	(v).	We	proceed	in	several	steps.	Any	t	∈	Dm	has	a	unique	dyadic	expansion	m∈N	t=	m		bi	(t)	2−i	for	some	bi	(t)	∈	{0,	1},	i	=	0,	.	434	17	Markov
Chains	We	define	for	k,	l	=	0,	.	Hence	Zn	/mn	is	an	almost	surely	and	L1	-convergent	martingale.	The	smallest	value	μ∗	(E)	that	can	be	obtained	by	such	an	approximation	is	called	the	outer	measure	of	E.	Deletion	of	loops.	,	n}	→	{1,	.	We	come	back	to	this	with	the	Poisson	point	process	in	Chap.	We	prepare	for	the	proof	of	this	theorem	by	assembling
some	analytic	tools.	However,	we	restrict	ourselves	to	the	case	I	⊂	R.	(8.2)	i∈I	Proof	Due	to	the	σ	-additivity	of	P,	we	have	P[A]	=	P	i∈I	.		n→∞		k=1	Proof	See,	for	example,	[128].	♦	Example	13.28	(i)	If	E	is	compact,	then	M1	(E)	and	M≤1	(E)	are	tight.	Let	d	be	a	complete	metric	on	E.	Consider	an	arbitrary	w	∈	W	\{0}.	Lemma	20.7		(i)	A	measurable
map	f	:	(Ω,	A)	→	R,	B(R)	is	I-measurable	if	and	only	if	f	◦	τ	=	f.	(iv)	Similarly,	the	vague	topology	τv	on	M(E)	is	the	3coarsest	topology	such	that	for	all	f	∈	Cc	(E),	the	map	M(E)	→	R,	μ	→	f	dμ	is	continuous.	Theorem	12.17	Let	X	=	(Xn	)n∈N	be	an	exchangeable	family	of	random	variables	with	values	in	E.	Corollary	12.19	(0-1	law	of	Hewitt–Savage)	Let	X1
,	X2	,	.	(iv)	Since	|Zt	|	≤	|Xt	|	+	|Yt	|,	we	have	E[|Zt	|]	<	∞	for	all	t	∈	I	.	Then,	for	any	ε	∈	(0,	1),	n→∞	n→∞		n→∞	d˜N	(f,	fn	)	≤	μ	AN	∩	{d(f,	fn	)	>	ε}	+	ε	μ(AN	)	−→	ε	μ(AN	).	(iii)	If	dx	=	1	for	all	x	∈	E,	then	X	is	called	aperiodic.	Remark	8.3	The	specification	in	(8.1)	for	the	case	P[B]	=	0	is	arbitrary	and	is	of	no	importance.	2.3	Kolmogorov’s	0–1	Law	.	(ii)	If
E	is	Polish,	then	also	the	converse	holds:	F	is	tight	⇐	F	is	weakly	relatively	sequentially	compact.	Hence	by	the	approximation	theorem	for	measures	(Theorem	1.65),	thereare	mutually	disjoint	sets	An	=	Vn	∩	Cn	∈	A,	n	∈	N,	such	that	B	⊂	A	:=	∞	n=1	An	and	μ(A)	≤	μ(B)	+	ε/2.	(iii)	Give	examples	of	sequences	(px	)x∈N0	such	that	the	chain	is	(a)
transient,	(b)	null	recurrent,	(c)	positive	recurrent,	and	(d)	positive	recurrent	but		∞		n−1		exp	−	(1	−	pk	)	n=0	k=0		=	∞.	Thus	we	consider	sequence	spaces	p	=	Lp	(N,	2N	,	μ).	In	order	to	obtain	criteria	for	the	convergence	of	Markov	chains,	we	thus	have	to	understand	periodicity	first.	,	Dn−1	).	31	(i)	Compute	the	expectation	and	variance	of	0	Bs	ds.
♦	Takeaways	Families	of	random	variables	are	independent	if	the	events	they	describe	are	independent	(Definition	2.14).	(17.28)	Compare	this	representation	of	the	Wasserstein	metric	with	that	of	the	total	variation	norm,	0	1	P	−QT	V	=	sup	f	d(P	−Q)	:	f	∈	L∞	(E)	with	f	∞	≤	1	.	We	call	p	=	(pω	)ω∈Ω	the	weight	function	of	μ.	By	Theorem	21.38,	it	is
thus	enough	to	show	tightness	of	(Lx	[Z¯	n	],	n	∈	N)	in	M1	(C([0,	∞))).	l=0	(19.9)	(iii)	(Parallel	connection	(see	Fig.19.2))	Let	E	=	{0,	1}.	For	f¯,	g¯	∈	L2	(μ),	define	)f¯,	g*	¯	:=	)f,	g*,	where	f	∈	f¯	and	g	∈	g.	Since	σn2	−→	∞,	for	every	ε	>	0	and	for	sufficiently	large	n	∈	N,	we	have	2K	<	εσn	;	thus	n→∞	|Xn,l	|	<	ε	for	all	l	=	1,	.	Then	i=1	An,N	↑	E	for	N	→	∞
for	all	n	∈	N.	(iii)	Let	Ω	be	countably	infinite	and	let	A	:=	{A	⊂	Ω	:	#A	<	∞	or	#Ac	<	∞}.	lim	sup	Theorem	20.20	Let	X	=	(Xn	)n∈N	be	an	integer-valued,	integrable,	stationary	process	with	the	property	E[X1		I]	=	0	a.s.	Let	Sn	=	X1	+	.	By	Lemma	14.23,	the	map		gA	:	(ω0	,	ω1	)	→	κ2	((ω0	,	ω1	),	dω2	)	1A	(ω1	,	ω2	)	is	well-defined	and	A0	⊗	A1	-
measurable.	1.3	The	Measure	Extension	Theorem	.	We	denote	by	τ¯	the	corresponding	topology	induced	on	R	and	by	τ	the	usual	topology	on	R.	Clearly,	the	events	A1	,	.	Hence	there	is	an	n0	=	n0	(ω)	with	Xn	=	Yn	for	all	n	≥	n0	,	whence	for	n	≥	n0	Lemma	5.19	2x		Tn0	−	Sn0	Tn	−	Sn	=	n	n	n→∞	−→	0.	In	this	sense,	the	binary	model	is	a	complete
market.	R	\[−K,K]d	∞	≤	g∞	=	g	By	assumption	of	the	theorem,	inequality,	we	conclude	3	g	dμ1	=	3	g	dμ2	.	Thus,	by	Slutzky’s	theorem,	we	n→∞	also	have	(Sn	−	Tn	)	⇒	N0,1	.	Only	the	onedimensional	marginal	distributions	are	determined.	Theorem	17.38	An	irreducible	discrete	Markov	chain	is	either	recurrent	or	transient.	Proof	We	check	the
conditions	of	Theorem	21.40.	“(v)	⇒	(iv)”	This	is	evident.	,	K,		where	Z	:=	K	j	=1	exp(−βWj	)	is	the	normalising	constant.	We	introduce	the	following	notation.	By	the	composition	theorem	for	maps	(Theorem	1.80),	fy,n	is	measurable.	,	XN	=	xN	=	N		.		A	necessary	condition	for	M	<	∞	is	of	course	that	the	series	∞	n=0	(1	−	pn	)	diverge;	that	is,	that	X	is
recurrent.	H	is	then	a	gambling	strategy.	♦	Example	1.72	Let	μ	=	δω	be	the	Dirac	measure	for	the	point	ω	∈	Ω	on	some	measurable	space	(Ω,	A).	17.3	Discrete	Markov	Processes	in	Continuous	Time	409	For	illustration,	first	consider	the	extreme	situation	where	wn	grows	very	quickly;	for	example,	wn	=	2n	for	every	n	∈	N.	Thus	π(VT	)	=	v0	=	E[VT	].
Define	A∞	=	n=1	P[An	|Fn−1	]	=	∞	and	A	=	lim	supn→∞	An	.	Hence	(since	p	0	(x,	z)	=	0)	μx	p({z})	=	∞		p	n+1	(x,	z)	=	n=0	∞		n=1	p	n	(x,	z)	=	∞		p	n	(x,	z)	=	μx	({z}).	We	define	the	set	of	open	edges	as	p	E	p	:=	{e	∈	E	:	Xe	=	1}.	,	Xn	that	cannot	be	extended	to	an	infinite	exchangeable	family	X1	,	X2	,	.	For	any	x	∈	V	,	there	is	a	unique	representation	x
=	y	+	z	where	y	∈	W	and	z	∈	W	⊥	.	For	all	numbers	x,	y	∈	R,	we	have	(f	(x)	−	f	(y))(g(x)	−	g(y))	≥	0.	,	12.	♦	Example	7.42	If	μ+	,	μ−	are	finite	measures,	then	ϕ	:=	μ+	−	μ−	∈	M±	.	Hence	κ1	⊗	κ2	(ω0	,	·	)	is	σ	-finite	and	is	thus	a	transition	kernel.	n→∞	(ii)	(μn	)n∈N	is	tight,	and	there	is	a	separating	family	C	⊂	Cb	(E)	such	that			f	dμ	=	lim	n→∞	f	dμn	for
all	f	∈	C.	For	I	∈	I,	let	NI	be	the	number	of	clicks	after	time	a	but	no	later	than	b.	Remark	15.7	Let	X	and	Y	be	independent	nonnegative	random	variables	with	Laplace	transforms	LX	:=	LPX	and	LY	:=	LPY	,	respectively.	Lemma	6.23	There	is	a	map	h	∈	L1	(μ)	with	h	>	0	almost	everywhere.	Let	Y	be	a	random	variable	with	values	in	a	Borel	space	(E,	E)
(hence,	for	example,	E	Polish,	E	=	Rd	,	E	=	R∞	,	E	=	C([0,	1]),	etc.).	However,	it	fails	for	semirings.	288	13	Convergence	of	Measures	Exercise	13.2.1	Recall	dP	from	(13.5).	Proof	Apply	Theorem	6.19	with	the	convex	map	H	(x)	=	x	p	.	19.10).	+	Xn	∼	bn,p	and	thus	E[f	(Sn	/n)]	=	n		f	(k/n)	P[Sn	=	k]	=	fn	(p).	,	ωn	]	:=	{ω	∈	Ω	:	ωi	=	ωi	for	any	i	=	1,	.	In
particular,	if	C(x,	y)	=	1{)x,y*∈K}	,	then	X	is	called	a	simple	random	walk	on	(E,	K).	,	kn	is	said	to	satisfy	the	Lindeberg	condition	if,	for	all	ε	>	0,	Ln	(ε)	:=	kn	'	(		1	2		n→∞	E	Xn,l	1	2	−→	0.	<	tn	.	♠	Example	9.31	Consider	the	situation	of	the	preceding	example;	however,	now	with	E[Yt	]	=	1	and	Xt	=	ts=1	Ys	for	t	∈	N0	.	(iii)	(σ	-∪-closedness)	Let	A,	B	∈
D.	Repeated	application	of	Fubini’s	theorem	and	the	translation	invariance	of	λn	yields	P[X	+	Y	≤	x]	=	P[(X,	Y	)	∈	A]		⊗2	=	1A	(u,	v)	fX	(u)	fY	(v)	λn	(d(u,	v))		=	Rn	×Rn			1A	(u,	v)	fX	(u)	λ	(du)	fY	(v)	λn	(dv)	n		=		=		Rn	Rn	Rn			Rn	(−∞,x−v]		fX	(u	−	v)	λn	(du)	fY	(v)	λn	(dv)	(−∞,x]	=			fX	(u)	λn	(du)	fY	(v)	λn	(dv)	(−∞,x]	=			Rn	fX	(u	−	v)	fY	(v)	λn	(dv)	λn	(du)
(fX	∗	fY	)	dλn	.	Finally,	let	q	=	∞.	Example	17.24	(Poisson	process)	The	Poisson	process	with	rate	α	>	0	(compare	Sect.	Then	σ	τ	n∈N0	h(P,	τ	)	=	h(P,	τ	;	P).	♦	The	following	theorem	is	due	to	Lindeberg	(1922,	see	[108])	for	the	implication	(i)	⇒	(ii)	and	is	attributed	to	Feller	(1935	and	1937,	see	[51,	52])	for	the	converse	implication	(ii)	⇒	(i).	13	in
greater	detail.	,	c(ek	)	(ek	)	=	c1	(el	),	.	Conclude	that	if	F	is	a	filtration	and	if	B	is	a	Brownian	motion	that	is	an	F-martingale,	then	B	is	also	an	F+,∗	-martingale.	Assume	X1	,	X2	,	.	This	will	be	helpful	in	many	places.	In	this	case,	we	write	x	←→p	y.	We	define	S=	−∞,	1,	if	−	1	=	D1	=	D2	=	.	In	this	case,	we	write	Xn	n→∞	n→∞	⇒	X	or	PXn	−→	PX	.
However,	the	right	hand	sides	are	well-defined	and	by	(16.1)	are	the	exponentials	of	the	left	hand	sides.	(For	finite	σ	-algebras	F	,	this	was	shown	in	Example	7.39.)	Indeed,	let	P	=		@		μ/μ(Ω)	and	Q	=	ν/μ(Ω).	A	more	instructive	approach	is	based	on	first	constructing,	independently	of	F	,	a	sort	of	standard	probability	space	on	which	we	define	a	random
variable	with	uniform	distribution	on	(0,	1).	Then	XJI	is	measurable	with	respect	to	AI	–	AJ	.	Furthermore,	by	Lemma	15.49	we	3	n→∞	n→∞	have	νn	⇒	δ0	.	Polish	spaces	are	standard	spaces	of	measure	theory	and	probability	theory.	Since	E[(Xn	−	a)+	]	≤	|a|	+	E[Xn+	],	by	Lemma	11.3,	E[Una,b	]	≤	|a|	+	E[Xn+	]	.	(ix)	Let	f	:	R	→	[0,	∞)	be	continuous.	,	Yn
are	independent	as	soon	as	we	know	X	and	record	a	success	with	probability	X.	i∈J		By	the	induction	hypothesis	(2.8),	we	have	μ(Ej	)	=	ν(Ej	)	for	every	Ej	∈	Ej	∪	{∅,	Ω}.	A	distribution	on	[0,	1]	is	uniquely	characterized	by	its	moments	(see	Theorem	15.4).	62	2	Independence	Remark	2.15	(i)	Clearly,	the	family	(Xi	)i∈I	is	independent	if	and	only	if,	for
any	finite	set	J	⊂	I	and	any	choice	of	Aj	∈	Aj	,	j	∈	J	,	we	have	P	'	(		{Xj	∈	Aj	}	=	P[Xj	∈	Aj	].	Now	assume	that	(	pt	)t	≥0	are	the	transition	probabilities	of	another	Markov	process		X	with	the	same	generator	q;	that	is,	with	lim	s↓0		1	p	s	(x,	y)	−	I	(x,	y)	=	q(x,	y).	,	DT	with	values	in	{−1,	+1}	and	functions	fn	:	Rn−1	×	{−1,	+1}	→	R	for	n	=	1,	.	Therefore,
X0	≥	max{S1	,	.	On	the	other	hand,	n→∞	μ([n,	∞))	−→	0	and	ν([n,	∞))	=	∞	for	any	n	∈	N.	Xn,l	>	ε	2	Var[Sn	]	Var[Sn	]	l=1	(15.6)	358	15	Characteristic	Functions	and	the	Central	Limit	Theorem	The	array	fulfills	the	Lyapunov	condition	if	there	exists	a	δ	>	0	such	that	kn		)	*	1	E	|Xn,l	|2+δ	=	0.	By	Corollary	2.22,	the	distribution	P(W1	,...,Wk+l+1	)	has	the
density	x	→	α	k+l+1	e−αSk+l+1	(x)	,	where	Sn	(x)	:=	x1	+	.	(ii)	It	can	be	shown	that	Y	is	the	(unique	strong)	solution	of	the	stochastic	(Itô-)	differential	equation	(see	Examples	26.11	and	26.31)	dYt	=	2	2Yt	dWt	,	(21.48)	where	W	is	a	Brownian	motion.	If	in	(4)	we	take	open	rectangles	instead	of	open	balls	Br	(x),	we	get	B(Rn	)	=	σ	(E5	).	The	moments
can	be	read	off	from	the	derivatives	at	0.	Let	νn,k	(x)	:=	(n	−	k)!	n!	n		i1	,...,ik	=1	#{i1	,...,ik	}=k	δ(xi1	,...,xik	)	13.4	Application:	A	Fresh	Look	at	de	Finetti’s	Theorem	301	be	the	distribution	on	E	k	that	describes	k-fold	independent	sampling	without	replacement	(respecting	the	order)	from	(x1	,	.	Here	we	used	A	∈	M(μ∗	)	in	the	last	but	one	equality
and	B	∈	M(μ∗	)	in	the	last	equality.	√	(i)	For	the	effective	conductance	between	a	and	z,	show	that	Ceff	(a	←→	z)	=	3.	Show	that	lim	supn→∞	Sn	=	∞	almost	surely.	On	the	technical	side,	the	conditional	expectation	is	constructed	via	the	Radon-Nikodym	theorem.	If	the	player	bets	on	“red”,	she	gets	the	stake	back	doubled	if	the	ball	lands	in	a	red
pocket.	Case	1.	∈	A,		ϕ	∞	n=1		An	=	∞		ϕ(An	).	The	central	limit	theorem	suggests	that	pn	(0,	0)	≈	CD	n−D/2	as	n	→	∞	for	some	constant	CD	that	depends	on	the	dimension	D.		The	simplest	choice	would	be	(Ω,	A)	=	R,	B(R)	,	X	:	R	→	R	the	identity	map	and	P	the	Lebesgue–Stieltjes	measure	with	distribution	function	F	(see	Example	1.56).	Let	us	change
the	perspective	and	ask:	For	fixed	X,	which	are	the	martingales	Y	(with	Y0	=	0)	that	can	be	obtained	as	discrete	stochastic	integrals	of	X	with	a	suitable	gambling	strategy	H	=	H	(Y	)?	♣	13.4	Application:	A	Fresh	Look	at	de	Finetti’s	Theorem	(After	an	idea	of	Götz	Kersting.)	Let	E	be	a	Polish	space	and	let	X1	,	X2	,	.	Denote	by	H	γ	,t	the	set	of	maps	[0,
1]	→	R	that	are	Hölder-γ	-continuous	at	t	and	define	Hγ	:=	t	∈[0,1)	Hγ	,t	.	“(i)	⇒	(iii)”	The	equality	follows	by	the	individual	ergodic	theorem.	For	x	∈	N0	,	define	the	branching	process	X	with	x	ancestors	and	offspring	distribution	q	by	Xn−1	X0	=	x	and	Xn	:=	i=1	Yn−1,i	.	i=1	Thus	Z	is	a	Markov	chain	with	transition	probabilities	p(i,	j	)	=	p∗i	(j	),	where
p∗i	is	the	ith	convolution	power	of	p.	We	conclude	1	Ceff	(x1	↔	∞)	=	lim	Px1	[Fn	]	=	Px1	[τx1	=	∞]	=	pF	(x1	).	For	N,	δ	>	0	and	ω	∈	C([0,	∞)),	let	V	N	(ω,	δ)	:=	sup	|ω(t)	−	ω(s)|	:	|t	−	s|	≤	δ,	s,	t	≤	N	.	Let	α	:=	ν({0})	˜	u(1)	and	define	ν	∈	M((0,	∞))	by	ν(dx)	=	u(1)(1	−	e−x	)−1	1(0,∞)	(x)	ν˜	(dx).	=	e−t	x	1	−	u(t)	:=	0	That	is,	u	is	the	Laplace	transform	of	ν˜
which	determines	ν˜	and	ν	uniquely.	Proof	We	may	assume	x	=	0.	By	Lemma	17.46,	(f	(Xn	))n∈N0	and	(f	(Yn	))n∈N0	are	martingales;	hence	we	have			n→∞	|f	(x)	−	f	(y)|	=	E(x,y)[f	(Xn	)	−	f	(Yn	)]	≤	2f	∞	P(x,y)[Xn	=	Yn	]	−→	0.	The	canonical	map	for	f	∈	Lq	(μ),	g	∈	Lp	(μ)	is	an	isometry;	that	is,	κ(f	)p	=	f	q	.	(P4)	For	any	I	∈	I,	we	have	E[NI	]	<	∞.	That	is,
there	exists	a	continuous	map	fJ	:	RJ	→	[0,	∞)	such	that		FJ	(x)	=	xj1	−∞		dt1	·	·	·	xjn	−∞	dtn	fJ	(t1	,	.	For	e	∈	E,	let	CL	(e)	=	c	∈	{0,	1}L	:	ck	=	ck	(e)	for	k	≤	l(e)	the	set	of	all	dyadic	sequences	of	length	L	that	start	like		c(e).	For	i	∈	N,	define	Ei	=	{ω	∈	Ω	:	ωi	∈	A}	:	A	⊂	E	.	Hence	there	is	a	γ	>	0	such	that	k	|ϕ(t)|	>	1	−γ	t	2	e	2	for	all	t	∈	R.	As		ε	(Xn	)n∈N
is	ergodic,	1An	n∈N	is	also	ergodic.	κ	is	stochastic	if	Ki	=	1	for	all	i	∈	Ω1	.	(ii)	Show	that	the	space	(Cb	([0,	∞)),		·	∞	)	of	bounded	continuous	functions,	equipped	with	the	supremum	norm,	is	not	separable.	,	k}	=0	lim	sup	n!	n→∞	for	all	l	∈	N.	Then	(Ym	)m∈N	are	independent	geometric	random	variables	with	parameter	p	(see	Example	1.105(iii)).	Then
Sn	:=	X1	+	.	There	exists	a	unique	measure		μ	on	σ	(A)	such	that		μ(A)	=	μ(A)	for	all	A	∈	A.	Dominated	convergence	yields	(	1	'	n→∞	P	A	∩	τ	−k	(B)	=	E	[Yn	1A	]	−→	E	[1A	P[B]]	=	P[A]	P[B].	Hence	ϕ	is	strictly	convex	and	ϕ		(0)	=	E[X1	]	<	0.	If	X	is	measurable,	we	write	X	:	(Ω,	A)	→	(Ω		,	A	).	Then	Xi	:=	Fi−1	(U	)	:=	inf	x	∈	R	:	Fi	(x)	≥	U	is	a	real	random
variable	with	distribution	μi	(see	proof	of	Theorem	1.104).	By	assumption,	we	have	τn	<	∞	almost	surely	for	all	n.	Then	σ	(X)	and	σ	(Y	)	are	independent	given	F1	as	well	as	given	F3	but	not	given	F2	.	,	Xk−1	)		A	268	12	Backwards	Martingales	and	Exchangeability	and		*	n→∞	)	An	(fk	)	−→	E	fk	(X1	)		A	.	The	first	condition	of	Theorem	21.40	is	exactly	(i).
Thus	F	induces	a	continuous	linear	map	F0	:	V0	→	R	by	F0	(x	+	N	)	=	F	(x).	α	α	α	μ({|f	|	>	α})	≤	This	implies	μ({|f	|	>	α})	=	0	if	α	>	F	1	;	hence	f	∞	≤	F	1	<	∞.	Then	∞	≥	E[ϕ(X)|F	]	≥	ϕ(E[X	|F	]).	I	(x1	)	I	(x1	)	I	(x0	)	Correspondingly,	the	effective	conductance	is	Ceff	(x0	↔	x1	)	=	Reff	(x0	↔	x1	)−1	.	Since	μ	⊥	ν,	we	get	μ	Ω	\	M)	=	μ(	n∈N	Ωn+	>	0.	Hence,
for	each	N	∈	N,	we	have	∞	∞						1		≤	N	μ(AN	)	+	μ	AN	∩	d	f,	fnkl	>	2−l	<	∞.	♣	Chapter	20	Ergodic	Theory	Laws	of	large	numbers,	e.g.,	for	i.i.d.	random	variables	X1	,	X2	,	.	For	n	∈	N,	we	conclude	inductively	by	Theorem	3.8	that	ψZn+1	=	ψ	◦	ψZn	=	ψ	◦	ψn	=	ψn+1	.	Further,	let	(Ω,	F	,	P)	be	a	probability	space	and	let	I	⊂	R	be	arbitrary.	(iii)	Consider



the	Poisson	distributions	Poiα	and	Poiβ	for	α,	β	≥	0.	Ki	:=	j∈Ω2	j	∈Ω2	Then	we	can	define	a	finite	transition	kernel	from	Ω1	to	Ω2	by	κ(i,	A)	=		j	∈A	Kij	.	Let		>	0	be	a	Lebesgue	number	of	the	covering	U	;	that	is,		>	0	is	such	that,	for	every	t	∈	I	,	there	exists	a	U	∈	U	such	that	U	(t)	⊂	U	.	7.3	Hilbert	Spaces	..	,	n2	,	and	assume	fn	is	linearly	interpolated
between	these	points.	Further,	for	any	n	∈	N,	e∈E	pe	δe	let	Xn	:	Ω	→	E,	(ωm	)m∈N	→	ωn	,	be	the	projection	on	the	nth	coordinate.	(i)	Give	a	characterization	of	A	as	in	Exercise	1.1.4	(page	11).	(ii)	In	the	case	α	=	2,	we	have:	If	PX	is	not	concentrated	at	one	point,	then	(16.32)	implies	that	PX	is	in	the	domain	of	attraction	of	some	distribution.	Then,		d
formally,	q	=	dt	pt		.	By	Theorem	1.81,	we	have			σ	E		=	σ	({E	∩	A	:	E	∈	E})	A	=	σ	({X−1	(E)	:	E	∈	E})	=	σ	(X−1	(E))		=	X−1	(σ	(E))	=	{A	∩	B	:	B	∈	σ	(E)}	=	σ	(E)	.	Definition	6.20	Let	p	∈	[1,	∞].	♣	8.3	Regular	Conditional	Distribution	203	Exercise	8.2.9	Let	X	and	Y	be	real	random	variables	with	joint	density	f	and	let	h	:	R	→	R	be	measurable	with
E[|h(X)|]	<	∞.	Finally,	consider	(−f	)	to	n→∞			obtain	the	reverse	inequality	lim	inf	f	dμn	≥	f	dμ.	By	construction,	Q,	q	−	<	x	<	q	+	with	F	(q	+	)	≤	F	(x)	+	ε.	.).	be	square-free	(that	is,	there	is	no	number	r	=	2,	3,	4,	.	Clearly,	for	any	q	∈	{p,	p	},	the	family	(Xe	)e∈E	of	random	variables	is	independent	q	p	p	(see	Remark	2.15(iii))	and	Xe	∼	Berq	.	♣	Exercise
18.4.6	Let	N	∈	N	and	let	E	=	{0,	1}N	denote	the	N-dimensional	hypercube.	For	every	ε	>	0,	there	exist	events	Aε	Ω	=	E	I	,	P	=	PX0	ε	and	B	that	depend	on	only	finitely	many	coordinates	and	such	that	P[A		Aε	]	<	ε	and	P[B		B	ε	]	<	ε.	We	define	Tn	:=	n		Wk	k=1	and	interpret	Wn	as	the	waiting	time	between	the	(n	−	1)th	click	and	the	nth	click.	Since
(Ω,	d)	is	separable	(Theorem	21.30),	every	open	set	is	a	countable	union	of	ε-balls.	The	proof	presented	here	goes	back	to	an	idea	of	Dvoretzky,	Erdös	and	Kakutani	(see	[40]).	Then		+	ϕ(Em	)	=	ϕ	Ω		(En	\	En+1	)	n≥m	=	ϕ(Ω	+	)	+	∞		m→∞	ϕ(En	\	En+1	)	−→	ϕ(Ω	+	).	We	construct	a	network	C		with	greater	conductances	by	adding	ring-shaped
superconductors	along	∂B.	,	ck	≥	0	and	c0	+.	In	particular,	N0,1	is	called	the	standard	normal	distribution.	A	set	A	⊂	E	is	called	compact	if	each	open	cover	U	⊂	τ	of	A		(that	is,	A	⊂	U	∈U	U	)	has	a	finite	subcover;	that	is,	a	finite	U		⊂	U	with	A	⊂	U	∈U		U	.	Then	d	is	said	to	be	the	period	of	that	state.	n	i=1	For	every	k	∈	An	(ν),	we	have	(compare	(23.14))
P[ξn	(X)	=	ν]	=	#An	(ν)	P[X1	=	k1	,	.	Indeed,	here	only	the	parameters	of	the	Beta	distribution	change.	Since	we	have	not	yet	shown	the	existence	of	an	independent	family	with	this	distribution,	we	content	ourselves	with	Ye	that	assume	only	three	values	{p,	p	,	1}.	Since	j	=1	c	c	c	U	is	closed	and	since	U	∩	K	=	∅,	we	get	δ	:=	d(U	,	K)	>	0.	Since	we	do
not	have	a	general	notion	of	an	integral	at	hand	at	this	point,	for	the	time	being	we	restrict	ourselves	to	presenting	the	convolution	formula	for	integer-valued	random	variables	only.	♣	Exercise	4.2.5	Let	λ	be	the	Lebesgue	measure	on	R,	p	∈	[1,	∞)	and	let	f	∈	Lp	(λ).	m	)	*	∞		E	Yn2	Lemma	5.20	≤	4	E[|X1	|].	For	example,	it	can	be	enough	to	check
independence	for	intervals,	rectangles	or,	in	the	discrete	case,	for	single	points.	Define	Yn	:=		n1	k=0	is	uniformly	integrable.	A⊂	N		We	are	done	if	we	can	show	that	(1.13)	An	.	What	exactly	do	we	mean	by	“best	prediction”?	Indeed,	ϕ	is	differentiable	at	0	with	derivative	x→∞	x→∞	i	m	for	some	m	∈	R	if	and	only	if	x	P[|X|	>	x]	−→	0	and	E[X	1{|X|≤x}	]
−→	m.	First	let	f	=	1A	for	A	=	A1	×	A2	with	A1	∈	A1	and	A2	∈	A2	.	Hence,	it	will	be	important	to	find	out	which	paths	are	P-almost	surely	negligible.	After	that,	the	chains	run	together.	This	shows	(i).	Hence	Ω	is	separable	and	thus	Polish.	In	order	for	x	=	(x0	,	.	In	the	remainder	of	this	section,	assume	that	(E,	C)	is	a	finite	electrical	network.	Then	the
following	are	equivalent.	By	the	Portemanteau	theorem	(Theorem	13.16),	μ	=	w-lim	μnk	;	hence	F	is	recognized	as	weakly	relatively	sequentially	compact.	By	F	=	σ	(X),	we	denote	the	filtration	generated	by	X.	As	f	is	continuous	on	the	compact	interval	[0,	1],	f	is	uniformly	continuous.	Now	we	extend	the	notion	of	independence	from	families	of	events
to	families	of	classes	of	events.	Define	x+	:=	inf	C	∩	[0,	∞)	as	well	as	x−	:=	sup	C	∩	(−∞,	0]	.	♠	Recall	the	notation		·	p	from	Definition	4.16.	Then	(R˜	n	)n∈N0	is	independent	and	we	have	)	*		P	R˜	n	((x1	,	y1	))	=	(x2	,	y2	)	=	p¯	(x1	,	y1	),	(x2	,	y2	)	.	♦	Proof	Let	π	and	ν	be	invariant	distributions.	(12.8)	As	for	the	arithmetic	mean	(Example	12.16),	we	can
argue	that	limn→∞	An	(ϕ)	is	T	-measurable.	We	distinguish	the	cases	where	E[X]	is	in	the	interior	I	◦	or	at	the	boundary	∂I	.	Hence	U	is	relatively	compact;	thus	ρK,ε	has	compact	support	and	is	thus	in	Cc	(E)	for	all	ε	∈	(0,	δ).	For	further	reading,	we	recommend,	e.g.,	[86,	118,	145,	152].	However,	first	we	have	to	exclude	the	case	where	n	is	odd	since
here	clearly	pn	(0,	0)	=	0.	(i)	The	family	(Ai	)i∈I	is	independent.	Use	the	star-triangle	transformation	to	remove	the	lower	right	node	(left	19	513		54	in	Fig.	We	present	a	general	two-step	construction	principle	that	will	be	used	in	a	similar	form	later	in	Chap.	Hence,	we	define	α	:=	α1	>	0	and	get	an	=	n1/α	for	all	n	∈	N	(note	that	(16.21)	implies	a1	=
1).	Show	that	for	any	ε	>	0,	there	exist	finitely	many	pairwise	disjoint	sets	U1	,	.	∞		l=1	Note	that	|	log(1	+	x)	−	x|	≤	x	2	for	|x|	0	and	pn	=	λ/n,	n	∈	N.	Let	C	⊂	Cb	(E;	K)	be	an	algebra	that	separates	points.	♦	p∈Pn	p∈P	58	2	Independence	If	we	roll	a	die	infinitely	often,	what	is	the	chance	that	the	face	shows	a	six	infinitely	often?	(viii)	Let	θ	>	0	and	let	X
be	a	nonnegative	random	variable	such	that		x	P[X	≤	x]	=	P[X	∈	[0,	x]]	=	θ	e−θt	dt	for	x	≥	0.	Using	the	statistic	Mn	,	one	can	test	if	random	variables	of	a	known	distribution	are	independent.	Even	if	we	can	compute	the	speed	of	convergence	(and	in	many	cases,	this	is	not	trivial,	we	come	back	to	this	point	in	Sect.	Let	Z	=	lim	n1	Sn	.	326	14
Probability	Measures	on	Product	Spaces	If	d	=	1	and	νt	((−∞,	0))	=	0	for	all	t	∈	I	,	then	ν	is	called	a	nonnegative	convolution	semigroup.	Then	there	does	not	exist	a	topology	on	the	set	of	measurable	maps	Ω	→	E	that	induces	almost	everywhere	convergence.	For	every	R	the	integral	If	(μ)	:=	f	dμ	is	well-defined	and	for	every	f	∈	Bb	(E),	If	(μ)	is	well-
defined	and	finite.	n→∞	l=1			Proof	Let	mn	:=	max	ϕn,l	(t)	−	1.	sup	t	∈[0,n]∩Q	Zt		In	the	following,	let	A	:=	σ	Xt	,	t	∈	[0,	∞)	.	,	An	}).	By	Sanov’s	theorem,	(μ0n	)n∈N	satisfies	an	LDP	with	rate	n	and	rate	function	I	(x)	=	H	(x|λ),	where	H	(x|λ)	is	the	relative	entropy	of	x	with	respect	to	λ.	♦	Takeaways	An	irreducible	Markov	chain	possesses	an	invariant
distribution	if	and	only	if	it	is	positive	recurrent.	♠	The	main	result	of	this	chapter	is	Carathéodory’s	measure	extension	theorem.	In	particular,	P	U	a,b	<	∞	=	1.	Note	that	P[B]	=	1.	Hence		Λ∗	(z)	=	zt	∗	−	Λ(t	∗	)	=	z	arc	tanh(z)	−	log	cosh(arc	tanh(z))	.	5.1	Moments	In	the	following,	let	(Ω,	A,	P)	be	a	probability	space.	In	particular,	we	have	ν	0	μ.	“⊂”
We	have	to	show	that	δ(E)	is	a	σ	-algebra.	Proof	(i)	⇒	(ii)	Fix	ε	>	0	and	choose	N	∈	N	such	that	μ({N	+	1,	N	+	2,	.	dμ	For	example,	the	normal	distribution	ν	=	N0,1	has	the	density	f	(x)	=	with	respect	to	the	Lebesgue	measure	μ	=	λ	on	R.	♣	Exercise	5.3.4	(Subadditivity	of	Entropy)	For	i	=	1,	2,	let	E	i	be	a	finite	set	and	pi	a	probability	vector	on	E	i	.
Hence	τ	⊂	i∈N	Bi	and	thus	B	⊂	/	i∈N	Bi	.	Since	ϕ	(2n)	(0)	exists,	ϕ	(2n−1)	is	continuous	at	0	and	ϕ	(2n−1)	(t)	exists	for	all	t	∈	(−ε,	ε)	for	some	ε	>	0.	(ii)	For	all	x,	y	∈	E,	there	exist	nx,y	∈	N	and	Lx,y	∈	{0,	.	Thus	we	have	θ	θ	=	1	and	(1	−	r)ρ	k+1	=	rρ	k−1	.	1	+	2ε	n	Now	1	−	(1	+	2ε)−1	≤	2ε	implies									lim	sup	l	−1	Sl	−	E[X1	]	≤	lim	sup	kn−1	Skn	−
E[X1	]	+	2ε	lim	sup	kn−1	Skn	l→∞	n→∞	n→∞	≤	2ε	E[X1	]	almost	surely.	n	(23.12)	However,	by	the	central	limit	theorem	(Theorem	15.38),	for	every	c	>	0,	(	1	(	'	'	1	ˆ	ˆ	log	E	e−τ	Sn	1{Sˆn	≥0}	≥	log	E	e−τ	Sn	1{0≤Sˆn	≤c√n	}	n	n		+	ˆ	,	√	Sn	1	−τ	c	n	P	√	∈	[0,	c]	≥	log	e	n	n	√		−τ	c	n	1	n→∞	+	lim	log	N0,Var[Xˆ	1	]	([0,	c])	−→	lim	n→∞	n→∞	n	n	=	0.	We
define	E[X;	A]	:=	E[1A	X].	♦	i=1	In	each	of	the	three	preceding	examples,	the	effective	resistance	is	a	monotone	function	of	the	individual	resistances.	be	an	exchangeable	sequence	of	random	variables	with	values	in	E.	Proof	Let	F	⊂	E	be	countable	and	dense.	Proof	For	ε	>	0,	by	Chebyshev’s	inequality,	kn	kn			*	)	*	)	2	n→∞	P	|Xn,l	|	>	ε	≤	ε−2	E	Xn,l
1{|Xn,l	|>ε}	=	ε−2	Ln	(ε)	−→	0.	Theorem	21.19	(Reflection	principle	for	Brownian	motion)	For	every	a	>	0	and	T	>	0,	√	)	*	2	T	1	−a	2	/2T	P	sup	Bt	:	t	∈	[0,	T	]	>	a	=	2	P[BT	>	a]	≤	√	.	Theorem	7.7	Let	I	⊂	R	be	an	interval	with	interior	I	◦	and	let	ϕ	:	I	→	R	be	a	convex	map.	,	n)	is	independent	and	Nti	−	Nti−1	∼	Poiα(ti	−ti−1	)	.	n=1	It	follows	that,	for
every	n	∈	N,	n	2		*	)	P[An	]	≤	P	|Xk2−n	−	X(k−1)2−n	|	≥	2−γ	n	≤	C	2−n(β−αγ	)	.	The	conductance	of	the	wire	that	connects	the	points	x	∈	E	and	y	∈	E	\	{x}	is	denoted	by	C(x,	y)	∈	[0,	∞).	Proof	First	consider	the	case	where	G	is	open.	Let	F	be	closed	and	let	ρF,ε	be	as	in	Lemma	13.10.	Finally,	let	f,	g	∈	Lp	(μ).	Lemma	15.29	If	μ	∈	Mf	(Rd	)	has
characteristic	function	ϕ,	then	ϕ	is	positive	semidefinite.	If	(Xi−1	(Ei	))i∈I	is	independent,	then	(Xi	)i∈I	is	independent.	Clearly,	for	any	B,	C	∈	Pn	,	B.	In	other	words,	the	probability	that	the	game	has	not	finished	up	to	the	nth	round	is	n	at	most	C	σ	cos(π/N)	.	i=0	Then	Y	=	(Yn	)n∈Z	is	a	stationary	process.	♦	7	Lp	-Spaces	and	the	Radon–Nikodym
Theorem	182	Theorem	7.43	(Hahn’s	decomposition	theorem)	Let	ϕ	be	a	signed	measure.	♣	17.2	Discrete	Markov	Chains:	Examples	Let	E	be	countable	and	I	=	N0	.	Then	n=1	μ(A	∩	E)	=	∞		n=1	μ(An	∩	E)	=	∞		ν(An	∩	E)	=	ν(A	∩	E).	k	for	x	=	0.	(ii)	(Series	connection	(see	Fig.19.1))	Let	n	∈	N,	n	≥	2	and	E	=	{0,	.	Let	A1	,	A2	,	.	Hence	x	→	e2πin	x	+
e−2πin	x	=	2	cos(2πn	x)	is	Imeasurable	but	not	a.s.	constant.	(ii)	(Closedness	under	complements)	Let	A	∈	D.	,	Xn	)	≥	ϕ(E[X1	],	.	We	can	use	the	jump	times	of	X	for	an	alternative	derivation.	but	X0	=	X1	.	This	measure	is	called	the	restriction	of	μ	to	Ω		.	Lemma	1.42	(Uniqueness	by	an	∩-closed	generator)	Let	(Ω,	A,	μ)	be	a	σ	-finite	measure	space	and
let	E	⊂	A	be	a	π-system	that	generates	A.	For	any	f	∈	Cb	(E,	;	R)	and	;	any	ε	>	0,	by	the	Stone–Weierstraß	theorem,	there	exists	a	g	∈	C		with	;f	−	g	;∞	<	ε.	Hence	(|fn	|	−	|fnε	|)+	1	<	ε	for	all	n	≥	nε	.	Define	Xn	=	Xn,Θn	and	Yn	=	Yn,Θn	.	Then	Bn	↓	∅.	Theorem	14.14	(Finite	product	measures)	There	exists	a	unique	σ	-finite	mea/	sure	μ	on	A	:=	ni=1	Ai
such	that	μ(A1	×	·	·	·	×	An	)	=	n		μi	(Ai	)	for	Ai	∈	Ai	,	i	=	1,	.	By	the	σ	-subadditivity	of	β,	μ∗		∞		Gn	≤	β	n=1		∞		≤	An	n=1	Letting	ε	↓	0	yields	μ∗	measure.	e∈E	We	first	define	a	specific	code	and	then	show	that	it	is	almost	optimal.	Hence	we	have		u(t)	=	lim	un	(t)	=	lim	un	(1)	ft	d	ν˜	n	n→∞	n→∞			=	u(1)	ft	d	ν˜	=	αt	+	(1	−	e−t	x	)	ν(dx).	Λ∗	(z)	=	sup	tz	−
Λ(t)	=	sup	tz	−	=	2	2	t	∈R	t	∈R	Hence	the	rate	function	coincides	with	that	of	(23.4).	Then	define	X	=	Z0	and	0	Yk	=	1,	0,	if	Zk	<	X,	if	Zk	≥	X.	©	The	Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	A.	Example	1.77	(i)	The	identity	map	id	:	Ω	→	Ω	is	A	–	A-measurable.	Let	r	∈	(0,	1)	and	τr	(x)	=
x	+r	(mod	1).	3	(g)	=	F	(g)	for		:	g	→	gf	dμ	is	in	(Lp	(μ))	,	and	F	Concluding,	the	map	F		is	continuous	and	Ef	⊂	Lp	(μ)	is	dense,	we	get	F		=	F.	0	0	By	Lemma	5.19,	for	m	→	∞,	fm	(x)	=		m			n−2	1{x	x]	↑	f	(x)	≤	4	P[|X1	|	>	x].	♦	In	particular,	we	have	shown	the	following	theorem.	,	Xn	)	=	n−1	(X1	+	.	Define	λ	:=	−n1	log(1	−	p1	)	=	−n2	log(1	−	p2	).	We
conclude	A	∈	AI	.	In	the	opposite	case,	v0	<	v0	,	the	strategy	H	−	H		9.4	Discrete	Martingale	Representation	Theorem	and	the	CRR	Model	227	ensures	a	risk-free	profit.	19.7	that	starts	at	x	and	at	each	step	jumps	to	one	of	its	neighbors	at	random	with	equal	probability.	There	is	an	increasing	sequence	(Kn	)n∈N	of	compact	sets	with	Kn	↑	Rd	.	If	x	is
recurrent,	then	we	conclude	that	G(y,	y)	≥	∞		pl+n+k	(y,	y)	≥	pl	(y,	x)pk	(x,	y)G(x,	x)	=	∞	n=0	and	hence	also	that	y	is	recurrent.	¯	♦	Example	18.7	Let	E	=	Z	and	p(x,	y)	=	1/3	if	|x−y|	≤	1	and	0	otherwise.	Here	also	the	definition	ends	up	with	a	product	formula.	.,	Xm	,	Y1	,	.	For	the	moment,	note	that	the	martingale	S		=	(1	−	Sn	)n∈N0	,	just	like	the
one	in	Example	9.31,	has	the	structure		of	a	product	of	independent	random	variables	with	expectation	1.	94	3	Generating	Functions	Case	1:	limz↑1	ψ		(z)	≤	1.	(17.30)	See	[60]	for	a	comparison	of	different	metrics	on	M1	(E).♦	As	an	example	of	a	more	involved	coupling,	we	quote	the	following	theorem	that	is	due	to	Skorohod.	To	this	end,	we	check
the	conditions	of	Theorem	1.36.	♣	Exercise	13.2.6	(Lévy	metric)	For	two	probability	distribution	functions	F	and	G	on	R,	define	the	Lévy	distance	by	d(F,	G)	=	inf	ε	≥	0	:	G(x	−	ε)	−	ε	≤	F	(x)	≤	G(x	+	ε)	+	ε	for	all	x	∈	R	.	We	interpret	Di	as	the	result	of	a	bet	that	gives	a	gain	or	loss	of	one	216	9	Martingales	euro	for	every	euro	we	put	at	stake.	Hence,	for
n	individuals,	qk∗n	is	the	probability	to	have	exactly	k	offspring.	Since	(19.5)	implies	equality,	we	infer	f	(x0	)	=	f	(y)	for	all	y	∈	SA	(x0	).	Find	an	example	that	shows	that	this	condition	cannot	be	dropped.	q	With	the	aid	of	Kolmogorov’s	0–1	law,	we	can	infer	the	following	theorem.	(ii)	By	Theorem	13.34,	it	is	enough	to	show	that	the	sequence	(Pn	)n∈N
is	tight.	,	1An	(Y1	)).	It	is	of	a	certain	theoretical	interest	and	will	be	needed	later	that	triangle	functions	and	sums	of	triangle	functions	are	characteristic	functions.	Then	Define	A	:=	lim	sup	An	=	n→∞	n=1	k=n		μ(A)	=	lim	μ	n→∞	∞		k=n		Ak	≤	lim	n→∞	∞		k=n	μ(Ak	)	≤	lim	n→∞	∞		k=n	2−k	=	0.	Proof	μ	is	σ	-finite	since	μ	∈	M(E).	23.2	Large	Deviations
Principle	.	A	state	is	recurrent	if	and	only	if	the	expected	number	of	visits	(Green	function)	is	infinite.	i=1	Therefore,			lim	sup	n→∞	f	dμn	≤	Replacing	f	by	(1	−	f	),	we	get	(13.8).	Then	the	following	inclusion	and	exclusion	formulas	hold:	μ(A1	∪	.	♦	f	(x,	λ)		dλn		162	6	Convergence	Theorems	Takeaways	Consider	a	function	of	two	variables	that	is
continuous	or	differentiable	with	respect	to	one	variable.	From	Exercise	15.1.3,	we	know	that	D	Sn+1	=	max{Z1	,	.	One	possibility	is	to	construct	n	+	1	independent	random	variables	Z0	,	.	i∼j	The	Boltzmann	distribution	π	on	E	:=	{−1,	1}Λ	for	the	inverse	temperature	β	≥	0	is	defined	by	π(x)	=	Zβ−1	exp(−βH	(x)),	where	the	partition	sum	Zβ	=	
exp(−βH	(x))	is	the	normalising	constant	such	x∈E	that	π	is	a	probability	measure.	Now	we	compute	(f	◦	τr	)(x)	=	∞			cn	e2πin	r	e2πin	x	a.e.	n=−∞	By	Lemma	20.7,	f	is	I-measurable	if	and	only	if	f	=	f	◦	τr	;	that	is,	if	and	only	if	cn	=	cn	e2πin	r	for	all	n	∈	Z.	p	Proof	For	p	∈	[1,	∞),	use	Jensen’s	inequality	with	ϕ(x)	=	|x|p	.	19.6.)	paths	follow	different
directions	for	the	first	time,	they	will	not	have	any	common	edge	again,	though	some	of	the	nodes	can	be	visited	by	both	paths.	Let	τ	:=	inf{t	≥	0	:	Bt	≥	a}	∧	1.	Separability	in	metrizable	spaces	is	equivalent	to	the	existence	of	acountable	base	of	the	topology;	that	is,	a	countable	set	U	⊂	τ	with	A	=	U	∈U	:	U	⊂A	U	for	all	A	∈	τ	.	In	fact,	Kirchhoff’s	rule
says	that	I	is	divergence-free	on	E	\	A.	Further,	let	ϕ	:	G	→	R	be	convex.	A	map	)	·	,	·	*	:	V	×	V	→	R	is	called	an	inner	product	if:	(i)	(Linearity)	)x,	α	y	+	z*	=	α	)x,	y*	+	)x,	z*	for	all	x,	y,	z	∈	V	and	α	∈	R.	∈	A		∞	∞			such	that	A	⊂	An	and	μ	An	\	A	<	ε.	,	Xn	)−	can	be	derived	in	a	similar	way	to	the	onedimensional	case.	(ii)	If	E1	⊂	E2	,	then	σ	(E1	)	⊂	σ	(E2	).	,	k
−	1},	we	get							w(i+l+1)/n	−	w(i+l)/n		≤	w(i+l+1)/n	−	wt		+	w(i+l)/n	−	wt		≤	2c	(k	+	1)γ	n−γ	.	For	x	∈	R,	define	the	left-sided	limit	14.3	Kolmogorov’s	Extension	Theorem	317	F	(x−)	=	supy	s,	is	consistent.	l	By	Lemma	5.18,	this	implies	the	claim	of	Theorem	5.17.	Then	A,	B	are	independent	⇐⇒	P[A|B]	=	P[A]	⇐⇒	P[B	|A]	=	P[B].	♣	Exercise	15.1.3	Let
n	∈	N	and	let	X1	,	.	Construct	a	countable	algebra	C	⊂	Cb	(R)	that	separates	points.	Then	μ(E)	≤	lim	inf	μn	(E).	t0	,	.	Some	of	the	most	successful	and	established	books	in	the	series	have	evolved	through	several	editions,	always	following	the	evolution	of	teaching	curricula,	into	very	polished	texts.	For	n	≤	N,	what	is	the	conditional	distribution	of	(X1	,
.	As	in	the	proof	of	the	martingale	convergence	theorem	(Theorem	11.4),	we	infer	the	following.	♦	Remark	9.28	If	we	do	not	explicitly	mention	the	filtration	F,	we	tacitly	assume	that	F	is	generated	by	X;	that	is,	Ft	=	σ	(Xs	,	s	≤	t).	♦	Example	17.28	(A	variant	of	Pólya’s	urn	model)	Consider	a	variant	of	Pólya’s	urn	model	with	black	and	red	balls
(compare	Example	12.29).	Further,	let	Sk	=	X1	+	.	(i)	F	is	continuous	and	linear.	The	statements	(iv)	and	(v)	are	immediate	consequences	of	Lemma	16.25.	(x)	Let	Ω	=	{1,	2,	3,	4}	and	A	=	∅,	{1,	2},	{1,	4},	{2,	3},	{3,	4},	{1,	2,	3,	4}	.	We	want	to	combine	the	two	parameters	λ	and	ν	into	one	parameter	λν.	♣	510	20	Ergodic	Theory	20.6	Entropy	The
entropy	H	(P)	of	a	probability	distribution	P	(see	Definition	5.25)	measures	the	amount	of	randomness	in	this	distribution.	♣	n	n∈N	n	Exercise	20.6.3	Let	pi	be	the	transition	matrix	of	a	Markov	chain	on	the	countable	set	Ei	with	entropy	hi	,	i	=	1,	2.	The	weak	law	of	large	numbers	states	that	the	distribution	of	Sn	/n	is	concentrated	in	the	vicinity	of	3.5
(Fig.	15.1	Separating	Classes	of	Functions	331	With	the	substitution	y	=	log(x)	−	n,	we	get	(note	that	sin(2π(y	+	n))	=	sin(2πy))		∞	2	2	eyn+n	(2π)−1/2	e−(y+n)	/2	sin(2π(y	+	n))	dy	m(n)	=	−∞	=	(2π)−1/2	en	2	/2		∞	−∞	e−y	2	/2	sin(2πy)	dy	=	0,	where	the	last	equality	holds	since	the	integrand	is	an	odd	function.	be	measurable	maps	Ω	→	E.	(ii)
(Linearity)	Let	c	∈	R.	8.2	Conditional	Expectations	199	Proof	First	assume	that	E[E[X	|F	]2]	<	∞.	538	21	Brownian	Motion	Then	(bn,k	)	is	an	orthonormal	system:	)bm,k	,	bn,l	*	=	1{(m,k)=(n,l)}	.	On	the	other	hand,	ψ(t)	=	12	+	12	ϕ(2t).	Let	A	∈	B(Rd	)	and	ε	>	0.	+	Yn	for	n	∈	N0	;	hence	G(0,	0)	=	n=0	P[Sn	=	0].	Show	that	for	any	A	∈	E	and	any	n	∈	N,
there	exist	pairwise	disjoint	sets	A1	,	.	,	n}.	To	this	end	it	is	enough	to	show	that	for	any	n	∈	N,	the	map	ω	→	Yn	(ω)	:=	dn	(ω0	,	ω)	(see	(21.28))	is	A-measurable.	The	Metropolis	algorithm	for	this	chain	accepts	the	proposal	of	the	reference	chain	with	probability	1	if	π(x	i	)	≥	π(x).	The	Haar	functions	bn,k	are	one	such	choice:	Let	b0,1	≡	1	and	for	n	∈	N
and	k	=	1,	.	Definition	13.21	Let	F,	F1	,	F2	,	.	P	|X|	≥	ε	≤	f	(ε)	)	*	)	*	In	the	special	case	f	(x)	=	x	2	,	we	get	P	|X|	≥	ε	≤	ε−2	E	X2	.	“(ii)	⇒	(iv)”	Convergence	of	the	total	masses	follows	by	using	the	test	function	1	∈	Lip(E;	[0,	1]).	For	any	A	∈	A,	by	(7.8)	and	(7.7)	with	h	=	1A\E	,	1−g			f	dμ	=	A	Hence	f	=	A∩E	c	g	d(μ	+	ν)	=	ν(A	\	E)	=	νa	(A).	If	μ	∈	M(E),
then	we	define				f	dμ	:=	Re(f	)	dμ	+	i	Im(f	)	dμ	if	both	integrals	exist	and	are	finite.	Assume	that	K	>	0	is	large	enough	such	that	f	(x)	=	0	for	x	∈	(−K/2,	K/2)d	and	such		d	d	that	μi	R	\	(−K,	K)	<	ε,	i	=	1,	2.	Hence	there	are	sequences	(fn	)n∈N	and	(gn	)n∈N	in	E+	such	that	fn	↑	f	and	gn	↑	g.	♦	L1	Remark	6.10	If	fn	−→	f	and	fn	−→	g,	then	f	=	g	almost
everywhere.	Assume	the	conditions	of	Theorem	12.24	are	in	force.	Corollary	13.30	Let	E	be	a	compact	metric	space.	Then:	(i)	ϕ	is	continuous	on	I	◦	and	hence	measurable	with	respect	to	B(I	).	We	want	to	estimate	the	probability	that	there	exists	a	point	x	∈	C	p	(0)	with	distance	n	from	the	origin.	A	family	(Xi	)i∈I	of	random	variables	with	values	in	E	is
called	exchangeable	if		*	)	*	)	L	X(i)	i∈I	=	L	(Xi	)i∈I	for	any	finite	permutation		:	I	→	I	.	In	other	words,	H	must	be	predictable.	Hence	the	intersection	is	nonempty.	2	k!	Hint:	Expand	the	bracket	expression,	sort	the	terms	by	the	different	mixed	moments	and	compute	by	combinatorial	means	the	number	of	each	type	of	summand.	The	value	of	the
portfolio,	which	is	the	new	stochastic	process,	changes	as	the	stock	price	changes.	♦	n=1	Example	19.4	For	x	∈	E,	let	τx	:=	inf{n	>	0	:	Xn	=	x}.	(ii)	If	d	≤	2,	then	Px0	[τx1	<	τx0	]	=	12	.	Corollary	21.41	Let	(Xi	,	i	∈	I	)	and	(Yi	,	i	∈	I	)	be	families	of	random	variables	in	C([0,	∞)).	Define	X(ω)	:=	inf{n	∈	N	:	ωn	=	1}	−	1,	where	inf	∅	=	∞.	In	order	for	the
problem	to	be	interesting,	assume	also	that	the	distribution	π	cannot	be	constructed	directly	too	easily.	,	0)	be	the	first	unit	vector	in	Zd	.	Let	I	=	[a,	b]	⊂	R	be	an	interval	and	let	λ	be	the	Lebesgue	measure	on	I	.	aπ	1	+	(x/a)2	Then	Caua	is	called	the	Cauchy	distribution	with	parameter	a.	Proof	Step	1.	For	J	⊂	I	,	let	ΩJ	:=	×	Ωj	and	AJ	=	Aj	.	For	such	z,
define	hz	∈	C	by	hz	(y)	=	f	(x)	+	f	(z)	−	f	(x)	Hz	(y)	Hz	(z)	for	all	y	∈	E.	Indeed,	let	(Xn	)n∈N	be	an	independent	family	of	random	variables	n→∞	with	Xn	∼	Ber1/n	.	As	in	the	preceding	example,	we	use	a	compactness	argument.	1.4	Measurable	Maps	37	Theorem	1.80	(Composition	of	maps)	Let	(Ω,	A),	(Ω		,	A	)	and	(Ω		,	A	)	be	measurable	spaces	and	let	X
:	Ω	→	Ω		and	X	:	Ω		→	Ω		be	measurable	maps.	Hence	ΞN	=	ki=1	(Ni	/N)δei	.	Partial	sums	of	independent	centred	random	variables	are	an	important	example.	K→∞	Then	E[YiK	]	=	E[ZiK	]	=	0	and	Var[ZiK	]	−→	0	as	well	as	Var[YiK	]	≤	σ	2	,	i	∈	N.	l=1	In	this	case,	(Xn,l	)	also	satisfies	the	Lyapunov	condition.	Dropping	the	assumption	of	recurrence	is
easier,	as	the	following	theorem	shows.	an	distribution	with	Corollary	16.30)	If	P*X	is	in	the	domain	of	attraction	)of	a	stable	*	index	α,	then	E	|X|β	<	∞	for	all	β	∈	(0,	α)	and	E	|X|β	=	∞	if	β	>	α	and	α	<	2.	2.1	Independence	of	Events	.	(ii)	The	distribution	PX	of	X	is	uniquely	determined	by	ψX	.	,	km	k1	!	·	·	·	km	!	km	is	the	multinomial	coefficient	and	pk	=
p1k1	·	·	·	pm	.	(iii)	Cauchy	distribution:	Caur	∗	Caus	=	Caur+s	for	all	r,	s	>	0.	Proof	(i)	Let	x	∈	Rn	and	A	:=	{(u,	v)	∈	Rn	×	Rn	:	u	+	v	≤	x}.	be	measurable	maps	with	the	property	that	fn	−→	n→∞	f	,	but	not	fn	−→	f	almost	everywhere.	Then	there	is	a	unique	σ	-finite	measure		μ	:	σ	(A)	→	[0,	∞]	such	that		μ(A)	=	μ(A)	for	all	A	∈	A.	Hence	we	may	assume	f
≥	0	and	g	≥	0	and	(to	avoid	trivialities)	f	+	gp	>	0.	26.4	for	a	computer	simulation	of	Feller’s	branching	diffusion.	,	0,	1)	are	left	eigenvectors	for	the	eigenvalue	1.	Then	m	+	kd	∈	N(x,	y)	for	every	k	≥	nx	.	♦	Example	7.14	Let	G,	Xpand	Y	be	as	in	Example	7.13.	Show	that	Wt	:=	e−t	Xt	,	t	≥	0,	is	a	martingale.	+	Xn−1	)),		*		)	1	1		E	Yn−1		F−n	=	X(1)	+	.
In	the	special	case	of	the	Fourier	basis	b0	(x)	=	1	and	bn	(x)	=	2	cos(nπx),	n	∈	N,	this	construction	goes	back	to	Paley	and	Wiener	[125,3	Theorem	XLV,	page	154].	Choose	J		⊃	J˜	:=	J	∪	{j	}.	are	measurable,	then	meas	fn	−→	f	⇐⇒	˜	fn	)	n→∞	d(f,	−→	0.	,	Utn	}	of	the	covering	U	:=	{Ut	,	t	∈	I	}	of	I	.	Hence	Theorem	1.81	yields	that	Y	is	measurable.	Things
would	be	easy	if	the	individual	coordinates	of	the	chain	were	independent	one-dimensional	random	walks.	k				*	)	fi	(Xi	)		A	=	E	fi	(X1	)		A	.	Remark	1.14	(i)	lim	inf	and	lim	sup	can	be	rewritten	as	lim	inf	An	=	ω	∈	Ω	:	#{n	∈	N	:	ω	∈	An	}	<	∞	,	n→∞	lim	sup	An	=	ω	∈	Ω	:	#{n	∈	N	:	ω	∈	An	}	=	∞	.	(ii)	If	(A˜i	)i∈I	is	an	independent	family	of	σ	-algebras	and	if
each	Xi	is	A˜i	–	Ai	measurable,	then	(Xi	)i∈I	is	independent.	Now	|	log(x)	−	(x	−	1)|	≤	|x	−	1|2	for	all	x	∈	C	with	n→∞	|x	−	1|	≤	12	.	In	this	sense,	aperiodicity	has	the	flavour	of	an	irreducibility	condition	which	is	needed	in	order	that	two	independent	chains	started	in	arbitrary	states	could	meet	each	other.	For	r	>	0	let	Mr	(Xn	)	=	E[|Xn	|r	]	be	the	rth
absolute	moment.	♦	=	A×B	Example	8.32	Let	μ1	,	μ2	∈	R,	σ1	,	σ2	>	0	and	let	Z1	,	Z2	be	independent	and	Nμi	,σ	2	-distributed	(i	=	1,	2).	18.4),	the	distribution	will	never	be	exactly	the	invariant	distribution.	14.2	Finite	Products	and	Transition	Kernels	307	(ii)	Evidently,	Z	E	,R	⊂	Z	R	⊂	A;	hence	also	σ	(Z	E	,R	)	⊂	σ	(Z	R	)	⊂	A.	Now	assume	p0	+p1	<	1.
Hence	we	have	X	∼	PPPμ	.	8.3	Regular	Conditional	Distribution	207	Clearly,	fX	(x)	>	0	for	PX	-a.a.	x	∈	R	and	fX−1	is	the	density	of	the	absolutely	continuous	part	of	the	Lebesgue	measure	λ	with	respect	to	PX	.	There	is	some	freedom	in	the	choice	of	the	class	of	test	functions	so	it	can	be	adapted	to	the	individual	problem.	P	◦	(X	In	the	following,
assume	that	(Ω,	A,	P)	is	a	probability	space	and	τ	:	Ω	→	Ω	is	a	measurable	map.	Let	K	:=	ν(Ω)/δ		and	δ	<	ε/(2K).	Let	Ln	=	x1	+	.	Definition	1.9	A	class	of	sets	A	⊂	2Ω	is	called	a	semiring	if	(i)	∅	∈	A,	(ii)	for	any	two	sets	A,	B	∈	A	the	difference	set	B	\	A	is	a	finite	union	of	mutually	disjoint	sets	in	A,	(iii)	A	is	∩-closed.	Analogously,	a	CFP	ϕ	is	called	infinitely
divisible	if,	for	every	n	∈	N,	there	is	a	CFP	ϕn	such	that	ϕ	=	ϕnn	.	Then	τ	n	is	a	n→∞	stopping	time	and	τ	n	↓	τ	;	hence	Bτ	n	−→	Bτ	almost	surely.	Similarly,	we	get	(d/dt)	qp	t	(x,	y).	First,	however,	we	have	to	consider	a	more	general	situation.	(Here	Ep	[#TL	]	denotes	the	expected	value	of	#TL	,	which	we	define	formally	in	Chap.	Therefore,	(Ω,	A,	P,	τr
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5	15	78	68	21	30	165	27	⎟	⎜	58	58	29	58	29	29	29	29	58	29	58	58	⎟	⎠	⎝	11	33	15	27	14	55	27	27	135	81	27	215	116	116	29	58	29	58	29	58	116	58	58	116	19.5	Network	Reduction	487	Takeaways	There	are	essentially	two	possibilities	to	systematically	determine	the	effective	resistance	between	two	points	in	an	electrical	network.	Finally,	consider	the
measure	μ	=	q∈Q	δq	.	We	will	show	(Ω,	A,	P,	τr	)	is	ergodic	⇐⇒	r	is	irrational.	Then	E[X2	]	=	E[X]	=	P[X	=	1]	=	p	and	thus	Var[X]	=	p(1	−	p).	Now	(17.8)	is	implied	by	P[Xn	>	a]	+	*	)	1	P[Xn	=	a]	=	E	f	τ,	(Xτ	+m	)m≥0	2	)	*	1	=	E0	ϕ(τ,	Xτ	)	1{τ	≤n}	≥	P0	[τ	≤	n]	.	Define	fn	=	f	(	·	,	xn	).	For	further	reading,	consult,	e.g.,	[31,	32]	or	[74].	Then	∅	=	Ω	\Ω	∈	A,
and	hence	A	is	a	ring.	♦	Theorem	2.31	If	X	and	Y	are	independent	Z-valued	random	variables,	then	PX+Y	=	PX	∗	PY	.	♣	18.3	Markov	Chain	Monte	Carlo	Method	445	Exercise	18.2.2	Consider	the	bivariate	process	(X,	Y	)	that	was	constructed	from	X˜	and	Y˜	in	Example	18.6.	Show	that	(X,	Y	)	is	a	coupling	with	transition	matrix	p.	,	Yn	are	independent
and	Yi	∼	Berp	for	any	i	=	1,	.	(That	is,	in	Theorem	3.2(iii),	the	assumption	ψ(z)	<	∞	for	some	z	>	1	cannot	be	dropped.)	♣	3.2	Poisson	Approximation	Lemma	3.6	Let	μ	and	(μn	)n∈N	be	probability	measures	on	(N0	,	2N0	)	with	generating	functions	ψ	and	ψn	,	n	∈	N.	The	matrix	A	can	be	chosen	to	be	lower	triangular.	This	is	the	smallest	σ	-algebra	with
respect	to	which	all	Xi	are	measurable.	n→∞	Definition	7.2	Let	p	∈	[1,	∞]	and	f,	f1	,	f2	,	.	Example	16.2	∗n	(i)	δx	is	infinitely	divisible	with	δx/n	=	δx	for	every	n	∈	N.	♦	Takeaways	Assume	we	are	given	a	pointwise	convergent	sequence	of	nonnegative	functions.	,	kr	})	=	dx	.	(I	ndependence)	If	σ	(X)	and	F	are	independent,	then	E[X	|F	]	=	E[X].	The
conditions	of	the	theorem	are	fulfilled	as	Fn	↑	Ω.	11.3	Example:	Branching	Process	.	Proof	“(ii)	⇒	(iii)	⇐⇒	(iv)”	This	is	obvious.	For	#J	=	0,	the	statement	(2.8)	holds	by	assumption	of	this	theorem.	,	N	−	1,	and	the	corresponding	eigenvectors	are	the	x	k	from	above.	Hence	also,		t	(x,	y)	=	pt	(x,	y)	−	p	0	t		q(ps	−	p	s	)	(x,	y)	ds.	Exercise	21.1.1	Show	the
claim	of	Remark	21.7.	♣	Exercise	21.1.2	Let	X	=	(Xt	)t	≥0	be	a	real-valued	process	with	continuous	paths.	Recall	that	a	finite	permutation	is	a	bijection		:	I	→	I	that	leaves	all	but	finitely	many	points	unchanged.	Theorem	16.14	(Lévy–Khinchin	formula	on	[0,	∞))	Let	μ	∈	M1	([0,	∞))	and	3	let	u	:	[0,	∞)	→	[0,	∞),	t	→	−	log	e−t	x	μ(dx)	be	the	log-Laplace
transform	μ.	♣	Exercise	21.2.3	Let	B	be	a	Brownian	motion	and	σ	>	0.	Then	*	n→∞	)	n	Ssn	−→	L[Bt	−	Bs	]	L	St	−		for	any	t	>	s	≥	0.	Consider	now	the	situation	where	X	does	not	necessarily	jump	to	one	of	its	nearest	neighbors	but	where	we	still	have	E0	[|X1	|]	<	∞	and	E0	[X1	]	=	0.	If	A	⊂	B,	then	U(A)	⊃	U(B);	hence	μ∗	(A)≤	μ∗	(B).	n=1	Hence,	by	the
monotone	limit	theorem,	we	can	interchange	the	summation	and	the	integral	and	obtain	)	*		∞	∞	∞			E	Yn2	−2	≤	n	1{x	x]	dx	n2	0	n=1	n=1		∞	=		0	∞			−2	n	1{x	x]	dx	n=1		≤	4	0	∞	P[|X1	|	>	x]	dx	=	4	E[|X1	|].	Further,	let	Xi	:	Rn	→	R,	(x1	,	.	Here	N0	⊂	R	is	a	ν-null	set	with	μ(R	\	N0	)	=	0.	Note	that	qn	=	ψn	(0)	=	ψ(qn−1	)	for	all	n	∈	N	and	qn	↑	q.	Then,
for	ε	>	0	and	k,	N	∈	N,	choose	numbers	Kε	and	δN,k,ε	such	that		ε	sup	Pi	{ω	:	|ω(0)|	>	Kε	}	≤	2	i∈I	and	0	1	1	N	sup	Pi	ω	:	V	(ω,	δN,k,ε	)	>	≤	2−N−k−1	ε.	18.4	for	a	computer	simulation	of	the	curve	β	→	m(β).	Assume	that	(fn	)n∈N	does	not	converge	to	f	in	L1	.	Hence,	for	p	23	P[#CN	<	∞]	=	∞		*	)	P	there	is	a	closed	circle	γ	∈	Γn	n=2N	≤	∞		n	n	·	3(1	−
p)	N→∞	−→	0.	For	this	purpose,	it	suffices	to	show	that,	for	every	k	=	1,	.	Step	3.	♣	Exercise	14.4.4	Show	that	a	continuous	real	convolution	semigroup	(νt	:	t	≥	0)	with	νt	((−∞,	0))	=	0	for	some	t	>	0	is	nonnegative.	12.2	Backwards	Martingales	..	The	function	I	is	lower	semicontinuous,	strictly	convex	(in	the	interval	where	it	is	finite)	and	has	its	unique
minimum	at	I	(0)	=	0.	Show	that	Jn	≤	4n+1	.	Hence	these	are	the	natural	classes	of	sets	to	be	considered	as	events	in	probability	theory.	(21.9)	As	in	the	proof	of	Lemma	21.3(iii),	we	infer	(with	K	:=	C0	2(1−γ	)n0	)	|Xt	(ω)	−	Xs	(ω)|	≤	K	|t	−	s|γ	for	all	s,	t	∈	D.	,	Xn−1	and	Dn	but	not	on	the	full	information	inherent	in	the	values	D1	,	.	Or	consider	bond
percolation	on	Z2	.	As	you	see,	the	argument	follows	a	pattern	similar	to	the	proof	of	Carathéodory’s	theorem.	If,	in	addition,	E	is	locally	compact,	then	Cc	(E)∩Lip1	(E;	[0,	1])	is	separating	for	M(E).	Then	ϕX	ϕY	=	ϕX	ϕZ	;	hence	X	+	Y	=	X	+	Z.	As	examples,	we	have	shown	the	reflection	principle	and	Lévy’s	arcsine	law.	As	a	composition	of	measurable
maps,	ω	→	d(f	(ω),	g(ω))	is	measurable.)	Let	f,	f1	,	f2	,	.	(i)	X	is	a	martingale	if	and	only	if,	for	any	locally	bounded	predictable	process	H	,	the	stochastic	integral	H	·X	is	a	martingale.	We	define	the	transition	matrix	pˆ	on	Zd	by	p(x,	d	for	y	−	x	∈	{−1,	0,	1}	.	0	In	fact,	it	is	obvious	that	X	is	centered	and	Gaussian	(since	it	is	a	limit	of	the	Gaussian
processes	of	partial	sums)	and	has	the	given	covariance	function.	(i)	For	n	∈	N,	define	ϕn	=	δ1/n	−	δ2/n	.	Convolution	semigroups	are	a	special	application	and	yield	real	valued	processes	with	independent	and	stationary	increments.	♦	Example	9.14	Let	I	=	N0	and	let	D1	,	D2	,	.	Theorem	5.4	(Independent	L(P)-random	variables	are	uncorrelated)	Let
X,	Y	∈	L1	(P)	be	independent.	Assume	there	exists	a	measurable	f	with	fn	−→	f	μ-almost	everywhere.	(iii)	If	E[|XY	|]	<	∞	and	Y	is	measurable	with	respect	to	F	,	then	E[XY	|F	]	=	Y	E[X	|F	]	(iv)	(v)	(vi)	(vii)	(viii)	and	E[	Y	|F	]	=	E[	Y	|Y	]	=	Y.	Hence,	without	loss	of	generality,	we	will	consider	only	sequences	in	M≤1	(E).	,	An	.	Show	the	following:	(i)	The
functions	C0	,	Sn	,	Cn	,	n	∈	N	form	an	orthogonal	system	in	L2	([0,	1],	λ).	Note,	however,	that	those	statements	that	we	make	explicitly	about	martingales	usually	cannot	be	adapted	easily	to	sub-	or	supermartingales	(such	as	(ii)	in	the	preceding	theorem).	Since	μ1	and	μ2	are	finite	measures,	for	the	function	ρC,ε	from	Lemma	13.10,	we	have	0	≤	ρC,ε
≤	1	∈	L1	(μi	),	i	=	1,	2,	for	all	ε	>	0.	The	technique	of	coupling	from	the	past	allows	for	drawing	exactly	according	to	the	desired	distribution.	Furthermore,	X−∞	=	E[X0		F−∞	],	n→∞	where	F−∞	=	∞		F−n	.	,	Yi−1	]	=	ni=1	E[Yi2	]	(as	in	Example	10.2).	Let	I	be	an	arbitrary	index	set.	In	particular,	V	is	no	larger	than	the	multiplicity	of	the	eigenvalue	with
second	largest	modulus.	17.4	Discrete	Markov	Chains:	Recurrence	and	Transience	.	Exercise	6.2.1	Let	H	∈	L1	(μ)	with	H	>	0	μ-a.e.	(see	Lemma	6.23)	and	let	(E,	d)	be	a	separable	metric	space.	If	A2L	occurs,	then	there	are	two	points	x	1	,	x	2	on	the	boundary	of	BL	such	that	for	any	i	=	1,	2,	there	is	an	infinite	self-intersection	free	open	path	πx	i
starting	at	x	i	that	avoids	x	3−i	.	We	now	come	to	another	0–1	law	for	independent	events	and	for	independent	σ	algebras.	♣	Exercise	13.2.2	Show	that	the	topology	of	weak	convergence	on	Mf	(E)	is	coarser	than	the	topology	induced	on	Mf	(E)	by	the	total	variation	norm	(see	n→∞	n→∞	Corollary	7.45).	Here	)	·	,	·*	denotes	the	usual	inner	product	on	Rn
.	n)	Theorem	6.24	A	family	F	⊂	L1	(μ)	is	uniformly	integrable	if	and	only	if	the	following	two	conditions	are	fulfilled.	Hint:	First	show	that	)	*	P	|Xn	|	>	n	for	infinitely	many	n	=	0	⇐⇒	X1	∈	L1	(P).	Define	Fn	:=	τA0	<	τx1	.	x↑1	(n)	In	this	case,	ψX	is	uniquely	determined	by	the	derivatives	ψX	(1),	n	∈	N.	We	quote	the	following	strengthening	of	Cramér’s
Theorem(see	[31,	Theorem	2.2.3]).	♣	Exercise	15.4.3	Show	that,	for	α	>	2,	the	function	φα	(t)	=	e−|t	|	is	not	a	characteristic	function.	We	will	use	this	Exercise	later	in	Example	17.27.	Thus	we	can	make	the	following	definition	that	is	the	final	definition	for	the	integral	of	measurable	functions.	k=1	Since	c	≥	0,	we	have	(Sk	+	c)2	1Ak	≥	(t	+	c)2	1Ak	.
(ii)	If	Xt	,	t	∈	I	,	are	i.i.d.	random	variables,	then	(Xt	)t	∈I	is	stationary.	(11.3)	n∈N	Show	that	C	=	A+	=	A−	(mod	P).	(2−2n+1	)s+2n+1	−1	Compare	also	Lemma	21.44.	The	effective	resistance	is	Reff	(0	↔	6)	=	R(0,	1)	+	.	Define	Xnε	:=	(Xn	−	ε)	1F	,	ε	Snε	:=	X0ε	+	.	2	5/2	5/6	5	5	1	5	484	19	Markov	Chains	and	Electrical	Networks	2	x	5/2	0	1	2	x	1	19/25
19/6	19/10	0	95/12	19	19	Fig.	Some	of	the	material	of	this	chapter	is	taken	from	[110]	and	[36].	♦	We	close	this	section	with	a	generalization	of	Example	12.15	to	mean	values	of	functions	of	k	∈	N	variables.	,	N,	are	independent,	and	hence,	we	have	)	n	*	n→∞	L	(	St1	−		Stn0	,	.	i=1	Let	n	∈	N	with	∞		μ(Bi	)	0,	there	exist	countably	many	A1	,	A2	,	.	2	)	*	1
Since	Aεn	↑	A0n	for	ε	↓	0,	there	is	an	ε	>	0	with	p	:=	P	Aε0	≥	4N	>	0.	Successively	choose	ω2	,	ω3	,	.	,	Mn,m	)	is	multinomially	distributed	with	parameters	n	and	p	=	(p1	,	.	As	for	A2L,0,	we	define	A3L,0	as	the	event	where	there	are	three	distinct	points	on	the	boundary	of	BL	that	lie	in	different	infinite	open	clusters	if	we	consider	all	edges	in	EL	as
closed.	In	order	to	show	that	fα	is	a	density	and	has	the	same	moments	as	f	,	it	is	enough	to	show	that,	for	all	n	∈	N0	,		m(n)	:=	0	∞	x	n	f	(x)	sin(2π	log(x))	dx	=	0.	∞	Theorem	17.41	x=−∞	|x|	p(0,	x)	<	∞	is	recurrent	∞A	random	walk	on	Z	with	if	and	only	if	x	p(0,	x)	=	0.	As	K	is	compact,	there	are	finitely	13.1	A	Topology	Primer	275		many	points	x1	,	.	,	jn
}).	♦	Recurrence,	irreducibility	and	aperiodicity	alone	are	not	sufficient	for	the	independent	coalescence	coupling	to	be	successful.	T¯tK	+s	−	Ts	k+1	nσ	2	If	sn	<	k,	then			Kn	n	,n	¯	Kn	,n	=	√	1	((t	+	s)n	−	k)Yk+1	T¯tK	+	(k	−	sn)YkKn	.	log(P	(xk	,	xk+1	))	k=0		p(k,	x)	log(P	(xk	,	xk+1	))	k=0	xk	,...,xn−1		=	H	(π)	−	(n	−	1)	π({x0	})P	(x0	,	x1	)	log(P	(x0	,	x1
)).	9.2	Martingales	219	Remark	9.25	Clearly,	for	a	martingale,	the	map	t	→	E[Xt	]	is	constant,	for	submartingales	it	is	monotone	increasing	and	for	supermartingales	it	is	monotone	decreasing.	,	xn	)	of	points	in	Zd	with	)xi−1	,	xi	*	∈	E	p	for	all	i	=	1,	.	♣	Exercise	1.1.4	Let	Ω	be	an	uncountably	infinite	set	and	A	=	σ	({ω}	:	ω	∈	Ω).	By	Step	2.	By	virtue	of
the	differentiation	lemma	(Theorem	6.28)	and	using	partial	integration,	we	get	d	1	ϕ(t)	=	√	dt	2π		∞	−∞	eit	x	ix	e−x	2	/2	dx	=	−t	ϕ(t).	,	Xn	)	equals	its	expectation	almost	surely.	,	Xn,d	)T	∈	Rd	,	n	∈	N,	be	random	vectors.	ˇ	Hence	X	is	a	random	walk	with	transition	matrix	p.	Indeed,	for	any	n	∈	N,	the	random	variable	Yn	is	σ	(X2n	,	X2n−1	)-measurable
by	Theorem	1.91,	and	(σ	(X2n	,	X2n−1	))n∈N	is	independent	by	Theorem	2.26.	The	books,	often	well	classtested	by	their	author,	may	have	an	informal,	personal	even	experimental	approach	to	their	subject	matter.	Further,	let	q	be	a	sub-probability	distribution;	that	is,	qe	≥	0	for	all	e	∈	E	and	e∈E	qe	≤	1.	Typically,	however,	traders	are	risk-averse	and
thus	real	market	prices	include	a	discount	due	to	the	inherent	risk.	Define	X0	=	0	and	Xn	:=	Y1	+	.	,	αm	,	β1	,	.	Denote	by	ψ	(n)	:=	ψ	(n−1)	◦	ψ	its	nth	iterate	for	n	∈	N.	We	thus	make	the	following	definition.	Then				B(Ω,	τ	)	=	B	A,	τ		.	,	gn	}.	Definition	5.25	(Entropy)	Let	p	=	(pe	)e∈E	be	a	probability	distribution	on	the	countable	set	E.	On	the	other
hand,			h	dμ	=	lim	k→∞		h	dμnk	=	h	dν	for	all	h	∈	C;	hence	μ	=	ν.	Finally,	Theorem	14.50	implies	the	existence	of	the	process	X.	Define	T	:=	T	1	+	.	Then	simple	random	walk	on	(E,	K)	(see	Definition	19.11)	is	recurrent.	be	i.i.d.	real	random	variables	with	symmetric	distribution	L[Y1	]	=	L[−Y1	].	Theorem	1.65	(Approximation	theorem	for	measures)	Let
A	⊂	2Ω	be	a	semiring	and	let	μ	be	a	measure	on	σ	(A)	that	is	σ	-finite	on	A.	1	2	L	Now	assume	μ1	≤st	μ2	.	i=1	Hence	(1.11)	holds	and	the	proof	is	complete.	We	compute	the	CFP	of	CPoirν	for	this	ν,		ϕrν	(t)	=	exp	r	∞		((1	−	p)eit	)k	−	(1	−	p)k	k=1	k			−r	=	pr	1	−	(1	−	p)eit	.	<	tn	and	α1	,	.	21.4	Supplement:	Feller	Processes	533	Remark	21.23	If	F	is	an
arbitrary	filtration	and	Ft+,∗	is	the	completion	of	Ft+	,	then	F+,∗	satisfies	the	usual	conditions.	Hence,	by	the	martingale	convergence	theorem	(Theorem	11.7),	X	converges	Px	-almost	surely	to	a	random	variable	X∞	with	Ex	[X∞	]	=	Ex	[X0	]	=	x.	Then	J	−1	PJ	◦	(XL	)	(A)	=	PJ	(A	×	E)	=	PL	⊗	κjn−1	,jn	(A	×	E)		=	A		PL	d(ω0	,	.	U	∈U		on	M(E).	4	σ	σ
(21.35)	Case	2:	t	≥	n−1	.	Let	K	=	R	or	K	=	C.	These	φ	contributions	are	quantified	in	terms	of	the	tilted	probability	measures	με	(dx)	=	φ	−1	φ(x)/ε	με	(dx),	ε	>	0,	for	which	we	derive	an	LDP.	By	the	monotone	convergence	theorem	(Lemma	4.6(ii)),	)	*	n→∞	)	*	E	1A	Yn	E[X	|F	]	−→	E	1A	Y	E[X	|F	]	.	,	n}	with	k	elements.	,	Xik	)].	296	13	Convergence	of
Measures	Proof	of	Prohorov’s	theorem,	Part	(i),	general	case	There	are	two	main	routes	for	proving	Prohorov’s	theorem	in	the	general	situation.	Let	Cw	(i,	j	)	:=	0	if	|i	−	j	|	=	1	and	i	−1	k=0	k	,	Cw	(i	+	1,	i)	:=	Cw	(i,	i	+	1)	:=	−1	k=i	if	i	≥	0,	if	i	<	0.	1	3	2	5	6	9	7	10	12	Fig.	Definition	12.4	(i)	A	map	f	:	E	n	→	E		is	called	symmetric	if	f		=	f	for	all		∈	S(n).
Then	A	=	{A	⊂	R	:	A	is	countable}	is	a	σ	-ring.	Assume	that	ϕ(t)	=	1	for	some	t	=	0.	To	this	end,	we	assume	that	there	exists	an	x	∈	E	such	that	f	(x)	>	0	and	deduce	a	contradiction.	Due	to	the	monotonicity	of	the	conditional	expectation	(Theorem	8.14(ii))	it	is	easy	to	show	that	the	limit	does	not	depend	on	the	choice	of	the	sequence	(Xn	)	and	that	it
fulfills	the	conditions	of	Definition	8.11.	If	the	random	variables	are	independent,	then	terminal	events	either	have	probability	0	or	1	(Kolmogorov’s	0–1	law).	0	Then	PX	is	called	the	exponential	distribution	with	parameter	θ	(in	shorthand,	expθ	).	We	start	with	a	simple	lemma.	We	denote	by	Q	the	set	of	rational	numbers	and	by	Q+	the	set	of	strictly
positive	rational	numbers.	Theorem	23.11	(Cramér)	If	X1	,	X2	,	.	μ	is	lower	semicontinuous.	n→∞	(viii)	Let	|Xn	|	≤	Y	for	any	n	∈	N	and	Xn	−→	X	almost	surely.	In	the	extreme	case	of	a	trivial	σ	-algebra	A	=	{∅,	Ω},	however,	the	empty	set	is	the	only	null	set,	Nμ	=	{∅};	hence	A∗	=	{∅,	Ω},	μ∗	=	δω	.	The	family	(Ai	)i∈I	is	called	independent	if	for	any
finite	subset	J	⊂	I	the	product	formula	holds:	'	(		P	Aj	=	P[Aj	].	,	ωn	]	is	an	open	set,	as	it	is	the	union	of	(#E)n	−	1	open	balls		[ω1	,	.	n→∞	Similarly,	we	can	show	that	E[Xσ	]	≤	E[X0	].	Hence	I	is	also	P-trivial	and	therefore	(Xn	)n∈N0	is	ergodic.	On	the	other	hand,	there	are	Lebesgue	integrable	functions	that	are	not	Riemann	integrable	(such	as	1Q	).	.},
where	u1	<	u2	<	.	550	21	Brownian	Motion	Theorem	21.43	(Donsker’s	invariance	principle)	In	the	sense	of	weak	convergence	on	C([0,	∞)),	the	distributions	of	S¯	n	converge	to	the	Wiener	measure,	L[S¯	n	]	−→	PW	.	be	ˇ	i.i.d.	Bernoulli	random	variables	with	parameter	λ	that	are	independent	of	Xˆ	and	X.	614	24	The	Poisson	Point	Process	Corollary
24.9	The	distribution	of	a	random	measure	X	on	E	with	independent	increments	is	uniquely	determined	by	the	family	(PX(A)	,	A	∈	Bb	(E)).	In	the	definition	of	upper	semicontinuity,	we	needed	the	assumption	μ(An	)	<	∞	since	otherwise	we	would	not	even	have	∅-continuity	for	an	example	as	simple	as	the	counting	measure	μ	on	(N,	2N	).	They	are	the
perfect	analytic	tool	for	studying	sums	of	independent	random	variables	(on	N0	)	as	these	sums	translate	into	products	of	the	generating	functions.		everywhere,	3	(ii)	(Triangle	inequality)		f	dμ	≤	|f	|	dμ.	,	n}	≤	m	+	#	k	≤	n	−	m	:	Sl	=	Sk	for	all	l	∈	{k	+	1,	.	If	μ	is	a	probability	measure,	then	convergence	in	μ-measure	is	also	called	convergence	in
probability.	Theorem	7.3	Let	p	∈	[1,	∞]	and	f1	,	f2	,	.	We	collect	some	basic	properties	of	the	variance.	Given	X	=	x,	let	(Y1	,	.	Let	F1	=	{∅,	Ω},	F2	=	σ	(X	+	Y	)	and	F3	=	σ	(X,	Y	).	17.2	on	page	413)	p(x,	y)	=	⎧	⎪	⎪	⎪	⎪	⎨	1,	if	x	=	0	and	y	=	1,	r,	if	y	=	x	+	1	≥	2,	⎪	1	−	r,	⎪	⎪	⎪	⎩	0,	if	y	=	x	−	1,	else.	(ii)	If	(Xi	)i∈I	is	an	arbitrary	family	of	random	variables
with	C	:=	sup{E[|Xi	|]	:	i	∈	I	}	<	∞,	then	{PXi	:	i	∈	I	}	is	tight.	526	21	Brownian	Motion	Theorem	21.15	(Blumenthal’s	0-1	law,	see	[18])	Let	B	be	a	Brownian	motion	and	let	F	=	(Ft	)t	≥0	=	σ	(B)	be	the	filtration	generated	by	B.	168	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	Corollary	7.8	Let	I	⊂	R	be	an	open	interval	and	let	ϕ	:	I	→	R	be	a	map.
(21.32)	Then,	for	ε	>	0,		*	)	n	*	)	n	1	1	1	n→∞	P		St	−	S¯tn		>	ε	≤	ε−2	E	(	St	−	S¯tn	)2	≤	2	E[Y12	]	=	2	−→	0.	11.2	Martingale	Convergence	Theorems	249	Example	11.15	Let	X	be	a	symmetric	simple	random	walk	on	Z.	On	the	other	hand,	we	have	#(A1	∩A2	∩A3	)	=	6,	thus	P[A1	∩A2	∩A3	]	=	1	1	1	1	36	=	6	·	6	·	6	.	In	Theorem	3.7,	it	was	shown	that	the
binomial	distribution	bn,λ/n	converges	to	the	Poisson	distribution	Poiλ	.	Let		Htn	:=	n	t	∧T	(t	−1/n)∨0	Hs	ds	for	t	≥	0,	n	∈	N.	(5.17)	l=1	Theorem	5.35	The	family	N	of	random	variables	defined	in	(5.17)	is	a	Poisson	process	with	intensity	α	(and	time	set	[0,	1]).	♦	Theorem	7.33	(Lebesgue’s	decomposition	theorem)	Let	μ	and	ν	be	σ	-finite	measures	on
(Ω,	A).	Remark	1.62	Later	we	will	see	in	Theorem	14.14	that	the	statement	holds	even	for	arbitrary	σ	-finite	measures	μ1	,	.	For	each	n	∈	N,	there	exists	a	sequence	x1n	,	x2n	,	.	For	any	closed	set	A	⊂	E	and	any	ε	>	0,	there	is	a	Lipschitz	continuous	map	ρA,ε	:	E	→	[0,	1]	with	Lipschitz	constant	1/ε	and	ρA,ε	(x)	=	1,	if	x	∈	A,	0,	if	d(x,	A)	≥	ε.	t	2	+	Var[Sn	]
(5.11)	)	*	P	max{|Sk	|	:	k	=	1,	.	R		(1,	x)	(19.13)	R		(0,	x)	+	If	we	knew	the	effective	resistances	Reff	(0	↔	x),	Reff	(1	↔	x)	and	Reff	(0	↔	1),	we	could	avoid	the	hassle	of	reducing	the	network	and	we	could	compute	u(x)	directly.	First	of	all,	note	that	S	is	measurable	since	{S	=	k}	=	∞		{T	=	n}	∩	{X1	+	.	Furthermore,	the	waiting	times	should	be
independent.	330	15	Characteristic	Functions	and	the	Central	Limit	Theorem	Reflection	In	the	Stone-Weierstraß	theorem	for	the	case	K	=	C,	it	is	assumed	that	the	algebra	is	closed	under	complex	conjugation.	Denote	by	Uf	=	x	∈	Ω1	:	f	is	discontinuous	at	x	the	set	of	points	of	discontinuity	of	f	.	As	Iμ	is	continuous,	we	have	lim	sup	inf	Iμ	(A	∩	En	)	≤
lim	Iμ	(νn	)	=	Iμ	(ν).	(Compare	Lemma	3.6	and	the	comment	below	it.)	♣	Chapter	4	The	Integral	Based	on	the	notions	of	measure	spaces	and	measurable	maps,	we	introduce	the	integral	of	a	measurable	map	with	respect	to	a	general	measure.	Remark	20.22	It	can	be	shown	that	Theorem	20.21	holds	also	without	the	assumption	that	the	Xn	are
integrable.	Show	that	ψ	is	the	Laplace	transform	of	a	probability	measure	μ	on	[0,	∞)	and	n→∞	that	μn	−→	μ	weakly.	=	Xn	=	0]	=	n	and	thus	the	claim	follows.	The	next	two	sections	are	devoted	to	two	applications:	The	Poisson	approximation	theorem	and	a	simple	investigation	of	Galton–Watson	branching	processes.	We	say	that	a	filtration	F	satisfies
the	usual	conditions	(from	the	French	conditions	habituelles)	if	F	is	right	continuous	and	if	F0	is	P-complete.	Proof	Obvious,	since	Y	−1	(A	)	=	X−1	((X	)−1	(A	))	⊂	X−1	(A	)	⊂	A.	n=1	(ii)	There	is	a	measurable	f	with	∞		μ(A	∩	{d(f,	fn	)	>	ε})	<	∞	for	all	ε	>	0	n=1	and	for	all	A	∈	A	with	μ(A)	<	∞.	Assume	that	our	computer	has	a	random	number	generator
that	provides	realizations	of	i.i.d.	random	variables	U1	,	U2	,	.	Hence	p		is	irreducible.	We	want	to	shed	some	more	light	on	the	connection	between	weak	and	vague	convergence.	(iii)	W	is	a	closed	linear	subspace	of	L2	([0,	1],	λ).	Let	F	⊂	A	be	a	σ	-algebra.	i,j	=1	i=j	)m	i=1	Xi	*	=	m	i=1	Var[Xi	].	What	is	λ2	in	the	periodic	case?	For	example,	let	A	be	σ
-∩-closed	and	let	(reminder:	(	Ai	)c	=	A1	,	A2	,	.	♣	Exercise	13.1.2	Let	μ	be	a	locally	finite	measure.	Then	x	→	f	(|x|)	is	convex;	hence,	by	Jensen’s	inequality,	*	*	)		)	E	f	(|Xi,j	|)	=	E	f	E[Xi	|Fj	]	≤	L	<	∞.	Dr	John	Preater	did	a	great	job	language	editing	the	English	manuscript	and	also	pointing	out	numerous	mathematical	flaws.	Then	μ(A)	=	∞		μ(Ai	\	Ai−1	)
=	lim	n→∞	i=1	n		μ(Ai	\	Ai−1	)	=	lim	μ(An	).	ϕaX+b	(t)	=	ϕX	(at)	ei)b,t	*	for	all	a	∈	R	and	b	∈	Rd	.	(17.11)	For	example,	choose	(Rn	(x),	x	∈	E,	n	∈	N)	as	an	independent	family	of	random	variables	with	values	in	E	and	distributions	P[Rn	(x)	=	y]	=	p(x,	y)	for	all	x,	y	∈	E	and	n	∈	N0	.	12.3	De	Finetti’s	Theorem	271	Exercise	12.3.1	Let	(Xn	)n∈Z	be	an
exchangeable	family	of	{0,	1}-valued	random	variables.	Finally,	we	consider	infinite	products	of	probability	spaces.	Proof	If	Y	is	measurable,	then	by	Theorem	1.80	every	Xi	◦	Y	is	measurable.	Let	(Tti	)t	≥0,	i	=	1,	.	Evidently,	Pz	[A]	=	∞		z	=z	p(z	,	z	+	1)	≥	1	−	∞		z	=z	1	1−z	.	The	following	theorem	generalizes	Theorem	1.61.	For	any	n	∈	N,	In	is
uniformly	distributed	on	Λ	and	Nn	is	uniformly	distributed	on	the	set	N	:=	{i	∈	Zd	:	i2	=	1}	of	the	2d	nearest	neighbors	of	the	origin.	Finally,	using	Kolmogorov’s	moment	criterion	for	tightness,	we	show	convergence	in	the	path	space	C([0,	∞)).	We	thus	need	a	notion	of	conditional	probabilities	that	allows	us	to	deal	with	conditioning	on	events	with
probability	zero	and	that	is	consistent	with	our	intuition.		Clearly,	C	p	(x)	⊂	C	p	(x)	for	any	x	∈	Zd	;	hence	θ	(p)	≤	θ	(p	).	Then	(fF	:	F	∈	I	)	is	uniformly	integrable	(with	respect	C	C	to	μ).	1.3	The	Measure	Extension	Theorem	21	(iii)	Let	A1	,	A2	,	.	Now	let	μ	=	δ0	;	hence	u(1)	>	0.	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	184	Corollary	7.45	Let	ϕ	∈
M±	(Ω,	A)	and	let	ϕ	=	ϕ	+	−	ϕ	−	be	the	Jordan	decomposition	of	ϕ.	ˇ	Let	Xˆ	and	Xˇ	be	independent	random	walks	with	transition	matrices	pˆ	and	p,	ˇ	respectively.	m∈Z	Reflection	Check	that	PX+Y	=	PX	∗PY	does	not	imply	that	X	and	Y	be	independent.	We	interpret	Hn	as	the	number	of	euros	we	bet	in	the	nth	game.	Choose	a	k	∈	N	with	k	>	2γ2−1	.	If
the	first	proposal	is	rejected,	the	game	starts	afresh	with	proposal	X2	and	so	on.	Note	that,	for	the	Gibbs	sampler	also	it	is	enough	to	know	the	values	of	the	distribution	π	only	up	to	the	normalising	constant.	For	ε	>	0	and	k	∈	N,	define	g	ε	:=	g	∧	g(ε),	f	ε	:=	f	1{f	≥ε}	and	fkε	=	2k	f	ε	as	well	as	αkε	:=	2	−k	∞		μ({f	ε	≥	n2−k	}).	However,	note	that	it	is
not	enough	to	assume	that	μ	is	finite.	2	Clearly,	X	is	a	martingale	and	hence	|X|	is	a	submartingale.	Evidently,	we	did	not	use	(except	in	the	last	formula)	the	fact	that	X	is	a	random	walk.	Indeed,	∞		P[Xn	≥	n]	=	∞		∞		P[Xn	=	m]	=	n=1	m=n	n=1	=	m	∞			∞		m		P[Xn	=	m]	m=1	n=1	e−λn	m=1	n=1	∞		λm	Λm	n	≤	=	Λ	eΛ	<	∞.	<	tN	,	the	random	variables	
Stni	−		Stni−1	,	i	=	1,	.	(iii)	A	is	∪-closed.	ε↓0	♣	21.5	Construction	via	L2	-Approximation	543	Exercise	21.5.2	(Compare	Example	8.32.)	Fix	T	∈	(0,	1).	p	2.4	Example:	Percolation	77	Lower	bound	First	we	show	pc	≥	1	2d−1	.	For	example,	we	are	interested	in	a	two-stage	random	experiment.	Further,	let	C2	∈	C	with	C2	⊂	A	∩	C1c	and	α(C2	)	>	β(A	∩
C1c	)	−	ε.	The	question	that	we	answer	at	the	end	of	this	chapter	is:	Is	a	random	walk	on	the	infinite	open	cluster	recurrent	or	transient?	♦	Takeaways	Laws	of	large	numbers	show	that	sums	of	very	many	random	variables	approach	their	expected	value.	t	=0	We	use	an	induction	argument	to	show	(17.33).	In	particular,	we	have	P[Mni	,T	,l	>	0]	=	1	−
e−λ/ni	=	pi	and	thus	Nni	,T	∼	bni	,pi	,	i	=	1,	2.	Mn,i	:=	#	l	≤	n	:	ti−1	<	Xl	≤	ti	=	l=1	By	Exercise	2.2.3,	the	vector	(Mn,1	,	.	The	implication	(iii)	⇒	(iv)	is	straightforward	as	the	characteristic	function	ϕ	uniquely	determines	the	distribution	of	X	by	Theorem	15.9.	Remark	15.56	For	one-dimensional	normal	distributions,	it	is	natural	to	define	the
degenerate	normal	distribution	by	Nμ,0	:=	δμ	.	,	d	−	1}	and	x	∈	Ei	.	and	sup{Var[Xi	]	:	i	∈	I	}	<	∞,	156	6	Convergence	Theorems	Proof	Since	E[Xi2	]	=	E[Xi	]2	+	Var[Xi	],	i	∈	I	,	is	bounded,	this	follows	from	Corollary	6.21	with	p	=	2.	Clearly,	we	have	P	=	u(x)	=	R		(0,	x)	.	If	the	limiting	function	is	continuous	at	0,	then	by	Levy’s	theorem,	tightness	and
hence	weak	convergence	are	automatic.	Indeed,	in	each	case,	there	is	a	mass	defect	in	the	limit	(in	the	case	of	the	Fn	on	the	left	and	in	the	case	of	the	Gn	on	the	right).	Note	that	also	pˇ	:=	(p	−	λp)/(1	ˆ	−	λ)	is	the	transition	matrix	of	a	random	walk	on	Zd	and	that	p	=	λpˆ	+	(1	−	λ)p.	By	the	scaling	property	of	Brownian	motion,	P[A]	=	inf	P[As	]	≥	P[B1
≥	K]	>	0	s>0	and	thus	P[A]	=	1.	(v)	By	the	addition	theorem	for	trigonometric	functions,			1	−	cos()2t,	X*)	=	2	1	−	(cos()t,	X*))2	≤	4	1	−	cos()t,	X*)	.	Theorem	6.18	(i)	If	F	⊂	L1	(μ)	is	a	finite	set,	then	F	is	uniformly	integrable.	Then,	by	Theorem	15.32(ii),	ϕ(t)	=	1	−	σ2	2	t	+	ε(t)	t	2	,	2	where	the	error	term	ε(t)	goes	to	0	if	t	→	0.	Definition	14.28
(Composition	of	kernels)	Let	(Ωi	,	Ai	)	be	measurable	spaces,	i	=	0,	1,	2,	and	let	κi	be	a	substochastic	kernel	from	(Ωi−1	,	Ai−1	)	to	(Ωi	,	Ai	),	i	=	1,	2.	Such	a	process	is	called	an	equivalent	martingale,	and	PX	is	called	an	equivalent	martingale	measure.	π(x)	q(x,	y)	Otherwise	the	chain	X	stays	at	x.	For	every	n	∈	N,	choose	a	covering	Fn	∈	U(An	)	such
that		μ(F	)	≤	μ∗	(An	)	+	ε	2−n	.	♦	Theorem	4.15	We	have	g	∈	L1	(f	μ)	if	and	only	if	(gf	)	∈	L1	(μ).	Further,	let	(Xi	:	i	∈	I	)	be	a	family	of	measurable	maps	Xi	:	Ω		→	Ωi	with	A	=	σ	(Xi	:	i	∈	I	).	A	real	random	variable	X	is	called	infinitely	divisible	if,	for	every	n	∈	N,	there	exist	i.i.d.	D	random	variables	Xn,1	,	.	a	Show	that	almost	surely	τa,b	<	∞	and	that
P[Bτa,b	=	b]	=	−	b−a	.	pn−1	(x,	z)p(z,	y)	400	17	Markov	Chains	By	induction,	we	get	the	Chapman–Kolmogorov	equation	(see	(14.15))	for	all	m,	n	∈	N0	and	x,	y	∈	E,	p(m+n)	(x,	y)	=		p(m)	(x,	z)	p(n)	(z,	y).	#BL	#BL	L	Now	r	=	(#BL	)−1	Ep	[#TL	]	≤	d/L	implies	r	=	0.	Definition	9.44	Let	T	∈	N,	a	∈	(−1,	0)	and	b	>	0	as	well	as	p	∈	(0,	1).	Hence	the	model
is	also	p	=	p∗	:=	a−b	arbitrage-free	(for	all	p	∈	(0,	1)).	Evidently,	Theorem	20.19	We	have	lim	n→∞	Rn	=	#	k	≤	n	:	Sl	=	Sk	for	all	l	∈	{k	+	1,	.	Let	Xn	:=	ni=1	Yi	for	n	∈	N0	.	For	example,	we	could	not	encode	one	symbol	with	0110	and	a	different	one	with	011011.	♦	222	9	Martingales	Takeaways	A	martingale	is	a	mathematical	model	for	a	fair	game	of
many	rounds.	σ	σ2	≤	(21.37)	By	(21.35)	and	(21.37),	for	every	N	>	0,	there	exists	a	C	=	C(N,	σ	2	)	such	that,	for	every	n	∈	N	and	all	s,	t	∈	[0,	N],	we	have	*	)	n	,n	¯	Kn	,n	)4	≤	C	t	3/2	.	Hence,	by	Theorem	8.37,	there	exists	a	regular	conditional	distribution	of	(Xn+k	)n∈N0	given	Fk	.	Let	Ω	=	E	N	be	the	infinite	product	space	and	let	A	be	the	σ	-algebra
generated	by	the	cylinder	sets	(see		⊗N	(1.8)).	♣	12.2	Backwards	Martingales	The	concepts	of	filtration	and	martingale	do	not	require	the	index	set	I	(interpreted	as	time)	to	be	a	subset	of	[0,	∞).	♣	Exercise	13.2.11	For	each	n	∈	N,	let	Xn	be	a	geometrically	distributed	random	variable	with	parameter	pn	∈	(0,	1).	is	exchangeable,	for	any	choice	of
pairwise	distinct	numbers	1	≤	i1	,	.	Hence	we	can	consider	the	case	I	=	−N0	.	By	monotonicity	of	gx	,	we	have	D	−	ϕ(x)	≤	D	+	ϕ(x).	Now,	for	K	>	0,	compute	(using	Markov’s	inequality	and	Fubini’s	theorem)			Pn	[−K,	K]c	≤	α	−1	h(x/K)	Pn	(dx)	[−K,K]c	≤	α	−1	=α	=α	−1	−1	=	α	−1		R	h(x/K)	Pn	(dx)					R	1		1	−	cos(tx/K)	dt	Pn	(dx)	0	1	R	0	1				1	−
cos(tx/K)	Pn	(dx)	dt		1	−	Re(ϕn	(t/K))	dt.	By	the	monotone	convergence	theorem	(Theorem	4.20),	(14.6)	and	(14.7)	also	hold	for	this	f	.	¯	Note	that	this	definition	is	independent	of	the	particular	choices	of	the	representatives	of	f	and	g.	Therefore,	it	is	enough	to	prove	the	existence	of	an	X	such	that	(21.25)	holds.	Hence,	for	m	<	n,	we	have	E	n	\	E	n−1
⊂	C	For	m	≤	n,	let	Em	m	n	n	m	m	and	thus	n	n−1	\	Em	=	B.	As	ϕ	is	strictly	convex,	there	is	a	unique	τ	∈	R	at	which	ϕ	assumes	t	→−∞	its	minimum;	hence	ϕ(τ	)	=		and	ϕ		(τ	)	=	0.	Now	this	causes	trouble	in	many	places	and	so	we	chose	a	definition	where	this	implication	holds.	(iii)	Assume	that	A1	,	A2	,	.	Consider	the	events	A	=	{sup{Xt	:	t	∈	I	}	>	K	−
5}	and	B	=	{sup{Xt	:	t	∈	I	}	>	K	+	5}.	There	are	functions	hi	:	Ωi	→	(0,	∞)	such	that	hi	dμi	<	∞,	i	=	1,	2	(see	Lemma	6.23).	As	X	is	irreducible,	we	have	π({x})	>	0	for	all	x	∈	E.	Deduce	the	optional	stopping	theorem	for	right	continuous	supermartingales:	(Xτ	∧t	)t	≥0	is	a	right	continuous	supermartingale.	Theorem	21.6	(Kolmogorov–Chentsov)	Let	X	=
(Xt	,	t	∈	[0,	∞))	be	a	realvalued	process.	19.2	Reversible	Markov	Chains	465	Since	F	(x,	y)	>	0	for	all	x,	y	∈	E,	we	have	n0	:=	min	n	∈	N0	:	pn	(x0	,	y)	>	0	for	some	y	∈	A	<	∞.	The	more	challenging	part	is	to	come	up	with	a	candidate		μ	for	the	extension	of	the	pre-measure	in	the	first	place.	Let	(Xi	)i∈I	be	real	random	variables	with	joint	density	functions
(for	finite	J	⊂	I	)	fJ	(x)	=					−	1	(xj	−	μj	)2	2πσj2	2	exp	−	2σj2	j	∈J	j	∈J	for	x	∈	RJ	.	The	concept	of	conditional	probabilities	and	conditional	expectations	formalizes	the	corresponding	calculus.	Here,	the	argument	is	similar	to	the	proof	of	Theorem	7.9.	Let	g	∈	L(ϕ)	with			g	E[X1	],	.	Here	we	do	not	want	to	stress	this	point	but	state	that,	vaguely	speaking,
all	sets	that	can	be	constructed	explicitly	are	Borel	sets.	Let	B	∈	E	and	ε	>	0.	2	2	2	2	2	In	order	to	obtain	the	minima	of	F	β	,	we	compute	the	derivative	!	0=	d	β	dm	F	(m)	=	−m	−	h	+	β	−1	arc	tanh(m).	24.1	Poisson	point	process	on	the	unit	square	with	intensity	measure	50λ.	Clearly,	[ω1	,	.	(1.10)	We	write	M(μ∗	)	=	{A	∈	2Ω	:	A	is	μ∗	-measurable}.
(16.6)	In	this	case,	the	pair	(α,	ν)	is	unique.	♣	Chapter	2	Independence	The	measure	theory	from	the	preceding	chapter	is	a	linear	theory	that	could	not	describe	the	dependence	structure	of	events	or	random	variables.	Consider	the	following	five	properties.	Proof	We	have	to	show	that,	for	every	ε	>	0,	there	exists	a	δ	>	0	such	that,	for	all	t	∈	Rd	,	all	s
∈	Rd	with	|t	−	s|	<	δ	and	all	μ	∈	F	,	we	have	|ϕμ	(t)	−	ϕμ	(s)|	<	ε.	Show	that	1	n→∞	f	◦	T	k	−→	0	n	n−1	in	Lp	(λ).	Assume	that,	given	Y	,	the	random	variables	(Xi	)i∈I	are	independent	and	BerY	-distributed.	Define	the	(ultra-)metric	d	on	Ω	by		d(ω,	ω	)	=		2−	inf{n∈N:	ωn	=ωn	}	,	if	ω	=	ω	,	0,	if	ω	=	ω	.	Now	(7.11)	implies	fn	∈	G.	k→∞	By	Theorem	6.12(iii),
there	is	an	f	with	fnk	−→	f	almost	everywhere;	hence,	in	k→∞	particular,	μ({d(fnk	,	f	)	>	ε/2})	−→	0	for	all	ε	>	0.	,	BtN	)	=	EBτ	[F	(B)].	“(iii)	⇒	(i)”	The	supremum	of	convex	functions	is	convex	and	any	affine	linear	map	is	convex.	The	converse	is	false	in	general.	,	Cnmn	∈	A	such	that	En	\	A	=	En	\	Bn	=	Cn	.	Now	let	K	⊂	E	be	compact.	Reflection	Come
up	with	an	example	of	a	measurable	function	f	such	that	the	integrals	on	the	right	hand	side	of	(14.7)	both	exist	but	do	not	coincide.	Thus	we	can	find	finitely	many	x1	,	.	Example	1.39	(Lebesgue	measure)	Let	n	∈	N	and	let	A	=	{(a,	b]	:	a,	b	∈	Rn	,	a	≤	b}	1.3	The	Measure	Extension	Theorem	19	be	the	semiring	of	half	open	rectangles	(a,	b]	⊂	Rn	(see
(1.5)).	(13.14)	Let	ε	>	0.	Chapter	24	The	Poisson	Point	Process	Poisson	point	processes	can	be	used	as	a	cornerstone	in	the	construction	of	very	different	stochastic	objects	such	as,	for	example,	infinitely	divisible	distributions,	Markov	processes	with	complex	dynamics,	objects	of	stochastic	geometry	and	so	forth.	Thus	up	to	constants	the	average
energy	of	a	particle	is	1	U	(m)	=	−	m2	−	hm.	Then	D	is	a	π-system	⇐⇒	D	is	a	σ	-algebra.	x,y∈E	Therefore	(since	D	≡	0),	LJ	=	LI	+	1		D(x,	y)2	R(x,	y)	>	LI	.	Definition	19.17	We	call	Ceff	(A0	↔	A1	)	:=	I	(A1	)	the	effective	conductance	1	between	A0	and	A1	and	Reff	(A0	↔	A1	)	:=	I	(A	the	effective	resistance	between	1)	A0	and	A1	.	In	the	second	step,	we
distribute	these	jumps	uniformly	and	independently	on	(0,	1].	Theorem	17.9	A	stochastic	process	X	=	(Xt	)t	∈I	is	a	Markov	process	if	and	only	if	there	exists	a	stochastic	kernel	κ	:	E	×	B(E)⊗I	→	[0,	1]	such	that,	for	every	bounded	B(E)⊗I	−	B(R)-measurable	function	f	:	E	I	→	R	and	for	every	s	≥	0	and	x	∈	E,	we	have			*	)	κ(Xs	,	dy)	f	(y).	The	main	result	is
Kolmogorov’s	extension	theorem.	♣	Exercise	16.2.2	Show	that	the	distribution	on	R	with	density	f	(x)	=	is	not	infinitely	divisible.	A	random	vector	X	=	(X1	,	.	Then	CPoiνn	=	CPoinμn	−→	μ.	(a)	We	have	(f	+	g)+	−	(f	+	g)−	=	f	+	g	=	f	+	−	f	−	+	g	+	−	g	−	;	hence	(f	+	g)+	+	f	−	+	g	−	=	(f	+	g)−	+	f	+	+	g	+	.	(i)	A	set	A	∈	A	is	called	a	μ-null	set,	or	briefly
a	null	set,	if	μ(A)	=	0.	,	LYn	and	use	Remark	15.7	to	compute	LY1	+...+Yn	.	90	3	Generating	Functions	In	particular,	for	any	n	≥	n0	,	we	have	μn	({N	+	1,	N	+	2,	.	95	4.2	Monotone	Convergence	and	Fatou’s	Lemma	...	On	the	other	hand,	the	Lebesgue	integral	respects	the	geometry	of	the	range	by	being	defined	via	slimmer	and	slimmer	horizontal
strips.	However,	this	condition	is	not	sufficient	for	the	existence	of	weak	limit	points,	as	for	example	the	sequence	(δn	)n∈N	of	probability	measures	on	R	does	not	have	a	weak	limit	point	(although	it	converges	vaguely	to	the	zero	measure).		Define	M	:=	n∈N	Ωn−	.	By	the	fundamental	theorem	of	calculus	(see	Exercise	13.1.7),	we	have	n→∞	Htn	(ω)
−→	Ht	(ω)	for	λ-almost	all	t	∈	[0,	T	]	and	for	all	ω	∈	Ω.	We	have	seen	that	in	this	case,	we	must	have	an	=	n1/α	for	some	α	∈	(0,	2].	Similar	inversion	formulas	hold	for	measures	μ	on	Rd	.	This	implies	the	second	inequality	in	(23.15).	and	U1	,	U2	,	.	As	an	alternative	to	the	backwards	martingale	argument	of	Sect.	Then	we	consider	backwards
martingales	and	prove	the	convergence	theorem	for	them.	Let	X	be	a	random	variable	that	is	uniformly	distributed	on	[0,	1].	3	Remark	14.24	In	the	following,	we	often	write	κ(ω1	,	dω2	)	f	(ω1	,	ω2	)	instead	of	3	f	(ω1	,	ω2	)	κ(ω1	,	dω2	)	since	for	multiple	integrals	this	notation	allows	us	to	write	the	integrator	closer	to	the	corresponding	integral	sign.
Clearly,	F	(u)	=	1	and	for	any	x	∈	V	,	we	have	F	(x	−	F	(x)u)	=	F	(x)	−	F	(x)F	(u)	=	0;	hence	x	−	F	(x)u	∈	W	and	thus	174	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	)x	−	F	(x)u,	u*	=	0.	∈	L2	(P)	are	pairwise	independent	with	bounded	variances,	then	(Xn	)n∈N	fulfills	the	strong	law	of	large	numbers.	By	Fatou’s	lemma,	E[Z]	≤	lim	E[E[Zn	|F	]]	=	lim
E[Zn	]	=	0.	∈	F	such	that	F	=	σ	({A1	,	A2	,	.	Furthermore,	μ	∗	ν	=	ν	∗	μ	and	(μ	∗	ν)(Rn	)	=	μ(Rn	)	ν(Rn	).	♣	Exercise	15.4.2	Let	r,	s	>	0	and	let	Z	∼	Γ1,r+s	and	B	∼	βr,s	be	independent	(see	Example	1.107).	Denote	the	shift	by	τ	;	that	is,	Xn	=	X0	◦	τ	n	.	We	will	decompose	X	into	a	sum	consisting	of	a	martingale	and	a	predictable	process.	Klenke,
Probability	Theory,	Universitext,	303	304	14	Probability	Measures	on	Product	Spaces	14.1	Product	Spaces	Definition	14.1	(Product	space)	Let	(Ωi	,	i	∈	I	)	bean	arbitrary	family	of	sets.	This	procedure	leads	to	a	generalisation	of	the	concept	of	a	product	measure.	By	Remark	1.17(ii),	we	conclude	that	δ(E)	⊂	DE	for	any	E	∈	E.	♠	17.2	Discrete	Markov
Chains:	Examples	399	Takeaways	For	Markov	processes,	the	future	depends	upon	the	information	up	to	a	given	time	only	via	the	state	at	this	very	time.	Since	μ	is	additive,	we	have	μ(Ak	)	=	ck		μ(Ck,i	)	+	i=1	dk		μ(Dk,i	)	≥	i=1	ck		μ(Ck,i	).	Hence,	we	modify	the	approach	by	showing	that	it	is	enough	to	consider	compact	sets	K	instead	of	C	and	by
showing	that	there	exists	an	open	set	U	⊃	K	and	a	δ	>	0	such	that	ρK,ε	≤	1U	∈	L1	(μi	),	i	=	1,	2	for	all	ε	∈	(0,	δ).	TV	(18.7)	(iii)	Equation	(18.7)	holds	for	some	x	∈	E.	Hence,	it	is	enough	to	consider	(Xn+	)n∈N	.	Since	VT	is	FT	-measurable,	by	the	factorization	lemma	(Corollary	1.97)	there	exists	a	function	gT	:	RT	→	R	with	VT	=	gT	(X1	,	.	21.5
Construction	via	L2	-Approximation	..	By	(9.18),	τ	∧	t	and	σ	∧	t	are	stopping	times	for	any	t	∈	I	.	Two	functions	f,	g	∈	H	are	considered	equal	if	f	=	g	λ-a.e.	Let	(bn	)n∈N	be	an	orthonormal	basis	(ONB)	of	H	;	that	is,	)bm	,	bn	*	=	1{m=n}	and	n	;	;		;	;	)f,	bm	*bm	;	=	0	lim	;f	−	n→∞	for	all	f	∈	H.		425	In	this	case,	p	n	(x,	y)p(y,	z)	=	y∈E		'	(	Px	Xn	=	y,	τx1	>	n,
Xn+1	=	z	y∈E	'	(	=	Px	τx1	>	n	+	1;	Xn+1	=	z	=	p	n+1	(x,	z).	∗n	If	μ	is	infinitely	divisible	and	μn	∈	M1	(R)	is	such	that	μn	=	μ	for	all	n	∈	N,	then	νn	=	1R\{0}	nμn	is	a	possible	choice.	This	chapter	is	devoted	to	a	systematic	treatment	of	almost	sure	convergence,	convergence	in	measure	and	convergence	of	integrals.	,	n}	with	s,	t	∈	Uti	.	♦	Takeaways	A
measure	preserving	dynamical	system	consists	of	a	probability	space	(Ω,	A,	P)	and	a	measure	preserving	map	τ	:	Ω	→	Ω.	This	is	the	starting	point	for	the	investigation	of	topological	properties	of	Lp	spaces	in	the	subsequent	sections.	Thus	PX	is	uniquely	determined	by	its	3	moments	E[Xn	]	=	x	n	PX	(dx),	n	∈	N.	If	in	addition	E	is	locally	compact	(e.g.,	E
=	Rd	),	then	one	can	even	show	that	n→∞	Ξn	−→	Ξ∞	almost	surely.	Therefore,	AI	⊂	σ	(Z	E	,R	).	In	contrast	with	σ	-algebras,	topologies	are	closed	under	finite	intersections	only,	but	they	are	also	closed	under	arbitrary	unions.	For	fixed	n,	we	expect	the	deviation	of	Fn	from	FΦ	to	be	larger	for	larger	α.	♦	Example	12.13	Let	X1	,	X2	,	.	,	n	(since	mn+1	=
0),	ϕμ	(al	)	=	n		k=1			n	al	+		ak	(mk+1	−	mk	)	1	−	=	(ak	−	al	)(mk+1	−	mk	)	ak	k=l	n	'	(		=	(an	−	al	)mn+1	−	(al	−	al	)ml	−	(ak	−	ak−1	)mk	k=l+1	=−	n		(yk	−	yk−1	)	=	yl	=	ϕ(al	).	Corollary	15.3	Let	E	be	a	compact	metric	space.	Hence	the	expected	length	is			−	pe	log2	(pe	)	≤	Lp	(C)	≤	1	−	pe	log2	(pe	).	Proof	The	second	part	of	the	theorem	was
shown	in	the	above	construction.	Similarly,	we	define	δ(E)	as	the	λ-system	generated	by	E.	For	sufficiently	large	|n|,	the	sets	Aε	and	τ	−n	(B	ε	)	depend	on	different	coordinates	and	are	thus	independent.	“⊂”	Clearly,	every	Xt	:	Ω	−→	R		is	continuous	and	hence	(B(Ω,	d)	–	B(R))measurable.	23.4	Varadhan’s	Lemma	and	Free	Energy..	If	p	=	I	then	any
function	f	that	coincides	with	g	on	A	is	a	solution	of	the	Dirichlet	problem.	The	analogous	statement	holds	for	any	of	the	classes	E1	,	.	(iii)	For	any	r	∈	(0,	1),	ψX	is	uniquely	determined	by	countably	many	values	ψX	(xi	),	xi	∈	[0,	r],	i	∈	N.	x	1	,x	2	,x	3	∈BL	\BL−1	mutually	distinct	Let	L	be	large	enough	for	Pp	[A3L,0]	≥	Pp	[N	≥	3]/2	>	0.	We	call	κ1	⊗	κ2
the	product	of	κ1	and	κ2	.	Show	that	(Bt2	−t)t	≥0	is	a	martingale.	Then	(14.6)	and	(14.7)	hold	trivially.	This	piece	is	necessarily	of	dimension	smaller	than	n.	Hence,	for	fixed	t,	we	have	lim	ft	(x)	=	−	0=x→0	R(tx)	t2	t2	+	lim	=	−	=	ft	(0).	Then	the	independent	coalescent	chain	is	a	successful	coupling.	We	consider	the	problem	of	sampling	a	random
variable	Y	with	distribution	π	on	a	computer.	Hence	a	probability	measure	μ	is	uniquely	determined	by	the	value	μ({1}).	We	write	X	=	Y	if	PX	=	PY	(D	for	distribution).	,	x)	=	i=1	The	distribution	function	of	the	random	variable	Z	:=	min(X1	,	.	Uniformly	integrable	(sub-,	super-)	martingales	converge	almost	surely	and	in	L1	.	136	5	Moments	and	Laws
of	Large	Numbers	Proof	We	decompose	the	probability	space	according	to	the	first	time	τ	at	which	the	partial	sums	exceed	the	value	t.	(In	Theorem	8.20,	we	will	see	that	we	have	E[E[X	|F	]2	]	≤	E[X2	],	but	here	we	want	to	keep	the	proof	selfcontained.)	Let	Y	be	F	-measurable	and	assume	E[Y	2	]	<	∞.	Clearly,	τ	(n)	is	the	identity	map,	hence	hn	=	h2n
=	.	(ii)	For	δ	>	0,	let	Yδ	∼	U[1−δ,1]	be	independent	of	X.	or	its	affiliates	An	online	phone	book,	like	the	Telkom	phone	book,	provides	a	quick	way	to	look	up	numbers	of	people	and	businesses	you	want	to	call	or	locate.	Clearly,	fy,n	↑	1{0←→p	y}	for	n	→	∞;	hence	it	suffices	to	show	that	each	fy,n	is	measurable.	Formally,	we	sometimes	write	Var[X]	=	∞
if	E[X2	]	=	∞.	(vi)	If	Xn	≥	0	almost	surely	for	all	n	∈	N,	then	E	n=1	n=1	(vii)	If	Zn	↑	Z	for	some	Z,	then	E[Z]	=	limn→∞	E[Zn	]	∈	(−∞,	∞].	Then	there	exists	a	probability	space	(Ω,	A,	P)	with	random	variables	X,	X1	,	X2	,	.	Lemma	15.20	Let	μ	∈	M1	(Rd	)	with	characteristic	function	ϕ.	Here	the	state	space	is	E	=	{0,	.	♦	Theorem	15.57	(Cramér–Wold
device)	Let	Xn	=	(Xn,1	,	.	Quite	the	contrary	is	suggested	by	the	many	invitations	to	play	all	kinds	of	“sure	winning	systems”	in	lotteries.	Hence,	now	let	X	be	a	martingale	with	|Xn	−	Xn−1	|	=	1	almost	surely	for	all	n	∈	N	and	with	X0	=	x0	∈	Z	almost	surely.	Since	x	→	d(x,	z)	is	continuous	and	hence	measurable,	the	maps	fz	,	gz	:	Ω	→	[0,	∞)	with	©	The
Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature	Switzerland	AG	2020	A.	,	Xk	)	=	∞	(Y1	,	.	Analogously,	we	can	define	the	conditional	expectation	X+	∈	L1	(P).	Clearly,	μ1	≤st	μ2	implies	F1	(x)	≥	F2	(x)	for	all	x	∈	Rd	.			(ii)	If	Ω	=	R	and	A	=	B(R)	is	the	Borel	σ	-algebra	on	R,	then	X	:	(Ω,	A)	→	R,	B(R)	is	called	an	A-
measurable	real	map.	Theorem	19.12	If	X	is	a	reversible	Markov	chain	and	if	π	is	an	invariant	measure,	then	X	is	a	random	walk	on	E	with	weights	C(x,	y)	=	p(x,	y)	π({x}).	Without	loss	of	generality,	we	can	assume	that	E[X1	]	=	0.	Let	f	=	dν	dμ	be	the	Radon–Nikodym	derivative	and	let	I	=	{F	⊂	A	:	F	is	a	σ	-algebra}.	Construct	a	counterexample	that
shows	that	right	continuity	of	the	paths	of	X	is	essential.	We	prepare	for	the	proof	of	this	theorem	with	a	couple	of	lemmas.	Before	we	introduce	characteristic	functions	(and	Laplace	transforms)	later	in	the	book,	we	want	to	illustrate	the	basic	idea	with	probability	generating	functions	that	are	designed	for	N0	-valued	random	variables.	(5.12)
Furthermore,	Kolmogorov’s	inequality	holds:	a	generalization	of	Kolmogorov’s	inequality.	By	monotone	convergence,	we	get	E[X]	=	−	lim	F		(λ)	λ↓0	(6.7)	and	E[Xn	]	=	(−1)n	lim	F	(n)	(λ)	λ↓0	for	all	n	∈	N.	We	conclude	q	=	min	F	.	On	the	other	hand,	we	have	1	−	g	>	0	on	A;	hence	μ(A)	+	ν(A)	=	0	and	thus	νa	(A)	=	ν(A)	=	0.	With	our	machinery,	so	far
we	can	define	the	conditional	probability	P[A|X]	for	fixed	A	∈	A	only.	Recall	the	definition	of	a	transition	kernel	from	Definition	8.25.	Let	K	∈	R	and	let	τ	=	inf{t	:	Xt	≥	K}	be	the	stopping	time	of	first	entrance	in	[K,	∞).	The	full	proof	of	the	general	case	is	deferred	to	the	end	of	the	section.	,	Xn	are	independent	and	N0	-valued	random	variables,	then
ψX1	+...+Xn	=	n		ψXi	.	+	E[Xn		Fm	]	=	X1	+	.	,	(n	+	1)N	−	1},	define	Yk	:=	Y		,Y		,n	n	n+1	,	Uk−nN	Xk	,	if	n	<	τ,	else.	The	number	of	clicks	should	obey	the	following	rules.	Definition	17.54	Let	(E1	,	E1	,	μ1	)	and	(E2	,	E2	,	μ2	)	be	probability	spaces.	This	information	can	be	measured	by	the	length	of	the	shortest	sequence	of	zeros	and	ones	by	which	the
message	can	be	encoded.	282	13	Convergence	of	Measures	Remark	13.13	By	Theorem	13.11,	the	weak	limit	is	unique.	Finite	additivity	follows	from	additivity	of	the	integral	(Lemma	4.6(iii)).	Hence	(and	since	each	of	the	families	{X+	,	Y	+	},	{X−	,	Y	+	},	{X+	,	Y	−	}	and	{X−	,	Y	−	}	is	independent)	we	obtain	E[XY	]	=	E[(X+	−	X−	)(Y	+	−	Y	−	)]	=
E[X+	Y	+	]	−	E[X−	Y	+	]	−	E[X+	Y	−	]	+	E[X−	Y	−	]	=	E[X+	]	E[Y	+	]	−	E[X−	]	E[Y	+	]	−	E[X+	]	E[Y	−	]	+	E[X−	]	E[Y	−	]	=	E[X+	−	X−	]	E[Y	+	−	Y	−	]	=	E[X]	E[Y	].	The		characteristic	function	ϕμ	of	μ	:=	nk=1	pk	μk	is	then	ϕμ	(t)	=	n		pk	(1	−	|t|/ak	)+	.	+	Xn	)/	n	Var[X1	].	(1.18)	This	generalizes	easily	to	the	situation	of	k	colors	and	Bi	balls	of	color	i	=
1,	.	Lemma	7.15	(Young’s	inequality)	For	p,	q	∈	(1,	∞)	with	x,	y	∈	[0,	∞),	xy	≤	1	p	+	1	q	=	1	and	for	yq	xp	+	.	Exercise	17.3.1	Consider	the	Yule	process	X	from	Example	17.27.	A\E	3	n→∞	Choose	a	sequence	(gn	)n∈N	in	G	such	that	gn	dμ	−→	γ	,	and	define	the	function	fn	=	g1	∨	.	Takeaways	The	distributions	of	the	arithmetic	means	of	a	growing
number	of	i.i.d.	random	variables	concentrate	more	and	more	around	the	expected	value	(under	certain	regularity	assumptions,	that	is).	(ii)	If	C	⊂	Rn	is	a	closed	set,	then	C	c	∈	τ	is	in	B(Rn	)	and	hence	C	is	a	Borel	set.	9–15.	2.4	Example:	Percolation	.	Now	arc	tanh(z)	=	1+z	1	log	for	z	∈	(−1,	1)	and	2	1−z		1	1	cosh	arc	tanh(z)	=	√	=√	.	Definition	1.59
(Distribution	function)	A	right	continuous	monotone	increasing	function	F	:	R	→	[0,	1]	with	F	(−∞)	:=	lim	F	(x)	=	0	and	F	(∞)	:=	x→−∞	lim	F	(x)	=	1	is	called	a	(proper)	probability	distribution	function	(p.d.f.).	First	consider	the	case	P[X1	≤	0]	=	1.	A	family	(Xi	)i∈I	of	random	variables	on	(Ω,	F	,	P)	is	called	independent	(and	identically	distributed)	given
A	if	the	generated	σ	-algebras	(σ	(Xi	))i∈I	are	independent	given	A	(and	the	conditional	distributions	P[Xi	∈	·	|A]	are	equal).	Proof	The	implications	(iv)	⇐⇒	(ii)	⇒	(iii)	are	evident.	Then	the	difference	chain	(Zn	)n∈N0	:=	(X˜	n	−	Y˜n	)n∈N0	is	a	symmetric	random	walk	18.2	Coupling	and	Convergence	Theorem	441	with	finite	expectation	and	hence
recurrent.	Then	clearly	D(A0	)	=	D(A1	)	=	0.	The	effective	resistance	is	Reff	(0	↔	1)	=	(R1−1	+	.	♦	0.05	·	0.02	+	0.9	·	0.98	883	Now	let	X	∈	L1	(P).	Definition	17.29	For	any	x	∈	E,	let	τx	:=	τx1	:=	inf{n	>	0	:	Xn	=	x}	and			τxk	=	inf	n	>	τxk−1	:	Xn	=	x	for	k	∈	N,	k	≥	2.	We	show	that,	along	the	sequence	(xn	)n∈N	,	the	difference	n→∞	quotients	converge.
n=0	Its	distribution	function	is	F	(x)	=	1	−	(1	−	p)	x+1!∨0	for	x	∈	R.	If	in	addition	μ	and	μ	are	measures	on	(E,	E)	and	(E		,	E		)	and	if	μ	=	μ	◦	ϕ	−1	,	then	ϕ	is	an	isomorphism	of	measure	spaces,	and	the	measure	spaces	(E,	E,	μ)	and	(E		,	E		,	μ	)	are	called	isomorphic.	If	μ	is	σ	-additive,	then	μ	is	also	σ	-subadditive.	Then	A1	\	An	∈	A	for	any	n	∈	N	and	A1
\	An	↑	A1	.	The	Stone-Weierstraß	theorem	and	its	corollaries	allow	to	boil	down	the	class	of	test	functions	to	a	tractable	size.	Definition	8.2	(Conditional	probability)	Let	(Ω,	A,	P)	be	a	probability	space	and	B	∈	A.	∞		∞		Ak	.	In	the	next	section,	we	will	see	that	in	the	current	example	this	can	be	done	using	transition	kernels.	Then,	for	t	∈	(0,	θ	),	)	*	E	et	X
=	θ		∞	0	et	x	e−θx	dx	=	θ	<	∞.	(i)	Show	that	almost	surely	3	E[h(X)|Y	]	=	h(x)f	(x,	Y	)	λ(dx)	3	.	n=0	Inductively,	the	claim	follows	for	all	n	≥	2.	(i)	Show	that	the	set	M	:=	{μ	∈	M1	(Ω)	:	μ	◦	τ	−1	=	μ}	of	τ	-invariant	measures	is	convex.	Hence	F		≤	δ/ε	<	∞.	Var[Sn	]1+(δ/2)	l=1	Example	15.43	Let	(Yn	)n∈N	be	i.i.d.	with	E[Yn	]	=	0	and	Var[Yn	]	=	1.	As	in
Example	20.33	we	obtain	hn	(P,	τr	;	P)	=	hkn	(P,	τr	;	P)	for	all	k	∈	N,	hence	h(P,	τr	,	P)	=	0.	,	n	−	1,	the	distribution	on	(Ωi	,	Ai	)	depends	on	(ω1	,	.	The	chain	thus	has	period	2.	(iii)	Assume		A1	,	A2	,	.	i=1	n→∞	By	assumption,	limn→∞	Fn	(∞)	=	F	(∞)	and	Fn	(yi	)	−→	F	(yi	)	for	every	i	=	0,	.	Furthermore,	M(μ∗	)	=	σ	(A	∪	Nμ	)	=	{A	∪	N	:	A	∈	A,	N	∈	Nμ	}
and	μ∗	(A	∪	N)	=	μ(A)	for	any	A	∈	A	and	N	∈	Nμ	.	As	shown	in	the	first	step,	for	any	n	∈	N,	there	is	an	open	set	Wn	⊃	Cn	−n−1	.	Hence,	there	exists	a	relatively	compact	Ux	∈	U	with	x	∈	Ux	.	(See	[54,	Chapter	XVII.2a,	page	565].)	♦	Takeaways	A	random	variable	with	finite	nth	moment	possesses	a	characteristic	function	that	is	n-times	differentiable.
At	each	step,	a	ball	is	drawn	and	is	returned	to	the	urn	together	with	an	additional	ball	of	the	same	color.	As	shown	in	Theorem	17.50,	for	this	uniqueness	it	is	sufficient	that	the	chain	be	irreducible.	This	method	is	called	coupling	from	the	past	and	goes	back	to	Propp	and	Wilson	[138]	(see	also	[55,	56,	92,	137,	139,	171]).	,	ωn−1	)	κjn−1	,jn	(ωn−1	,	E)
=	PL	(A).	The	map	Λ∗	is	a	convex	rate	function	but	is,	in	general,	not	a	good	rate	function.	Then	g	∈	C	by	Step	2	and	g	−	f	∞	<	ε	by	construction.	Theorem	13.33	(Helly’s	theorem)	Let	(Fn	)n∈N	be	a	uniformly	bounded	sequence	in	V	.	Indeed,	for	almost	all	x	∈	[0,	1],	P[Y	∈	·	|X	=	x]	=	(Berx	)⊗n	.	Theorem	1.16	(Generated	σ	-algebra)	Let	E	⊂	2Ω	.	Let	ω0
:=	(0,	0,	.	For	a	nice	exposition	including	many	examples,	see	also	[99].	2	2π	−∞	23.1	Cramér’s	Theorem	593	Furthermore,				t2	z2	.	348	15	Characteristic	Functions	and	the	Central	Limit	Theorem	Proof	We	have	n		yk	y¯l	ϕ(tk	−	tl	)	=	k,l=1		n		yk	y¯l	eix(tk	−tl	)	μ(dx)	k,l=1	=			n	yk	eixtk	yl	eixtl	μ(dx)	k,l=1	2					n	=		yk	eixtk		μ(dx)	≥	0.	(ii)	Assume	there	is
a	metric	that	induces	weak	convergence.	.})		+			μn	({k})	−	μ({k})	k∈A∩{0,...,N}	<	ε.	♦	A	main	goal	of	this	section	is	to	show	that	every	infinitely	divisible	distribution	can	be	composed	of	three	generic	ones:	•	the	Dirac	measures	δx	with	x	∈	R,	•	the	normal	distributions	Nμ,σ	2	with	μ	∈	R	and	σ	2	>	0,	and	•	(limits	of)	convolutions	of	Poisson
distributions.	We	assume	that	Pp	[N	≥	3]	>	0	and	show	that	this	leads	to	a	contradiction.	Assume	that	there	is	a	sequence	(tn	)n∈N	of	real	numbers	such	that	|tn	|	↓	0	and	|ϕ(tn	)|	=	1	for	any	n.	As	ν0	is	k=0	νk	,	then	(16.9)	is	equivalent	3	always	finite,	this	in	turn	is	equivalent	to	(x	2	∧	1)	ν(dx)	<	∞.	Let	fy,n	=	1	if	there	exists	an	open	path	of	length	at
most	n	that	connects	0	to	y,	and	fy,n	=	0	otherwise.	Theorem	13.34	Let	E	be	Polish	and	let	μ,	μ1	,	μ2	,	.	,	Ak	with	kl=1	Al	=	E,	for	i1	,	.	Define	two	measures	μ	and	ν	on	(Ω,	A)	by	+	,	Ei	μ	:	Ej	→	P	i∈J		and	ν	:	Ej	→		P[Ei	].	♦	Remark	14.34	The	procedure	can	be	extended	to	n-stage	experiments.	Lemma	18.2	For	any	x	∈	E,	there	exists	an	nx	∈	N	with	pndx
(x,	x)	>	0	for	all	n	≥	nx	.	Therefore,		GεM	≤	{φ0	satisfies	an	LDP	with	rate	function	I	φ	.	It	is	enough	to	show	that	μ1	(C)	=	μ2	(C)	for	all	closed	sets	C	⊂	E	as	the	closed	sets	form	a	∩-stable	generator	of	the	Borel	σ	-algebra	that	contains	E.	For	general	f	,	apply	the	usual	approximation	argument	as	in	Theorem	14.19.	Again,	after	that,	the	three	blocks
consisting	of	Chaps.	Define	An	=	An	(γ	)	:=	max	|Xk2−n	−	X(k−1)2−n	|,	k	∈	{1,	.	Proof	Clearly,	Rd	is	Polish	and	λ	is	locally	finite.	Since	there	are	uncountably	many	A	∈	A	in	general,	we	could	not	simply	unite	all	the	exceptional	204	8	Conditional	Expectations	sets	for	any	A.	R		R	In	particular,	if	X	:	(Ω,	A)	→	R,	B(R)	is	measurable,	then	in	a	canonical
way	X	is	also	an	R-valued	measurable	map.	Let	U−n	be	the	number	of	upcrossings	of	X	over	a,b	.	.)	=	(Xn1	,	Xn2	,	.	,	N}.	k=1	Infer	that	π({y})	≥	∞		)	*	Pπ	τx1	≥	k,	X0	=	x,	Xk	=	y	=	π({x})	μx	({y}),	k=1	where	μx	is	the	invariant	measure	defined	in	Theorem	17.48.	Conclude	that	(Wn	)n∈N	converges	almost	surely	an	in	L1	to	a	random	variable	W	that	is
exponentially	distributed	with	17.4	Discrete	Markov	Chains:	Recurrence	and	Transience	411	parameter	1.	Then	(Ei	)i∈I	is	independent	⇐⇒	(2.7)	holds	for	J	=	I.	Now	for	any	i	∈	N,	let	Di	⊂	Ωi	be	a	countable	dense	subset	and	let	yi	∈	Di	be	an	arbitrary	point.	♣	Exercise	17.6.3	Let	G	be	a	countable	Abelian	group	and	let	p	be	the	transition	matrix	of	an
irreducible	random	walk	X	on	G.	Using	Laplace’s	expansion	formula	for	the	determinant	(elimination	of	rows	and	columns),	we	get	the	recursion	χN	(x)	=	−x	χN−1	(x)	−	r(1	−	r)	χN−2	(x).	We	make	the	elementary	observation	that	for	all	D	⊂	R,	∂f	−1	(D)	⊂	f	−1	(∂D)	∪	Uf	.	For	any	n	∈	N,	define	kn	=	(1	+	ε)n	!	≥	12	(1	+	ε)n	.	Evidently,	a	locally	Hölder-
γ	-continuous	map	is	Hölder-γ	-continuous	at	every	point.	(sup	f	([ti−1	,	tin	)))	1[ti−1	i	i=1	As	t	n+1	is	a	refinement	of	t	n	,	we	have	gn	≤	gn+1	≤	hn+1	≤	hn	.	Theorem	21.39	(Arzelà–Ascoli)	A	set	A	⊂	C([0,	∞))	is	relatively	compact	if	and	only	if	the	following	two	conditions	hold.	,	xn	)	=	1	−	e−θi	xi	.	Why	is	this	not	enough?	+	Bk	n	(1.19)	1.5	Random
Variables	49	(vii)	Let	μ	∈	R,	σ	2	>	0	and	let	X	be	a	real	random	variable	with	1		P[X	≤	x]	=	√	2πσ	2			(t	−	μ)2	dt	exp	−	2σ	2	−∞	x	for	x	∈	R.	In	particular,	C0	:=	{Re(f	)	:	f	∈	C}	⊂	C	is	a	real	algebra	that,	by	assumption,	separates	points	and	contains	the	constant	functions.	j	∈J	j	∈J	The	next	theorem	will	show	that	it	is	enough	to	request	the	validity	of
such	a	product	formula	for	Aj	from	an	∩-stable	generator	of	Aj	only.	Indeed,	for	any	σ	-finite	measure	μ,	we	have	μ(F˜n	)	<	∞	for	all	n	∈	N.	Formally,	the	X1	,	X2	,	.	Now	assume	that	(NI	,	I	∈	I)	fulfills	(P1)–(P5).	Thus,	any	μ	can	be	regarded	as	a	measure	on	E		.	Klenke,	Probability	Theory,	Universitext,	(17.1)	391	392	17	Markov	Chains	In	fact,	(17.1)
clearly	implies	the	Markov	property.	♦	Alternative	Solution	A	different	approach	to	solving	the	problem	of	Example	19.32	is	to	use	linear	algebra	instead	of	network	reduction.	(6.4)	Define	gε	=	2gε/2.	The	individual	coordinates	X(1)	,	.	Now	let	τ	n	:=	2−n	2n	τ	+	1!	for	n	∈	N.	Since	usually	tightness	is	easier	to	check,	we	have	a	powerful	tool	for



showing	the	existence	of	accumulation	points.	Let	Y0	=	0.	x∈E	Then:	(i)	X	is	ergodic	(on	(Ω,	A,	Pπ	)).	Show	that	P[X	∈	Ht	]	=	1,	where	Ht	=	{x	∈	Rd	:	)x,	t*	∈	2πZ}	=	y	+	z	·	(2πt/t22	)	:	z	∈	Z,	y	∈	Rd	with	)y,	t*	=	0	.	,	tN	≤	1,	,	+	N	n	2	=	0.	≤	tk	,	we	get	)		*	n→∞	)		*	Lx	Z˜	tni	i=1,...,k	−→	Lx	Yti	i=1,...,k	.	The	representation	is	also	sometimes	called
Karhunen–Loève	expansion.	A	set	A	∈	2Ω	is	called	μ∗	-measurable	if	μ∗	(A	∩	E)	+	μ∗	(Ac	∩	E)	=	μ∗	(E)	for	any	E	∈	2Ω	.	Since	Pp	[DLi	]	>	0,	and	since	N	=	m	almost	surely,	we	have	NLi	=	m	almost	surely	for	i	=	0,	1.	It	is	well-known	that	exp(z1	+	z2	)	=	©	The	Editor(s)	(if	applicable)	and	The	Author(s),	under	exclusive	license	to	Springer	Nature
Switzerland	AG	2020	A.	Now	assume	the	gamble	is	played	again	and	again.	Let	A	=	σ	({ω}	:	ω	∈	Ω	\	{ω0	}).	n	n]	(iii)	Let	h	∈	R.	By	κ(x,	·	).	Proof	“(ii)	⇒	(i)”	This	is	a	direct	consequence	of	Prohorov’s	theorem	(Theorem	13.29	with	E	=	C([0,	∞))).	In	Lemma	3.10,	we	have	seen	how	to	iterate	the	generating	function	ψ(s)	=	E[s	X1,1	]	=	1/(3	−	2s)	256	11
Martingale	Convergence	Theorems	and	Their	Applications	so	as	to	get	ψn	(s)	=	E[s	Zn	]	=	letting	s	=	n	e−λ/2	,	(2−2n	)s+2n	−1	.	15.1	Separating	Classes	of	Functions..	To	this	end,	We	use	this	in	order	to	show	that	br,p	rν	f	for	k	∈	N,	we	compute	−	({k})	=	r	−1	br,p	k	r(r	+	1)	·	·	·	(r	+	k	−	1)	r	r↓0	(1	−	p)	p	(1	−	p)k	−→	.	224	9	Martingales	Proof	(i)	“	⇒
”	This	has	been	shown	in	the	discussion	above.	Let	F	=	1B	.	The	following	theorem	gives	two	simple	procedures	for	calculating	the	characteristic	functions	of	compound	distributions.	For	x	∈	E,	define	ρA,ε	(x)	=	1	−	ϕ	ε−1	d(x,	A)	.	(1A	f	)	dμ	We	say	that	f	μ	:=	ν	has	density	f	with	respect	to	μ.	assumption,	p(x0	,	y)	>	0	now	implies	y	∈	E1	and	y	∈	E	i	(for
all	n	∈	N	and	Inductively,	we	get	that	pnd+i	(x,	y)	>	0	implies	y	∈	Ei	∩	E	i	=	0,	.	♣	Exercise	1.1.3	Let	(Ω1	,	d1	)	and	(Ω2	,	d2	)	be	metric	spaces	and	let	f	:	Ω1	→	Ω2	be	an	arbitrary	map.	,	Z	D	be	independent	(and	independent	of	the	Poisson	processes)	symmetric	simple	random	walks	on	Z.	≥	|λN	|.	In	order	to	show	that	X	is	a	Markov	chain,	we	compute	
P[Xn	=	xn		X0	=	x,	X1	=	x1	,	.	n→∞	n→∞	(ii)	If	ϕn	−→	f	pointwise	for	some	f	:	Rd	→	C	that	is	partially	continuous	at	0,	then	there	exists	a	probability	measure	Q	such	that	ϕQ	=	f	and	Q	=	w-lim	Pn	.	(ii)	Since	f	+	+	f	−	=	|f	|,	Lemma	4.6(iii)	yields												f	+	dμ	+	f	−	dμ		f	dμ	=		f	+	dμ	−	f	−	dμ	≤		=	f	+	+f	−			dμ	=	|f	|	dμ.	,	AN	∈	Z	R	n=1	and	similarly	Z∗E
,R	.	In	fact,	C(x,y)	C(x)	π({x})	p(x,	y)	=	C(x)	for	all	x,	y	∈	E,	then	X	is	reversible	with	respect	to	C(x,	y)	=	C(x,	y)	C(x)	=	C(y,	x)	=	C(y)	C(y,	x)	=	π({y})	p(y,	x).	For	x,	y	∈	E,	let	)	*	F	(x,	y)	:=	Px	[τy1	<	∞]	=	Px	there	is	an	n	≥	1	with	Xn	=	y	be	the	probability	of	ever	going	from	x	to	y.	1	2	1	2	Γθ,r	∗	Γθ,s	=	Γθ,r+s	for	θ,	r,	s	>	0.	Definition	4.7	(Integral	of
measurable	functions)	A	measurable	function	f	:	3	Ω	→	R	is	called	μ-integrable	if	|f	|	dμ	<	∞.	Indeed,	if	(xn	)n∈N	does	not	have	a	limit	point,	then	by	the	Bolzano–Weierstraß	theorem,	#{n	∈	N	:	xn	∈	[−K,	K]}	<	∞	for	every	K	>	0.	7.2	Inequalities	and	the	Fischer–Riesz	Theorem	165	Now	let	p	∈	[1,	∞).	That	is,	n→∞	n	|t	n	|	:=	max{tin	−	ti−1	:	i	=	1,	.	Note
that	X	is	a	(bounded)	martingale.	In	the	central	limit	theorem	(CLT),	we	study	the	size	and	shape	of	the	typical	fluctuations	around	n	·	E[X1	]	in	the	case	where	the	Xi	have	a	finite	variance.	Now	μ({d(fn	,	f	)	>	ε})	≤	μ({d(fnk	,	fn	)	>	ε/2})	+	μ({d(fnk	,	f	)	>	ε/2}).	Now,	by	Stirling’s	formula,			√	2n	1	=	√	,	lim	n	2−2n	n→∞	n	π		2n	hence	limn→∞	np2n	(0,	0)
=	π1	.	Find	an	example	of	a	class	of	sets	E	that	is	not	∩-stable	and	such	that	σ	(E)	=	δ(E).	n	k	n−k	n	k=0	418	17	Markov	Chains	Note	that	in	the	last	step,	we	used	a	simple	combinatorial	identity	that	follows,	e.g.,	by	the	convolution	formula	(bn,p	∗	bn,p	)({n})	=	b2n,p	({n}).	(ii)	Let	Ω	be	a	finite	nonempty	set.	For	f	∈	L2	([0,	1]),	define	I	(f	)	:=	∞		ξn	)f,
bn	*.	Evidently,	{Xn	=	1	infinitely	often}	=	{sup	S	=	sup	U	}	and	{Xn	=	0	infinitely	often}	=	s	and	sup	R	=	T	r	,	we	thus	have	P[B	c	]	=	{sup	R	=	sup	U	}.	Thus	Aε	is	countable.	Since	f	+	≤	g	+	+	(f	+	−	g	+	)+	(not	only	a.e.),	we	infer	from	Lemma	4.6(i)	and	(iii)					+	f	+	dμ	≤	g	+	dμ.	(i)	For	any	A	∈	σ	(A)	and	ε	>	0,there	exist	mutually	disjoint	sets	A1	,
A2	,	.	Define	qk∗0	=	1{0}	(k)	and	qk∗n	=	k		∗(n−1)	qk−l	ql	for	n	∈	N	l=0	as	the	n-fold	convolutions	of	q.	Similarly,	we	get	F	(x)	=	(−x)−α	F	(−1)	for	x	<	0	(with	the	same	α	∈	(0,	2)	since	it	is	determined	by	the	sequence	(an	)n∈N	).	dy	fX	(x)	(8.17)	Indeed,	by	Fubini’s	theorem	(Theorem	14.19),	the	map	x	→	measurable	for	all	B	∈	B(R)	and	for	A,	B	∈
B(R),	we	have			P[X	∈	dx]	fY	|X	(x,	y)	λ(dy)	A	B		P[X	∈	dx]	fX	(x)	=		A	=		A	B	fY	|X	(x,	y)	λ(dy)	is		f	(x,	y)	λ(dy)	B		λ(dx)	−1	3	f	(x,	y)	λ(dy)	B	f	dλ2	=	P[X	∈	A,	Y	∈	B].	Theorem	21.31	With	respect	to	the	Borel	σ	-algebra	B(Ω,	d),	the	canonical	projections	Xt	,	t	∈	[0,	∞)	are	measurable.	(ii)	Determine	the	invariant	distribution	π	and	show	that	the	chain	is
reversible	with	respect	to	π.	Let	A1	,	A2	⊂	E	be	open	and	let	C	∈	C	with	C	⊂	A1	∪	A2	.	Indeed,	Lemma	1.52	would	then	imply	that	μ∗	is	a	measure	on		the	σ	-algebra	of	μ∗	-measurable	sets	and	the	restricted	measure	μ	:=	μ∗		fulfills	E	μ(A)	=	μ∗	(A)	=	β(A)	for	all	open	A.	At	the	second	stage,	i.i.d.	random	variables	with	distribution	Ξ	are	implemented.	n
n→∞	(23.16)	Note	that,	in	this	inequality,	in	the	infimum	we	cannot	simply	replace	A	∩	En	by	A.	Example	20.8	Let	n	∈	N	\	{1},	let	Ω	=	Z/(n),	let	A	=	2Ω	and	let	P	be	the	uniform	distribution	on	Ω.	i∈I	Example	14.2	(i)	If	Ω1	=	{1,	.	Two	(or	more)	edges	with	resistances	R1	,	.	By	what	we	have	shown	already	(with	X	replaced	by	|X|	∧	N	and	with	Y	=	0	∈	L2
(Ω,	F	,	P)),	and	using	the	elementary	inequality	a	2	≤	2(a	−	b)2	+	2b2,	a,	b	∈	R,	we	infer	'	'	)		2	(		*2	(	)	*	≤	2E	(|X|	∧	N)	−	E[|X|	∧	N		F	]	+	2E	(|X|	∧	N)2	E	E	|X|	∧	N		F	)	*	≤	4E	(|X|	∧	N)2	≤	4E[X2	].	n→∞	(ii)	We	have	Xτ	∧n	−→	Xτ	almost	surely.	Only	here	do	we	need	aperiodicity	of	p.	Hence,	for	fixed	N	>	0,	we	compute	the	fourth	moments	Ex	(Z¯	tn+s	−
Z¯	sn	)4	for	s,	t	∈	[0,	N].	Since	I	is	a	good	rate	function,	the	level	set	K	:=	I	−1	([0,	a])	is	compact.	Indeed,	n-fold	divisibility	alone	does	not	imply	uniqueness	of	the	nth	convolution	root	μ∗1/n	:=	μn	or	of	ϕn	,	respectively.	2	itx	PXn,l	(dx)	=	itE[Xn,l	]	=	0,	since	the	array	kn			ϕn,l	(t)	−	1	=	l=1				ft	(x)	x	2	+	itx	PXn,l	(dx)	l=1	=	kn			l=1	ft	(x)	x	2	PXn,l	(dx)
362	15	Characteristic	Functions	and	the	Central	Limit	Theorem		=	ft	dνn	n→∞	−→	−	t2	2	(by	Lemma	15.50).	By	the	monotonicity	principle,	we	thus	have	Reff	(0	↔	∞)	≥	Reff	♦	Example	19.29	Let	(E,	K)	be	an	arbitrary	connected	subgraph	of	the	square	lattice	(Z2	,	L2	).	The	connection	with	discrete	potential	theory	will	be	investigated	later,	in	Chap.
Theorem	14.12	For	any	i	∈	I	,	let	Ei	⊂	Ai	be	a	generator	of	Ai	.	Indeed,	for	ε	>	0	and	K	=	[−C/ε,	C/ε],	by	Markov’s	inequality,	PXi	(R	\	K)	=	P[|Xi	|	>	C/ε]	≤	ε.	The	Gibbs	sampler	is	a	more	specific	algorithm	often	helpful	in	statistical	mechanics.	More	precisely,	for	any	f	∈	L2	([0,	1],	λ),	there	exist	uniquely	defined	square	summable	sequences	(an	)n∈N
and	(bn	)n∈N0	such	that		2	2	f	=	ha,b	.	25.3).	The	distribution	Muln,p	on	m	N0	is	called	multinomial	distribution	with	parameters	n	and	p.	In	Theorem	14.50,	for	every	x	∈	Rd	,	we	constructed	a		d	[0,∞)	d	⊗[0,∞)	with	measure	Px	on	(R	)	,	B(R	)	Px	◦	(X0	,	Xt1	,	.	Let	h	∈	L1	(μ)	with	h	>	0	a.e.	Let	ε	>	0	and	let		gε/3	be	an	ε/3-bound	for	F	(as	in	(6.5)).	Thus,
in	this	case	(Ω,	A,	P,	τr	)	is	not	ergodic.	Let	Fτn	be	the	σ	-algebra	506	20	Ergodic	Theory	of	τn	-past.	Klenke,	Probability	Theory,	Universitext,	1	2	1	Basic	Measure	Theory	Definition	1.2	(σ	-algebra)	A	class	of	sets	A	⊂	2Ω	is	called	a	σ	-algebra	if	it	fulfills	the	following	three	conditions:	(i)	Ω	∈	A.	,	Xn,kn	be	real	random	variables.	For	example,	the
sufficient	criterion	of	absolute	summability	of	coefficients	(An	)	fails	(see	Exercise	21.5.5).	We	summarize	the	discussion	in	a	theorem	due	to	Chung	and	Fuchs	[27].	7.1	Definitions	We	always	assume	that	(Ω,	A,	μ)	is	a	σ	-finite	measure	space.	21.2	for	a	computer	simulation	of	Xn	,	n	=	0,	1,	2,	3,	10.	However,	as	in	the	proof	of	existence	of	Brownian
motion,	second	moments	are	not	enough;	rather	we	need	fourth	moments	in	order	that	we	can	choose	β	>	0.	Hence,	it	suffices	to	show	that	this	condition	follows	from	the	assumption	E[X2	]	<	∞.	♦	Example	11.17	(Radon–Nikodym	theorem)	With	the	aid	of	the	martingale	convergence	theorem,	we	give	an	alternative	proof	of	the	Radon–Nikodym
theorem	(Corollary	7.34).	∈	A0	.	Note	that	X	is	a	Markov	chain	only	given	W	;	that	is,	under	the	probability	measure	P[X	∈	·	|W	].	Remark	19.9	If	X	is	reversible	with	respect	to	π,	then	π	is	an	invariant	measure	for	X	since			π({y})	p(y,	x)	=	π({x})	p(x,	y)	=	π({x}).	Hence,	let	X	be	uniformly	distributed	on	[0,	1].	Exercise	7.2.1	Show	Hölder’s	inequality	by
applying	Jensen’s	inequality	to	the	function	of	Example	7.13.	(i)	Case	M(E).	♦	10.1	Doob	Decomposition	and	Square	Variation	231	Example	10.6	Let	Y1	,	Y2	,	.	♣	Exercise	8.3.5	(Borel’s	paradox)	Consider	the	Earth	as	a	ball	(as	widely	accepted	nowadays).	+	km	=	n,	we	have			n	k	P[Y	=	k]	=	Muln,p	({k})	:=	p	.	18.1	The	left	Markov	chain	is	periodic	with
period	2,	and	the	right	Markov	chain	is	aperiodic.	All	rights	are	solely	and	exclusively	licensed	by	the	Publisher,	whether	the	whole	or	part	of	the	material	is	concerned,	specifically	the	rights	of	translation,	reprinting,	reuse	of	illustrations,	recitation,	broadcasting,	reproduction	on	microfilms	or	in	any	other	physical	way,	and	transmission	or
information	storage	and	retrieval,	electronic	adaptation,	computer	software,	or	by	similar	or	dissimilar	methodology	now	known	or	hereafter	developed.	It	is	a	tough	book	so	if	you	are	studying	probability	theory	(and	measure	theory)	for	the	first	time	don't	read	this	book	alone.	The	theorem	on	the	tilted	LDP	yields	that	the	sequence	of	Boltzmann
distributions	β	(μn	)n∈N	satisfies	an	LDP	with	rate	n	and	rate	function		I	(x)	=	β	·	F	β	(x)	−	β		inf	y∈M1	(Σ)	β	F	(y)	.	That	is,	in	each	time	step,	a	coin	flip	decides	whether	X	makes	a	jump	according	to	the	matrix	pˆ	or	p.	k=1		(	'	E	(Sk	+	c)2	+	2(Sk	+	c)(Sn	−	Sk	)	+	(Sn	−	Sk	)2	1Ak	k=1	(5.13)	n	n	(		(	'	'		2	E	(Sk	+	c)	1Ak	+	E	(Sn	−	Sk	)2	1Ak	=	k=1	≥	n	
k=1	'	(	E	(Sk	+	c)2	1Ak	.	≥	peN	.	,	tk	∈	[0,	∞),	we	have	n→∞	(Xtn1	,	.	We	make	the	following	simple	observation.	Then	C	is	a	separating	family	for	Mf	(E).	Let	D	=	(Di	)i∈N	and	F	=	σ	(D).	a∈[0,∞)	f	∈F	{|f	|>a}	Proof	Clearly,	(|f	|−g)+	≤	|f	|·1{|f	|>g}	;	hence	(6.3)	implies	uniform	integrability.	♦	m=1	Takeaways	Lq	is	the	dual	space	to	Lp	,	if	p1	+	q1	=	1
and	p	∈	[1,	∞).	Evidently,	a	necessary	condition	is	that	(μn	(E))n∈N	is	bounded.	l=1	Lemma	15.48	For	every	t	∈	R,	we	have	ft	∈	Cb	(R).	Thus,	for	large	n,	the	dependence	of	An	(ϕ)	on	the	first	l	coordinates	is	negligible.	The	process	N˜	fulfills	(i)	and	(ii),	but	not	(iii).	♦	What	is	the	condition	for	three	events	A1	,	A2	,	A3	to	be	independent?	Consider	now
the	event	B	c	where	infinitely	many	balls	of	each	color	are	drawn.	By	(iv),	(X	−	a)+	=	Y	∨	0	is	also	a	submartingale.	This	is	more	than	just	coincidence.	Then,	for	every	z	∈	E,	μx	p({z})	=		y∈E	μx	({y})	p(y,	z)	=	∞			n=0	y∈E	pn	(x,	y)	p(y,	z).	As	E	is	Polish,	there	exists	a	regular	conditional	distribution	(see	Theorem	8.37)	Ξ∞	:=	L[X1		A].	♦	In	order	to
define	independence	of	larger	families	of	events,	we	have	to	request	the	validity	of	product	formulas,	such	as	(2.2)	and	(2.3),	not	only	for	pairs	and	triples	but	for	all	finite	subfamilies	of	events.	Using	the	Markov	property	(third	and	fifth	equalities	in	the	following	equation)	and	the	induction	hypothesis	(fourth	equality),	we	get	'		(	Ex	f	(Xt	+s	)t	≥0		Fs	'	)
	*		(	=	Ex	Ex	f	(Xt	+s	)t	≥0		Ftn	+s		Fs		(	'	)		*		=	Ex	Ex	1{Xtn+1	+s	∈Bn+1	}		Ftn	+s	1B1	(Xt1	+s	)	·	·	·	1Bn	(Xtn	+s	)		Fs		(	'	)	*		=	Ex	PXtn	+s	Xtn+1	−tn	∈	Bn+1	1B1	(Xt1	+s	)	·	·	·	1Bn	(Xtn	+s	)		Fs	'	(	)	*	=	EXs	PXtn	Xtn+1	−tn	∈	Bn+1	1B1	(Xt1	)	·	·	·	1Bn	(Xtn	)	'	)	(		*	=	EXs	PX0	Xtn+1	∈	Bn+1		Ftn	1B1	(Xt1	)	·	·	·	1Bn	(Xtn	)	'	)		*(	=	EXs	PX0	Xt1	∈	B1	,	.
Up	to	a	factor,	we	would	thus	get	(17.18)	without	using	the	multidimensional	local	central	limit	theorem.	By	(iv)	and	(v),	ϕ	is	differentiable	in	I	◦	\	A	with	derivative	D	+	ϕ.	The	ideal	tools	for	the	treatment	of	central	limit	theorems	are	so-called	characteristic	functions;	that	is,	Fourier	transforms	of	probability	measures.	Exercise	17.1.1	Let	I	⊂	R	and	let
X	=	(Xt	)t	∈I	be	a	stochastic	process.	♣	3	Exercise	4.2.2	Let	f1	,	f2	,	.	♦	Definition	17.3	Let	I	⊂	[0,	∞)	be	closed	under	addition	and	assume	0	∈	I	.	Then	Dom(μ)	=	∅	if	and	only	if	μ	is	stable	(in	the	broader	sense).	Let	Sn∗	:=	X1	+...+X	n	√	.	n→∞	n→∞	Since	μ(A1	)	<	∞,	we	have	lim	μ(An	)	=	0.	,	6},	A3	=	{1,	.	For	example,	consider	the	asymmetric	random
walk	on	Z	that	jumps	one	step	to	the	right	with	probability	r	and	one	step	to	the	left	with	probability	1	−	r	(for	some	r	∈	(0,	1)).	,	k},	pairwise	distinct	j1	,	.	k=0	Proof	Define		n−1	p	1					Yn	:=		Xk	−	E[X0	|I]	n		for	every	n	∈	N.	We	first	define	in	metric	spaces	almost	sure	convergence	and	convergence	in	measure	and	then	compare	both	concepts.	This
shows	that	the	concepts	formed	in	Sect.	For	x	∈	E	and	r	>	0,	denote	by	Br	(x)	=	{y	∈	E	:	d(x,	y)	<	r}	the	ball	with	radius	r	centered	at	x.	21.6	The	Space	C([0,	∞))	.	Finite	measures	on	Polish	spaces	are	Radon	measures.	Then	(Xn	)n∈N	fulfills	the	weak	law	of	large	numbers.	Hence	we	can	solve	(9.3)	and	get	HT	:=	⎧	+	−	⎨	VT	−VT	,	⎩	XT+	−XT−	0,	if
XT+	=	XT−	,	else,	and	VT	−1	=	VT+	−	HT	(XT+	−	XT	−1	)	=	VT−	−	HT	(XT−	−	XT	−1	).	The	indicator	function	1A	:	Ω	→	{0,	1}	is	A	–	2{0,1}	-measurable	if	and	only	if	A	∈	A.	Show	that	μ	=	w-lim	μn	.	(iv)	Every	symmetric	stable	distribution	with	index	α	∈	(0,	2]	and	scale	parameter	α	γ	>	0	(that	is,	the	distribution	with	CFP	ϕα,γ	(t)	=	e−|γ	t	|	)	is
infinitely	n	divisible.	6.2	Uniform	Integrability	159	subsequence	Convergence	almost	everywhere	rm	i	fo	i	t	y	un	rabil	eg	int	e	nc	ue	seq	sub	u	int	nifo	eg	rm	rab	ilit	y	Stochastic	convergence	L1	convergence	Fig.	Theorem	21.48	There	is	a	continuous	version	of	the	Markov	process	Y	with	transition	kernels	(κt	)t	≥0	given	by	(21.45).	Show	that	the	limit
limn→∞	an	/n	exists	and	that	lim	n→∞	1	1	an	=	inf	an	.	Since	(C([0,	1]),		·	∞	)	is	complete,	it	suffices	to	show	that	P-almost	surely	(Xn	)	is	a	Cauchy	sequence	in	(C([0,	1]),		·	∞	).	Proof	As	in	Example	14.48	or	Corollary	16.10	there	exists	a	stochastic	process	X	D	√	that	fulfills	(i),	(ii)	and	(iii).	3		Hint:	Choose	a	finite	family	U		⊂	U	such	that	U	∈U		U	has
Lebesgue	measure	at	least	(1	−	ε)λ(W	).	♣	Exercise	13.2.9	Show	the	implication	“(vi)	⇒	(iv)”	of	Theorem	13.16	directly.	Define	∞		(x	−	an	)+	H	(x)	=	for	any	x	≥	0.	If	we	let	F	(x)	=	#{n	∈	N	:	xn	∈	[0,	x]}	for	x	≥	0	and	F	(x)	=	−#{n	∈	N	:	xn	∈	(x,	0)}	for	x	<	0,	then	μ	=	μF	.	Furthermore,	let	fn	be	constant	to	the	right	of	n	and	for	x	<	0,	define	fn	(x)	=	fn
(−x).	Takeaways	In	many	situations,	stochastic	processes	in	continuous	time	are	constructed	as	limits	of	simpler	processes.	The	arguments	we	gave	there	were	rather	abstract.	3	Then	the	map	F	:	E	→	R,	x	→	f	(ω,	x)	μ(dω)	is	continuous	at	x0	.	Then	there	is	a	set	Ω	+	∈	A	with	ϕ(A)	≥	0	for	all	A	∈	A,	A	⊂	Ω	+	and	ϕ(A)	≤	0	for	all	A	∈	A,	A	⊂	Ω	−	:=	Ω	\	Ω	+	.
∈	n→∞	M(E)	be	measures	such	that	μn	−→	μ	vaguely.	By	the	usual	exhaustion	arguments,	we	can	restrict	ourselves	to	the	case	where	μ	and	ν	are	finite.	Now	let	s,	t	∈	I	with	|s	−	t|	≥	.	Hence,	for	n	≥	n0	,			μn	(A)	−	μ(A)	≤	μn	({N	+	1,	N	+	2,	.	Then	P	equals	the	voltage	at	point	x:	P	=	u(x).	Theorem	13.29	(Prohorov’s	theorem	(1956))	Let	(E,	d)	be	a
metric	space	and	F	⊂	M≤1	(E).	20.2	Ergodic	Theorems	497	Hence,	if	we	let	T	be	the	tail	σ	-algebra	of	(Xn	)n∈N	(see	Definition	2.34),	then	I	⊂	T	=	∞		σ	(Xn	,	Xn+1	,	.	Now	let	H	be	progressively	measurable,	and	assume	E	0	Ht2	dt	<	∞.	The	paths	are	Hölder	continuous	of	any	order	less	than	1/2,	but	almost	surely	they	are	not	Hölder	continuous	of	any
order	larger	than	1/2	at	any	point.	In	many	situations	it	is	desirable	to	have	a	coupling	with	additional	properties	like	all	the	mass	lies	above	the	diagonal.	“	⇐	”	Let	Nn	=	{f	≥	n1	},	n	∈	N.	Hence	(iii)	follows.	♦	Let	X	=	(Xn	)n∈N	be	a	stochastic	process	on	a	probability	space	(Ω,	F	,	P)	with	values	in	a	Polish	space	E.	,	kn	,	n	∈	N	is	an	array	of	random
variables.	Hence	X	is	a	Markov	chain	on	N0	with	transition	matrix	p.	be	sets.	For	larger	values	of	ε,	we	have	|λε,1	|	>	|λε,N/2	|.	The	existence	of	the	Poisson	process	has	not	yet	been	shown.	Now	assume	(ii).	(ii)	Let	Ω	=	{1,	2}	and	E	=	{{1}}.	τxk	is	the	kth	entrance	time	of	X	for	x.	Assume	that	in	the	beginning	there	are	R	red	balls	and	S	black	balls	in
the	urn.	If	f	is	smooth	in	some	sense,	then	the	usual	numerical	procedures	yield	better	orders	of	convergence.	Theorem	16.13	Let	(Xn,	l	;	l	=	1,	.	ϕμ	is	called	the	characteristic	function	of	μ.	Such	a	process	X	is	called	a	Feller	process.	♦	Lemma	1.31	(Properties	of	contents)	Let	A	be	a	semiring	and	let	μ	be	a	content	on	A.	(5.14)	n→∞	For	δ	>	0	and	n	∈
N,	define	Aδn	:=	max{|Sk	|	:	k	≤	kn	}	>	δ	l(kn	)	.	Then	)	*	FY	(x)	=	P	Xi	≤	x	for	all	i	=	1,	.	We	construct	explicitly	a	candidate	X	for	a	Markov	process	with	Q-matrix	q.	k→∞	Reflection	Check	that	in	the	above	proof,	in	general,	we	do	not	have	F	(q)	=	F˜	(q)	for	all	q	∈	Q.♠	294	13	Convergence	of	Measures	Proof	(of	Theorem	13.29(i)	for	the	case	E	=	R)
Assume	F	is	tight	and	(μn	)n∈N	is	a	sequence	in	F	with	distribution	functions	Fn	:	x	→	μN	((−∞,	x]).	,	T	,	define	Xn	=	(1	+	b)	Xn−1	,	if	Dn	=	+1,	(1	+	a)	Xn−1	,	if	Dn	=	−1.	.};	hence	d8	:=	gcd({6,	10,	12,	.	One	can	show	(exercise!)	that	(with	Y	=	Z1	and	X	=	Z1	+	Z2	)		P[Z1	=	k		Z1	+	Z2	=	n]	=	bn,p	(k)	where	p	=	λ1	λ1	+λ2	.	Hence	we	have,	with	nt	=
t/2D!	for	t	→	∞	(compare	Exercise	17.5.2),	P0	[Yt1			*	1	2nt	−n	−1/2	−1/2	1	)	1	=	0]	∼	P	Z2nt	=	0	=	t	.	are	distribution	functions	of	sub-probability	measures,	then	we	define	F	(∞)	:=	limx→∞	F	(x)	and	for	weak	convergence	require	in	addition	F	(∞)	≥	lim	supn→∞	Fn	(∞).	♣	Exercise	14.4.2	Assume	that	(νt	:	t	≥	0)	is	a	convolution	semigroup.	(ii)	For	any
N	>	0	there	are	numbers	C,	α,	β	>	0	such	that,	for	all	s,	t	∈	[0,	N]	and	every	i	∈	I	,	we	have	)	*	E	|Xsi	−	Xti	|α	≤	C	|s	−	t|β+1	.	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	166	Example	7.5	(i)	The	convex	subsets	of	R	are	the	intervals.	,	An	are	pairwise	disjoint;	hence	We	thus	obtain	*	)	Var[Sn	]	+	c2	=	E	(Sn	+	c)2	.	Then	f	≤	∞	·	1N	and	n1N	↑	∞	·	1N	.
Concluding,	we	have	)z,	w*	=	0	for	all	w	∈	W	and	thus	z	∈	W	⊥	.	be	independent	random	variables	with	E[Xn	]	=	0	for	any	n	∈	N	and	V	:=	sup{Var[Xn	]	:	n	∈	N}	<	∞.	♦	Lemma	9.18	Let	I	⊂	[0,	∞)	be	closed	under	addition	and	let	σ	and	τ	be	stopping	times.	Hence	∞		n=1	An	=	∞		(A1	∩	An	)	=	n=2	∞		A1	\	(A1	\	An	)	=	A1	\	n=2	(iii)	Assume	that	A1	,	A2	,	.
k=m+1	=	1[0,t	]	2	=	t	<	∞,	we	have	Xtn	∈	L2	(P)	and	*	)	lim	sup	E	(Xtm	−	Xtn	)2	=	0.	Hence,	for	all	m	∈	N	(with	n0	=	"log	m/	log	α#),		n:	kn	≥m	kn−2	≤	4	∞		α	−2n	=	4	α	−2n0	(1	−	α	−2	)−1	≤	4(1	−	α	−2	)−1	m−2	.	♦	Let	X	be	a	(possibly	unfair)	game	where	Xn	−	Xn−1	is	the	gain	per	euro	in	the	nth	round.	To	this	end,	we	use	Sanov’s	theorem	to
derive	a	version	of	Cramér’s	theorem	for	Rd	-valued	random	variables	taking	only	finitely	many	different	values.	For	x	>	0,	we	have	P1	[e−t	Xt	>	x]	=	P[Xt	>	et	x]	=	(1	−	e−t	)	et	x!	t	→∞	−→	e−x	.	,	E12	from	Theorem	1.23	(with	n	=	1)	is	a	generator	for	B(R).	For	i	∈	N,	let	di	be	a	complete	metric	that	induces	τi	.	B2	A2	C	Evidently,	B1	⊂	A1	and	B2	⊂	A2
.	and	∞	n=1	An	=	A,	and	•		An	↓	A	and	say	that	(An	)n∈N	decreases	to	A	if	A1	⊃	A2	⊃	A3	⊃	.	“	⇒	”	Let	J	⊂	I	be	finite.	If	C(x,	y)	=	0,	then	we	could	just	as	well	assume	that	there	is	no	wire	connecting	x	and	y.	Remark	9.38	Clearly,	H	·X	is	adapted	to	F.	Exercise	15.6.1	Let	μ	∈	Rd	,	let	C	be	a	symmetric	positive	semidefinite	real	d	×	d	matrix	and	let	X	∼
Nμ,C	(in	the	sense	of	Remark	15.56).	.,	we	obtain	[ω1	]	∩	Bn	=	∅	for	all	n	∈	N.	,	N	−	1})	≤	C	σ	cos	N	for	every	n	∈	N.	The	remaining	random	graph	almost	surely	contains	a	(unique)	infinite	connected	component	if	p	is	larger	than	a	critical	1	value	pc	.	Hence,	let	wi−	∈	(0,	1)	and	wi+	:=	1	−	wi−	for	i	∈	Z.	#{1,	3}	2	=	.	n	n	ξn	(X)	:=	i=1	n→∞	Note	that
by	the	law	of	large	numbers,	P-almost	surely	ξn	(X)	−→	μ.	(iii)	Show	that	the	space	Cc	([0,	∞))	of	continuous	functions	with	compact	support,	equipped	with	the	supremum	norm,	is	separable.	,	n	−	1}	with	Di	=	1,	else.	Show	that	the	process	2		exp	σ	Bt	−	σ2	t	t	≥0	is	a	martingale.	We	say	that	C	separates	points	if	for	any	two	points	x,	y	∈	E	with	x	=	y,
there	is	an	f	∈	C	with	f	(x)	=	f	(y).	Assume	that	we	have	n→∞	ϕn	(t)	−→	1	for	t	in	a	neighborhood	of	0.	♣	Chapter	9	Martingales	One	of	the	most	important	concepts	of	modern	probability	theory	is	the	martingale,	which	formalizes	the	notion	of	a	fair	game.	In	this	case,	we	say	that	p	is	translation	invariant.	(i)	ν	is	called	absolutely	continuous	with
respect	to	μ	(symbolically	ν	0	μ)	if	ν(A)	=	0	for	all	A	∈	A	with	μ(A)	=	0.	Define	λ	:=	lim	sup	ε−1	P[Nε	≥	2].	By	the	translation	invariance	of	the	lattice,	we	have	θ	(p)	=	P[#C	p	(y)	=	∞]	for	any	y	∈	Zd	.	2	2	Λ∗	(z)	=	However,	this	is	the	rate	function	from	Theorem	23.1.	♦	Takeaways	For	random	variables	with	exponential	moments,	in	the	weak	law	of
large	numbers,	the	probability	for	large	deviations	decays	exponentially	fast.	Further,	let	a	≥	0	and	b	≥	0.	Compact	sets	are	closed.	A	class	of	sets	τ	⊂	2Ω	is	called	a	topology	on	Ω	if	it	has	the	following	three	properties:	(i)	∅,	Ω	∈	τ	.	A	continuous	version	of	X	can	be	obtained	via	the	Kolmogorov–Chentsov	theorem	(Theorem	21.6).	By	Kolmogorov’s	0-1
law	(Theorem	2.37),	the	tail	σ	-algebra	T	=	n∈N	σ	(Y	,	m	≥	n)	is	P-trivial.	Assume	that	(PXi	,	i	∈	I	)	and	(PYi	,	i	∈	I	)	are	tight.	,	ωn	])	=	n		i=1	pωi	for	all	ω1	,	.	In	fact,	if	x	is	not	constant	and	if	i,	j	∈	Λ	are	neighbors	with	x(i)	=	x(j	),	then		P[Xn	=	Xn−1		Xn−1	=	x]	≥	P[In−1	=	i,	Nn−1	=	j	−	i]	=	L−d	(2d)−1	.	α	(iii)	For	any	α	∈	{0,	1}I	,	the	family	(Bi	i	)i∈I	is
independent.	Hence	X	have	P	Xt	=	X	(ii)	Let	ε	>	0	and	choose	n	∈	N	large	enough	that	(see	(21.6))	P[Bn	]	≤	C	2−(β−αγ	)n	<	ε.	∈	M1	(R)	with	μn	−→	μ	weakly.	M(E)	Here	we	need	the	slightly	larger	space	in	order	to	define	random	measures	in	such	a	way	that	all	almost	surely	well-defined	operations	on	random	measures	again	yield	random	measures.
13.2	Weak	and	Vague	Convergence	.	(M	−	l)	(N	−	M	−	l)	=	N!	N!	l=0	l=0	(iii)	Let	Y	be	a	random	variable	with	values	in	[0,	1].		(i)	Show	that	∞	i=1	Var[Xi	]	<	∞	implies	that	there	exists	a	real	random	variable	n	n→∞	X	with	i=1	Xi	−→	X	almost	surely.	Then	∞		nγ	−2	P[|Sn	|/n	>	ε]	<	∞	for	any	ε	>	0	⇐⇒	E[|X1	|γ	]	<	∞	and	E[X1	]	=	0.	We	define	β(A)	:=
sup	α(C)	:	C	∈	C	with	C	⊂	A	for	A	⊂	E	open	and	μ∗	(G)	:=	inf	β(A)	:	A	⊃	G	is	open	for	G	∈	2E	.	By	Theorem	6.18(ii)	(with	G	=	{f	}),	we	obtain	that	the	family	(f	−	fnk	)k∈N	is	uniformly	integrable;	hence	there	is	a	0	≤	g	∈	L1	(μ)	such	that	3	(|f	−	fnk	|	−	g)+	dμ	<	ε.	By	the	Heine–Borel	theorem,	a	subset	of	Rd	is	compact	if	and	only	if	it	is	bounded	and
closed.	The	proof	is	similar	to	the	proof	of	Theorem	6.25.	By	the	strong	Markov	property,	(Bt	)t	≥0	:=	(Bτ	+t	)t	≥0	is	a	Brownian	motion	started	at	a		and	is	independent	of	Fτ	.	In	particular,	|gn	|	≤	h	almost	everywhere	for	all	n	∈	N.	By	Theorem	2.13(ii),	we	can	even	assume	that	K	is	finite.	For	ε	>	0,	by	the	convexity,	the	map	x	→	gx	(x	+	ε)	is	monotone
increasing	and	is	continuous	by	(i).	This	array	is	a	null	array	if	and	only	if	(16.4)	holds.	15.	Let	Bb	(E)	=	B	∈	B(E)	:	B	is	relatively	compact	be	the	system	of	bounded	Borel	sets	and	M(E)	the	space	of	Radon	measures	on	E	(see	Definition	13.3).	,	N	−	2},	if	j	=	i	∈	{0,	N},	else.	Thus	σ	Xt	,	t	∈	[0,	∞)	⊂	B(Ω,	d).	In	this	case,	the	claim	VT	is	called	replicable
and	the	strategy	H	is	called	a	hedging	strategy,	or	briefly	a	hedge.	≥	E	X1/p	+	Y	1/p	♦	Before	we	present	Hölder’s	inequality	and	Minkowski’s	inequality,	we	need	a	preparatory	lemma.	The	gambling	strategy	Hn	:=	2n−1	1{D1	=D2	=...=D		n−1	=−1}	for	n	∈	N	and	H0	=	1	is	predictable	and	locally	bounded.	Indeed,	for	k	∈	N	and	mutually	distinct	p1	,
.	Compare	Sect.	2	Proof	By	Lemma	15.48,	we	have	ft	∈	Cb	(R).	Show	that,	for	any	C	>	0,	(Cϕn	)n∈N	converges	weakly	to	the	zero	measure.	#c,t	3∞	Recall	that	0	x	r−1	exp(−x)	dx	=:	Γ	(r).	Note	that	after	two	478	19	Markov	Chains	and	Electrical	Networks	xxx	xxx	xx	xx	xzz	xz	xz	xy	xy	xyy	xyy	x	x	yxx	yxx	yx	y	yy	yyy	yz	yzz	yx	y	yy	yz	z	zx	zz	yyy	yzz	z	zyy
zy	xzz	zyy	zy	zzz	zz	zx	zxx	zzz	zxx	Fig.	In	Chap.	Analogously,	we	find	a	k		subsequence	(n2k	)k∈N	of	(n1k	)k∈N	such	that	Fn2	(q2	)	k∈N	converges.	14.	Example	1.105	We	present	some	prominent	distributions	of	real	random	variables	X.	In	this	chapter,	we	briefly	develop	the	general	framework	of	random	measures	and	construct	the	Poisson	point
process	and	characterize	it	in	terms	of	its	Laplace	transform.	On	the	other	hand,	f	is	Lebesgue	integrable	with	integral	[0,1]	f	dλ	=	0	because	Q	∩	[0,	1]	is	a	null	set.	Now	integrate	over	[0,	t]	and	sum	up.	4.3	Lebesgue	Integral	Versus	Riemann	Integral	111	3∞	3	k→∞	Since	2−k	g(ε)	−→	0,	we	get	0	g	ε	(t)	dt	=	f	ε	dμ.	We	show	the	validity	of	(2.8)	with	J
replaced	by	J˜.	Thus	we	get	the	upper	bound	lim	sup	n→∞	1	log	P[Sn	≥	0]	≤	log		=	−Λ∗	(0).	Replace	the	series	on	top,	bottom	and	right	by	edges	with	resistance	2	(right	in	Fig.	Hence,	for	every	n	∈	N	there	is	an	in	∈	{1,	.	,	Am	∈	A,	then	(4.1)	is	said	to	be	a	normal	representation	of	f	.	Show	that	(15.4)	holds.	,	xtn+1	)	(with	B1	,	.	Define	μ	=	E[X1	]	and
Sn	=	X1	+.	Case	2.	“	⇐	”	Now	assume	that	(i)	and	(ii)	hold.	If	ν	is	totally	continuous	with	respect	to	μ,	then	ν	0	μ.	Hence	the	assumption	was	false.	(Note	in	particular	that	every	metric	space	is	a	T3	1	-space.)	2	Show	that	σ	(Cb	(Ω))	=	B(Ω);	that	is,	the	Borel	σ	-algebra	is	generated	by	the	bounded	continuous	functions	Ω	→	R.	For	example,	choose	−1/2
Hn	(t)	=	n	n			hn	(F	(Xi	)	−	t)	−	gn	(t)	,	i=1	where	hn	is	a	suitable	smoothed	version	of	1(−∞,0]	,	for	example,	hn	(s)	=	31	1	−	(s/εn	∨	0)	∧	1	for	some	sequence	εn	↓	0,	and	gn	(t)	:=	0	hn	(t	−	u)	du.	Each	Bx	is	a	union	of	elements	of	U	each	of	which	is	then	also	relatively	compact.	19.2).	,	DT	be	i.i.d.	Radp	random	variables	(that	is,	P[D1	=	1]	=	1	−	P[D1	=
−1]	=	p).	Choose	n0	∈	N	large	enough	that	|fn	(ti	)	−	f	(ti	)|	≤	ε	for	all	i	=	1,	.	While	Strassen’s	theorem	yields	the	existence	of	an	abstract	coupling,	in	many	examples	a	natural	coupling	can	be	established	and	used	as	a	tool	for	proving,	e.g.,	stochastic	orders.	(5.2)	5.1	Moments	117	Proof	+	,	m	n			αi	Xi	,	e	+	βj	Yj	Cov	d	+	j	=1	i=1	=E	+		m	αi	(Xi	−	E[Xi
])			n	j	=1	i=1	=	n	m			,	βj	(Yj	−	E[Yj	])	)	*	αi	βj	E	(Xi	−	E[Xi	])(Yj	−	E[Yj	])	i=1	j	=1	=	n	m			αi	βj	Cov[Xi	,	Yj	].	Further,	assume	that	the	maps	Fn	can	be	chosen	to	be	almost	surely	monotone	increasing.	By	passing	to	f/f	p	and	g/gq	,	we	may	assume	that	f	p	=	gq	=	1.	Check	that	if	E[Xi	]	=	0	for	all	i	∈	N,	then	instead	of	independence	of	T	,	it	is	enough	to
postulate:	{T	≤	n}	is	independent	of	Xn+1	,	Xn+2	,	.	n	Finally,	let	Ntn	:=	2k=1	Xn	(k).	Then			f	(x)	−	f	(y)	≤	K	d(x,	y)	∧	2	f	∞	for	all	x,	y	∈	E.	,	6}	such	that	Formally,	we	assume	that	there	are	sets	A,	A	=	A˜	×	{1,	.	Then	ν	has	the	density	f	(x)	=	√	2	2π	ex	/2	with	respect	to	μ.	To	do	a	reverse	number	lookup,	choose	a	site	that	offers	the	service,	such	as
WhitePages,	navigate	to	the	phone	lookup	section	and	enter	the	number.	Note	that	p	is	reversible	(see	Sect.	I	am	especially	indebted	to	my	wife	Katrin	for	proofreading	the	English	manuscript	and	for	her	patience	and	support.	Evidently,	∞		P[Xn	−	Xn−1	∞	>	2−n/4	]	<	∞;	hence,	by	the	Borel–Cantelli	n=1	lemma,	';	;	P	;Xn	−	Xn−1	;∞	>	2−n/4	(	only
finitely	often	=	1.	Show	that	(Xn	)n∈N0	is	i.i.d.	given	Z	and	Xi	∼	BerZ	for	all	i	∈	N0	.	Now	Yn	−	Y0	=	(1·Y	)n	=	(H	·Y	)n	+	((1	−	H	)·Y	)n	;	hence	*	)	*	)	E[Yn	−	Y0	]	≥	E	(H	·Y	)n	≥	(b	−	a)E	Una,b	.	Furthermore,	by	assumption,	we	have	E[ϕ(Xt	∗	)+	]	<	∞;	hence	Jensen’s	inequality	implies	that,	for	all	t	∈	I	,		+	*		*	)	*	)	)	≤	E	E[ϕ(Xt	∗	)+		Ft	]	=	E	ϕ(Xt	∗	)+	<
∞.	Example	21.29	(Stochastic	integral	à	la	Paley–Wiener)	Assume	that	(ξn	)n∈N	is	an	i.i.d.	sequence	of	N0,1	-distributed	random	variables.	Definition	2.34	(Tail	σ	-algebra)	Let	I	be	a	countably	infinite	index	set	and	let	(Ai	)i∈I	be	a	family	of	σ	-algebras.	Then	A	=	∞	n=1	(A	∩	Bn	).	Indeed,	v	lies	in	every	open	neighborhood	of	0;	hence	F	assumes	at	v	the
same	value	as	at	0.	Define	u(x)	=	0	for	every	x	∈	A0	and	u(x)	=	1	for	every	x	∈	A1	.	A		Recall	that,	for	any	subset	A	⊂	Ω	of	a	topological	space	(Ω,	τ	),	the	class	τ		is	A	the	topology	of	relatively	open	sets	(in	A).	Proof	Let	B	∈	B(R)	and	let	ϕ	:	E	→	B	be	an	isomorphism	of	measurable	spaces.	Show	this	with	a	different	approach	by	checking	condition	(i)	from
Lemma	3.6.	♣	3.3	Branching	Processes	Branching	processes	are	models	for	the	random	development	of	the	size	of	a	population.	Using	an	argument	similar	to	that	in	the	proof	of	Kolmogorov’s	0–1	law,	one	can	show	that	invariant	events	(defined	by	i.i.d.	random	variables)	have	probability	either	0	or	1	(see	Example	20.26	for	a	proof).	Then	X	is
stationary	on	(Ω,	A,	Pπ	).	The	Fourier	basis	is	not	too	well	suited	to	showing	continuity	of	paths.	Under	what	conditions	do	we	have	q	=	0,	q	=	1,	or	q	∈	(0,	1)?	In	addition,	the	classes	E4	,	.	Note	that	the	graph	HL	has	no	circles.	By	Theorem	1.4,	A	is	closed	under	intersections	and	is	hence	a	semiring.	Define	/l−2	l−1	κjk	,jk+1	.	Definition	1.102
(Random	variables)	Let	(Ω		,	A	)	be	a	measurable	space	and	let	X	:	Ω	→	Ω		be	measurable.	By	2017,	many	states	in	the	United	States	had	even	made	it	illegal	to	print	phone	books,	according	to	TruthFinder.	(ii)	A	triple	(Ω,	A,	μ)	is	called	a	measure	space	if	(Ω,	A)	is	a	measurable	space	and	if	μ	is	a	measure	on	A.	l=0	17.5	Application:	Recurrence	and
Transience	of	Random	Walks	417	This	implies	for	all	L	∈	N	GN	(0,	0)	≥		1	GN	(0,	y)	2L	+	1	|y|≤L	=	N	1			k	p	(0,	y)	2L	+	1	k=0	|y|≤L	1		2L	+	1		N	≥	pk	(0,	y).	“(i)	⇒	(ii)”	Now	assume	(i).	Further,	let	Fn	:=	f		(Xn−1	)	and	Fn	:=	f		(Xn−1	).	For	further	reading,	we	recommend	[14]	and	[82].	Fix	an	x	∈	E	and	for	n	∈	N0	,	let	σxn	=	sup	m	≤	n	:	Xm	=	x	∈	N0	∪
{−∞}	be	the	time	of	last	entrance	in	x	before	time	n.	104	4.3	Lebesgue	Integral	Versus	Riemann	Integral	.	♦	Definition	14.3	(Coordinate	maps)	If	i	∈	I	,	then	Xi	:	Ω	→	Ωi	,	ω	→	ω(i)	denotes	the	ith	coordinate	map.	(iii)	For	each	i	∈	I	,	let	(Ωi	,	Ai	)	be	another	measurable	space	and	assume	that	fi	:	(Ωi	,	Ai	)	→	(Ωi	,	Ai	)	is	a	measurable	map.	(21.7)	Define	the
sets	of	finite	dyadic	rationals	Dm	=	{k2−m	,	k	=	0,	.	...more	S4nNy	rated	it	it	was	amazing	Nov	16,	2017	Gustavo	Ganso	rated	it	really	liked	it	Mar	18,	2015	ShawnLeeZX	rated	it	it	was	amazing	Mar	01,	2018	Jan	rated	it	it	was	amazing	Aug	09,	2016	Mathias	Bach	rated	it	really	liked	it	Mar	29,	2021	Yiming	rated	it	really	liked	it	Mar	31,	2021	Tpinetz
rated	it	it	was	amazing	Mar	22,	2020	John	rated	it	really	liked	it	Jan	19,	2015	Philipp	rated	it	really	liked	it	Apr	13,	2013	Yueshan	Liu	rated	it	it	was	amazing	Oct	07,	2019	Juan	is	currently	reading	it	Jun	29,	2008	Franco	marked	it	as	to-read	Apr	21,	2013	Du	Phan	marked	it	as	to-read	May	02,	2013	Harry	marked	it	as	to-read	Jun	10,	2013	Liam	marked
it	as	to-read	Jun	13,	2016	sprunghaft	marked	it	as	to-read	Mar	04,	2017	Ludwig	Van	marked	it	as	to-read	Sep	18,	2017	Tim	Sudijono	is	currently	reading	it	Feb	11,	2018	Evan	marked	it	as	to-read	Jun	11,	2018	Daniel	marked	it	as	to-read	Mar	08,	2019	Taylor	marked	it	as	to-read	Jul	23,	2019	Shun	Zhang	is	currently	reading	it	Nov	26,	2019	Juan	Bono
is	currently	reading	it	Apr	07,	2020	Petra	marked	it	as	to-read	May	05,	2020	Xiaocan	Li	marked	it	as	to-read	May	08,	2020	Tosiaki	is	currently	reading	it	May	24,	2020	©	1996-2015,	Amazon.com,	Inc.	Then	p	g	p		(x,	y)	>	0	for	all	x,	y	∈	E	and	π	p		=	π	as	well	as	n=1	n	ν	p	=	ν.	Definition	18.17	(Gibbs	sampler)	Let	q	∈	M1	(Λ)	with	q(i)	>	0	for	every	i	∈	Λ.
Then	X	:=	(Xt	)t	≥0	,	(Px	)x∈E	is	a	Markov	process	and	∞		pt	(x,	y)	:=	Px	[Xt	=	y]	=	PT0	[Tt	=	n]	PYx	[Yn	=	y]	n=0	=	e−λt	∞		λn	t	n	n=0	n!	pn	(x,	y).	1.2	Set	Functions	11	Takeaways	σ	-algebras	are	classes	of	sets	that	are	stable	under	countable	intersections	and	unions.	This	power	series	(in	t)	converges	everywhere	(note	that	as	a	linear	operator,	p	has
finite	norm	p∞	≤	1)	to	the	matrix	exponential	function	eλtp	(x,	y).	,	Xn	}	from	Remark	2.24	to	compute	the	Laplace	transform	LM	(t)	=	n!	(t	+	1)(t	+	2)	·	·	·	(t	+	n)	for	t	≥	0.	This	type	of	search	doesn’t	deliver	consistent	results,	though	it	can	be	useful	and	delivers	some	results	in	map	or	satellite	form.Brief	History	of	Phone	BooksThe	first	printed	phone
book	was	handed	out	in	1878	in	New	Haven.	18.2	Coupling	and	Convergence	Theorem	439	Property	(18.6)	says	that	X	visits	the	Ei	one	after	the	other	(see	Fig.	Now	{τ	≤	t}	∈	Ft	since	τ	is	a	stopping	time.	(ii)	Let	X	and	Y	be	martingales	and	let	a,	b	∈	R.	Now	assume	that	r	is	irrational.	2	i	Here	F		·	X	is	the	discrete	stochastic	integral	(see	Definition
9.37).	♦	502	20	Ergodic	Theory	Example	20.18	Let	P	and	Q	be	probability	measures	on	the	measurable	space	(Ω,	A),	and	let	(Ω,	A,	P	,	τ	)	and	(Ω,	A,	Q,	τ	)	be	ergodic.	,	n		ΞN	=	k		1		NΞN	(Al	)	m	.	+	Xn,n⇒	N0,1	.	In	order	to	show	(5.12),	choose	τ¯	:=	min	k	∈	{1,	.	,	BtN	+	x)]	is	continuous	and	bounded.	(8.11)	Consider	the	special	case	where	F	=	σ	(X)	for
a	random	variable	X	(with	values	in	an	arbitrary	measurable	space	(E		,	E		)).	If	β	≤	1,	then	this	is	the	only	solution	and	F	β	attains	its	global	minimum	at	m	=	0.	We	pick	up	this	thread	again	in	Sect.	However,	it	is	not	too	hard	to	show	the	following	theorem,	which	for	the	case	γ	=	1	is	due	to	Paley,	Wiener	and	Zygmund	[126].	18.5	and	18.6	for
computer	simulations	of	equilibrium	states	and	metastable	states	of	the	Ising	model.	The	family	X	=	(Xn	)n∈N	is	called	exchangeable	if	finitely	many	of	the	Xi	can	be	permuted	without	changing	the	distribution	of	the	family.	E[Xt		Fs	]	=	E[Xs		Fs	]	+	E[Xt	−	Xs		Fs	]	=	Xs	+	r=s+1	Thus,	X	is	an	F-martingale.	By	symmetry,	the	potential	at	a	given	node
depends	only	on	the	distance	(length	of	the	shortest	path)	from	the	origin.	,	m	=	m		i=1		e	−λi	k	λi	i	ki	!		.	The	n→∞	sequence	(Xn	)n∈N	fulfills	the	strong	law	of	large	numbers	if	Tn	/n	−→	μ	a.s.	5.3	Strong	Law	of	Large	Numbers	127	∞	)	*	)	*		P	|Xn	|	>	n	≤	E	|X1	|	<	∞.	,	2n	}	≥	2−γ	n	and	Bn	:=	∞		Am	and	m=n	N	:=	lim	sup	An	=	n→∞	∞		Bn	.	In
particular,	#C	p	(x)	is	a	random	variable	for	any	x	∈	Zd	.	e∈A˜	j	pe	for	all	i	∈	N,	(2.4)	j	∈J	Since	this	holds	for	all	finite	J	⊂	N,	the	family	(Ai	)i∈N	is	independent.	Then	there	exists	an	ε	>	0	and	a	˜	nk	,	f	)	>	ε	for	all	k	∈	N.	24.1).	On	the	other	hand,	A	=	{∅}	and	A	=	2Ω	are	the	trivial	examples	of	semirings,	rings	and	σ	-rings.	Inductively,	define	stopping
times	τ1	:=	inf{k	∈	N	:	Sk	<	L	+	ε}	and	τn+1	:=	inf{k	>	τn	:	Sk	<	L	+	ε}	for	n	∈	N.	If,	on	the	other	hand,	λ(A)	=	∞,	then	for	any	L	>	0,	we	have	to	find	a	compact	n→∞	set	C	⊂	A	with	λ(C)	>	L.	Example	10.2	Let	I	=	N0	or	I	=	{0,	.	Letting	ε	↓	0	yields	0	=	P[A](1	−	P[A]).	Definition	9.19	Let	τ	be	a	stopping	time.	Furthermore,	by	(4.7)	(with	f	replaced	by
fkε	),	we		μ({fkε	≥	n})	≤	f	ε	dμ	n=1	≤	2−k	∞		n=0	μ({fkε	>	n})	=	2−k	∞		n=0	μ({f	ε	>	n2−k	})	≤	αkε	+	2−k	g(ε).	p	is	the	transition	matrix	of	simple	(asymmetric)	random	walk	on	the	discrete	torus	Z/(N),	which	with	probability	r	makes	a	jump	to	the	right	and	with	probability	1	−	r	makes	a	jump	to	the	left.	Thus	δ	=	0.	The	details	are	left	as	an
exercise.	For	every	n	∈	N,	let	Sn	=	Xn,1	+	.	are	real	and	i.i.d.	with	E[|Z1	|]	<	∞,	then	1	n→∞	Zi	−→	E[Z1	]	n	n	almost	surely.	that	can	be	considered	as	independent	random	numbers,	uniformly	distributed	on	[0,	1].	From	this	we	infer	P[Z	>	0]	=	0	and	similarly	(with	−X	instead	of	X)	also	lim	inf	n1	Sn	≥	0	n→∞	n→∞	1	n	Sn	−→	0	a.s.	almost	surely.	In	this
chapter,	we	provide	the	abstract	framework	for	the	investigation	of	convergence	of	measures.	Now	{(−∞,	r],	r	∈	Q}	is	a	π-system	that	generates	B(R).	Let	A−	:=	{X)n,n+1*	=	0	for	some	n	<	0}	p	and	A+	:=	{X)n,n+1*	=	0	for	some	n	>	0}.	,	IAn	)	:	n	∈	N;	A1	,	.	In	particular,	suprema	of	continuous	functions	are	lower	semicontinuous.	Let	X1	,	.	<	tn	,	we
have	that	(Nti	−	Nti−1	,	i	=	1,	.	,	Un	∈	U	with	n		λ(Ui	)	>	i=1	1−ε	λ(W	).	Theorem	23.16	(Contraction	principle)	Assume	the	family	(με	)ε>0	of	probability	measures	on	E	satisfies	an	LDP	with	rate	function	I	.	Hence	we	get	for	all	μ	∈	F		1	−	Re(ϕμ	(u))	≤	Rd			1	−	ei)u,x*		μ(dx)	ε2	≤	+	3	≤		[−N,N]d			1	−	ei)u,x*		μ(dx)	ε2	ε2	ε2	+	=	.	Note	that	F	is	the
filtration	generated	by	X,	not	the,	possibly	larger,	filtration	generated	by	D1	,	.	We	use	this	to	construct	the	Metropolis	matrix	(see	[70,	114]).	Let	ε	>	0.	Define	I	=	Ik	.	n∈N	Hence	also	C	:=	max(μ(E),	sup{μn	(E)	:	n	∈	N})	<	∞,	and	we	can	pass	to	μ/C	and	μn	/C.	Note	that,	on	the	trivial	σ	-algebra,	Dirac	measures	for	different	points	ω	∈	Ω	cannot	be
distinguished.	5.2).♠	Sn	=	Proof	Without	loss	of	generality,	assume	E[Xi	]	=	0	for	all	i	∈	N	and	thus		X1	+	·	·	·	+	Xn	.	2	2	2	2	Hence	the	average	free	energy	of	a	particle	is	'1	+	m	1	+	m	1	−	m		1	−	m	(	1	F	β	(m)	=	−	m2	−	hm	+	β	−1	log	+	log	.	Using	the	moment	criterion,	here	we	have	shown	that	also	the	process	of	partial	sums	converges	and	that	the
limit	is	Brownian	motion.	Be	careful,	the	cases	r	=	12	and	r	=	12	are	different.	This	implies	∞	n=1	Bn	=	∅,	contradicting	the	assumption.	m=1	Clearly,	for	n	≥	m,	)	*	E	(Xtm	−	Xtn	)2	=	E	-	n		B	ξk	1[0,t	]	,	bk	k=m+1	=	n		B	1[0,t	]	,	bk	k=m+1	Since	∞	2	k=1	)1[0,t	]	,	bk	*		n		C	B	ξl	1[0,t	]	,	bl	l=m+1	C2	≤	∞		B	C2	1[0,t	]	,	bk	.	21.6	The	Space	C([0,	∞))	545
“⊃”	We	have	to	show	that	open	subsets	of	(Ω,	d)	are	in	A	:=	(B(R))⊗[0,∞)	.	Example	1.37	(Compare	Example	1.30(iii).)	Let	Ω	be	a	countable	set,	and	define	A	=	{A	⊂	Ω	:	#A	<	∞	or	#Ac	<	∞},	μ(A)	=	0,	∞,	if	A	is	finite,	if	A	is	infinite.	Definition	13.3	A	σ	-finite	measure	μ	on	(E,	E)	is	called	(i)	locally	finite	or	a	Borel	measure	if,	for	any	point	x	∈	E,	there
exists	an	open	neighborhood	U		x	such	that	μ(U	)	<	∞,	(ii)	inner	regular	if	μ(A)	=	sup	μ(K)	:	K	⊂	A	is	compact	for	all	A	∈	E,	(13.1)	(iii)	outer	regular	if	μ(A)	=	inf	μ(U	)	:	U	⊃	A	is	open	for	all	A	∈	E,	(iv)	regular	if	μ	is	inner	and	outer	regular,	and	(v)	a	Radon	measure	if	μ	is	an	inner	regular	Borel	measure.	Proof	Let	A	∈	Fσ	and	t	∈	I	.	In	particular,	X	is
uniformly	continuous	on	D;	hence	it	can	be	extended	to	[0,	1].	(16.33)	Theorem	16.29	Let	PX	be	in	the	domain	of	attraction	of	an	α-stable	distribution	(that	is,	assume	that	condition	(ii)	or	(iii)	of	Theorem	16.28	holds),	and	assume	that	(an	)n∈N	is	such	that	C	:=	lim	n→∞	n	U	(an	)	∈	(0,	∞)	an2	exists.	,	An	∈	A	with	A	⊂	ni=1	Ai	.	Assume	fn	↑	f	a.e.	for	n	→
∞.	Example	19.3	Let	X	be	transient	and	let	a	∈	E	be	a	transient	state	(that	is,	a	is	not	absorbing).	(ii)	In	particular,	if	FA	(x,	y)	>	0	for	all	x,	y	∈	E	\	A,	and	if	there	is	an	x0	∈	E	\	A	such	that	f	(x0	)	=	sup	f	(E),	then	f	(x0	)	=	f	(y)	for	any	y	∈	E	\	A.	By	Remark	8.26,	measurability	holds	for	all	B	∈	B(R)	and	hence	κ	is	identified	as	a	stochastic	kernel.	In	this
chapter,	we	investigate	continuity	properties	of	paths	of	stochastic	processes	and	show	how	they	ensure	measurability	of	some	path	functionals.	We	have	used	the	convergence	theorems	from	the	last	section	to	show	that	the	integral	is	continuous	or	differentiable,	respectively,	if	a	regularity	assumption	is	fulfilled.	This	finishes	the	proof.	If	f1	=	f2	on
A,	then	f1	=	f2	.	In	order	to	show	(2.3),	we	compute	P[A1	∩	A2	∩	A3	]	=	3	3		#(A˜	1	×	A˜	2	×	A˜	3	)		#A˜	i	=	=	P[Ai	].	(Recall	that	inf	f	(A)	=	inf{f	(x)	:	x	∈	A}.)	If	K	⊂	E	is	compact	and	nonempty,	then	f	assumes	its	infimum	on	K.	Exercise	13.4.2	Show	that	a	family	(Xn	)n∈N	of	random	variables	is	exchangeable	if	and	only	if,	for	every	choice	of	natural
numbers	1	≤	n1	<	n2	<	n3	.	Similarly,	choose	C2	∈	C	with	B2	⊂	C2	⊂	A2	.	For	s,	t	∈	[0,	1],	we	have	-	n		n	.	(i)	d	:=	dx	=	dy	for	all	x,	y	∈	E.	But	modern	random	number	generators	produce	sequences	that	for	many	purposes	are	close	enough	to	really	random	sequences.)	Define	r(i,	0)	=	0,	r(i,	j	)	=	p(i,	1)	+	.	Define	Sn	:=	n	∈	N0	.	4.1	Construction	and
Simple	Properties	97	3	Remark	4.5	By	Lemma	4.3(iii),	we	have	I	(f	)	=	f	dμ	for	any	f	∈	E+	.	Definition	15.54	Let	C	be	a	(strictly)	positive	definite	symmetric	real	d	×	d	matrix	and	let	μ	∈	Rd	.	We	first	show	that	A0	is	a	σ	-algebra	by	checking	(i)–(iii)	of	Definition	1.2:	(i)	Clearly,	Ω		∈	A0	.	In	the	special	case	where	for	every	n,	the	individual	ϕn,l	are	equal
and	where	n→∞	kn	−→	∞,	equation	(16.4)	holds	automatically	if	the	product	converges	to	a	continuous	function.	Evidently,	#Fn	<	∞	for	all	n	∈	N.	For	any	F	∈	F	,	we	C	3	3C	thus	have	E[fF	1F	]	=	F	fF	dP	=	Q(F	)	=	F	f	dP	=	E[f	1F	];	hence	fF	=	E[f	|F	].	In	particular,	the	probability	generating	function	X	is	characterized	by	its	derivatives	ψX(n)	(1),	n	∈	N,
and	thus	by	the	moments	of	X.	In	this	case,	A	can	be	chosen	to	equal	the	exchangeable	σ	-algebra	E	or	the	tail-σ	-algebra	T	.	∈	A	∞	∞			Ai	,	we	have	μ(A)	≤	μ(Ai	)	.	Hence	we	define	the	effective	resistance	between	x0	and	x1	as	Reff	(x0	↔	x1	)	=	1	1	u(x1	)	−	u(x0	)	=	=−	.	Then	we	say	that	ϕ	is	an	isomorphism	of	measurable	spaces.	♦	20.6	Entropy	513
Takeaways	The	entropy	is	an	important	characteristic	of	a	dynamical	system.	For	different	temperatures	(that	is,	for	different	values	23.4	Varadhan’s	Lemma	and	Free	Energy	607	of	β)	these	can	be	very	different	states.	Definition	15.28	A	function	f	:	Rd	→	C	is	called	positive	semidefinite	if,	for	all	n	∈	N,	all	t1	,	.	Theorem	10.4	Let	X	be	as	in	Definition
10.3.	Then,	for	n	∈	N0	,	)X*n	=	n			*	)	E	(Xi	−	Xi−1	)2		Fi−1	(10.3)	i=1	and	E[)X*n	]	=	Var[Xn	−	X0	].	(v)	This	follows	from	(i)	and	(ii)	with	X	=	X+	−	X−	.	In	particular,	ϕ	need	not	be	locally	Hölder-γ	-continuous.	,	ωl−1	))		Ajl+1	κjl−1	,jl+1	(ωl−1	,	dωl+1	)	fl+1	(ωl+1	)	=	PL	(A).	be	an	independent	family	of	exponentially	distributed	random	variables	with
parameter	α	>	0;	hence	P[Wn	>	x]	=	e−αx	.	k1	!	·	·	·	km	!	1	In	order	to	show	(5.20),	note	that	the	event	in	(5.20)	implies	L	=	n	and	that	L	and	(Mn,1	,	.	Define	f		(ω)	=	0	for	ω	∈	N	and	f		(ω)	=	f	(ω)	else.	Now	define	nk	:=	nkk	.	Corollary	7.27	Let	(V	,	)	·	,	·	*)	be	a	linear	vector	space	with	complete	semi-inner	product.	The	following	theorem	confirms	the
conjecture	mentioned	above	and	also	gives	conditions	under	which	we	cannot	expect	that	infinitely	many	of	the	events	occur.	∪	Aik	).	♣	Exercise	23.2.3	Let	E	=	R.	“	⇒	”	Let	X	be	exchangeable.	We	now	consider	σ	-algebras	that	are	generated	by	more	than	one	map.	In	particular,	Rad1/2	is	called	the	Rademacher	distribution.	By	definition,	μ∗	is	σ	-
subadditive;	hence	we	conclude	by	Theorem	1.36	that	μ∗	is	also	σ	-additive.	,	n,	be	measurable	spaces.	Use	Exercise	15.3.2	to	show	that	n→∞	μn	−→	δ0	.	If	X	is	an	L2	-martingale,	then	X2	is	a	submartingale	and	the	corresponding	increasing	process	is	called	the	variance	process	or	square	variation	process.	Since	μ	is	additive	(and	thus	n=1	monotone),
we	have	by	(ii)	m			μ(An	)	=	μ	n=1	It	follows	that	m		An	≤	μ(A)	for	any	m	∈	N.	Summing	up,	we	have	α	=	lim	ϕ(Am	)	≤	lim	ϕ(Em	)	=	ϕ(Ω	+	).	,	xN−1	,	then	we	define	x0	:=	r	xN	:=	λ−1	xN−1	and	get	that	in	fact	xr	=	λx.	Evidently,	S¯	n	=	T¯	K,n	+	U¯	K,n	.	Let	Aj0	,	.	(See	[82,	Lemma	4.1].)	Q	Let	M(E)	be	the	space	of	all	measures	on	E	endowed	with	the	σ
-algebra			=	σ	IA	:	A	∈	Bb	(E)	.	536	21	Brownian	Motion	Let	H	=	L2	([0,	1])	be	the	Hilbert	space	of	square	integrable	(with	respect	to	Lebesgue	measure	λ)	functions	[0,	1]	→	R	with	inner	product		)f,	g*	=	[0,1]	f	(x)g(x)	λ(dx)	√	and	with	norm	f		=	)f,	f	*	(compare	Sect.	Thus	(fn	)n∈N	is	also	a	Cauchy	sequence	in	measure;	hence	it	converges	in	measure
by	Corollary	6.15.	Assume	in	addition	that	the	yk	are	chosen	such	that	ϕ	is	convex	on	[0,	∞).	15,	we	will	see	how	the	variance	determines	the	size	of	the	typical	deviations	of	the	arithmetic	mean	from	the	expectation.	In	the	following,	let	X	be	a	Markov	chain	on	the	countable	space	E	with	transition	matrix	p.	It	is	easy	to	see	that	G	is	a	Dynkin	system.
Let	q1	,	q2	,	.	0	Using	dominated	convergence,	we	conclude	that	lim	sup	Pn	([−K,	K]	)	≤	α	c	−1	n→∞	=	α	−1	=	α	−1		lim	sup	n→∞			1	1		1	−	Re(ϕn	(t/K))	dt	0		lim	1	−	Re(ϕn	(t/K))	dt	n→∞	0	1		1	−	Re(f	(t/K))	dt.	In	fact,	in	many	applications	it	is	useful	to	have	subtle	dependence	structures	in	order	to	couple	Markov	chains	with	different	initial	chains.	Let
T1	,	T2	,	.	Determine	the	set	of	all	invariant	distributions.	Let	us	construct	a	code	C	=	(c(e),	e	∈	E)	that	is	efficient	in	the	sense	that	it	minimizes	the	expected	length	of	the	code	(of	a	random	symbol)	Lp	(C)	:=		pe	l(e).	,	Vxn	of	E	and	define	g	:=	max(gx1	,	.	(21.29)	(ii)	For	all	η,	ε	>	0	and	N	∈	N,	there	is	a	δ	>	0	such	that		Pi	ω	:	V	N	(ω,	δ)	>	η	≤	ε	for	all	i	∈
I.	By	symmetry,	we	have	Pa	[B1−τ	>	a	|τ	<	1]	=	12	;	hence		P[B1	>	a]	=	P[B1	>	a		τ	<	1]	P[τ	<	1]	=	Pa	[B1−τ	>	a]	P[τ	<	1]	=	1	P[τ	<	1].	n=0	Hence	we	get	μ({n})	=	μ({0})	n−1		pk	k=0	and	(note	that	the	sum	is	a	telescope	sum)	μ({0})	=	μ({0})	∞		n=0	(1	−	pn	)	n−1		k=0		pk	=	μ({0})	1	−	∞			pn	.	In	particular,	Var[X]	=	Cov[X,	X].	...	By	the
composition		theorem	(Theorem	1.80),	for	any	measurable	map	f	:	(Ω,	A)	→	R,	B(R)	the	maps	f	!	and	"f	#	are	also	A	–	2Z	-measurable.	Thus,	*	using)	the	tower	property,	we	infer	E[XY	]	=	E[E[X	|F	]Y	]	and	E	XE[X	|F	]	=	E	E[XE[X	|F	]		F	]	=	)	*	E	E[X	|F	]2	.	♦	In	most	cases	the	class	of	open	sets	that	generates	the	Borel	σ	-algebra	is	too	big	to	work	with
efficiently.	n=1	Proof	“	⇐	”		Assume	that	(i),	(ii)	and	(iii)	hold.	Choose	a	maximal	sequence	U		(sorted	by	decreasing	lengths)	of	disjoint	intervals	and	show	that	each	U	∈	U		is	in	(x	−	3a,	x	+	3a)	for	some	(x	−	a,	x	+	a)	∈	U		.	∈	Z	R	be	pairwise	disjoint	and	let	A	∈	Z	R	k	with	A	⊂	∞	k=1	A	.	,	An	∈	A	such	that	μ	A		Ak	<	ε.	If	E[X]	∈	I	◦	,	then	let	t	+	:=	D	+
ϕ(E[X])	be	the	maximal	slope	of	a	tangent	of	ϕ	at	E[X].	However,	this	is	not	very	plausible.	e∈E		e∈E	pe	l(e)	=	−		pe	log2	(qe	)	≥	H2	(p).	(ii)	For	A	∈	A	,	we	denote	{X	∈	A	}	:=	X−1	(A	)	and	P[X	∈	A	]	:=	P[X−1	(A	)].	The	converse	implication	is	false.	Hence	we	assume	now	that	p	∈	(0,	1)	and	θ	(p)	>	0.	If	g	:	Ω	→	[0,	∞]	is	measurable,	then	(by	Theorem
4.15)		(7.4)	2	√1	e	−x	/2	2π		g	dν	=	gf	dμ.	Then	(with	p(x,	y)	=	C(x,	y)/C(x)),	u(1)	=	1	·	p(1,	2)	+	0	·	p(1,	0)	=	=	R(1,	0)	C(1,	2)	=	C(1,	2)	+	C(1,	0)	R(1,	0)	+	R(1,	2)	Reff	(1	↔	0)	.	We	assume	that	F	is	countably	generated;	that	is,	there	exist	countably	many	sets	A1	,	A2	,	.	Then	the	Metropolis	matrix	p	of	q	and	π	is	irreducible	with	unique	invariant
distribution	π.	Hence	we	only	have	to	show	that	κ	is	surjective.	Reflection	In	the	situation	of	Theorem	19.35,	come	up	with	an	example	such	that	n→∞	E[Wi+	−	Wi−	]	>	0	but	still	Xn	−→	−∞	holds.	Using	a	contour	argument,	as	for	percolation	(see	[127]),	one	can	show	that	(for	d	≥	2)	there	exists	a	critical	value	βc	=	βc	(d)	∈	(0,	∞)	such	that	0	m(β)	>	0,
=	0,	if	β	>	βc	,	if	β	<	βc	.	i=1		Define	probability	measures	Px	on	(Rd	)N0	,	(B(Rd	))⊗N0	by	Px	=	P◦(S	x	)−1	.	However,	ϕ	cannot	be	a	(random)	signed	measure.	♠	Definition	23.6	(Rate	function)	A	lower	semicontinuous	function	I	:	E	→	[0,	∞]	is	called	a	rate	function.	Hence	A	is	predictable	and	monotone	decreasing,	A0	=	0,	and	M	is	a	martingale.	If	|E|
≥	2,	then	there	is	no	absorbing	state.	Repeat	a	random	experiment	with	possible	outcomes	e	∈	E	and	probabilities	pe	for	e	∈	E	infinitely	often	(see	Example	1.40	and	Theorem	1.64).	,	XN	)	∈	A˜	ε	,	(Xn	,	Xn+1	,	.	Clearly,	P[A]	=	12	and	P[B]	=	12	.	Hence	ϕ	is	a	topological	isomorphism.	,	jn	∈	I	are	pairwise	distinct.	,	1[1/2,1)(τrn−1	(x))	Clearly,	we	have
#φn	([0,	1))	=	#Pn	.	,	xn	∈	K	such	that	K	⊂	U	:=	n	1	U	x	j	.	Further,	with	the	choice	a	,	we	can	change	X	into	a	martingale.	However,	the	characterization	in	terms	of	Laplace	transforms	is	a	bit	simpler	in	the	case	of	locally	compact	Polish	spaces	considered	here.	e	2π	a	Proof	By	the	scaling	property	of	Brownian	motion	(Corollary	21.12),	without	loss	of
generality,	we	may	assume	T	=	1.	Any	subsequent	person	takes	his	or	her	reserved	seat	if	it	is	free	and	otherwise	picks	a	free	seat	at	random.	3	p→∞	(i)	If	|f	|p	dμ	<	∞	for	some	p	∈	(0,	∞),	then	f	p	−→	f	∞	.	Let	pe	be	the	probability	of	the	symbol	e	∈	E.	Then	z	=	limn→∞	wn	−	x	=	c	by	continuity	of	the	norm	(Lemma	7.23).	This	is	possible,	as	F	is	right
continuous.	,	μN	be	an	orthonormal	basis	of	left	eigenvectors	for	the	eigenvalues	λ1	,	.	(i)	(ii)	(iii)	(iv)	B0	=	0,	B	has	independent,	stationary	increments	(compare	Definition	9.7),	Bt	∼	N0,t	for	all	t	>	0,	and	t	→	Bt	is	P-almost	surely	continuous.	In	order	to	find	a	necessary	and	sufficient	condition	on	the	growth	of	(wn	),	we	need	more	subtle	methods	that
appeal	to	the	above	example	of	the	explosion	of	a	Markov	process.	,	Xk	)-measurable	and	Sn	−	Sk	is	σ	(Xk+1	,	.	However,	this	is	the	statement	of	Pólya’s	theorem.	For	A	⊂	Ω	−	,	A	∈	A,	we	would	have	ϕ(A)	≤	0	since	α	≥	ϕ(Ω	+	∪	A)	=	ϕ(Ω	+	)	+	ϕ(A)	=	α	+	ϕ(A).	A	signed	content	ν	is	an	additive	set	function	that	is	the	difference	ν	=	ν	+	−	ν	−	of	two
finite	contents.	3.1	Definition	and	Examples	.	A	little	differently	from	the	usual	convention,	assume	that	Θ	takes	values	in	[0,	π)	and	Φ	in	[−π,	π).	t	∈[0,T	]	Show	Doob’s	inequalities:	*	)	*	)	(i)	For	any	p	≥	1	and	λ	>	0,	we	have	λp	P	|X|∗T	≥	λ	≤	E	|XT	|p	.	♦	14.1	Product	Spaces	305	Definition	14.6	Let	I	=	∅	be	an	arbitrary	index	set,	let	(E,	E)	be	a
measurable	space,	let	(Ω,	A)	=	(E	I	,	E	⊗I	)	and	let	Xt	:	Ω	→	E	be	the	coordinate	map	for	every	t	∈	I	.	We	will	see	that	this	is	indeed	possible.	(13.2)	276	13	Convergence	of	Measures	Definition	13.4	We	introduce	the	following	spaces	of	measures	on	E:	M(E)	:=	Radon	measures	on	(E,	E)	,	Mf	(E)	:=	finite	measures	on	(E,	E)	,	M1	(E)	:=	μ	∈	Mf	(E)	:	μ(E)	=
1	,	M≤1	(E)	:=	μ	∈	Mf	(E)	:	μ(E)	≤	1	.	Define	Xnλ	=	)λ,	Xn	*,	Snλ	=	)λ,	Sn∗	*	and	S∞	∼	N0,C	.	(i)	Show	by	a	direct	computation	using	only	the	definition	of	stability	that	|ϕ(t)	−	1|	≤	C|t|α	for	t	close	to	0	(for	some	C	<	∞).	Let	A	∈	A	with	μ(A)	=	0.3Then	Z	=	{A,	Ac	}	∈	Z	and	fZ	=	1Ac	ν(Ac	)/μ(Ac	).	As	E	is	locally	compact,	there	is	a	compact	set	L	with	K	⊂
L◦	⊂	L	⊂	G.	Proof	Let	ϕ	be	such	a	coupling.	The	distribution	of	a	sum	of	independent	random	variables	can	be	computed	using	a	convolution	formula	(Theorem	2.31).	However,	F	(x)	=	)x,	f	*	for	all	x	∈	V	by	the	definition	of	F0	and	)	·	,	·	*0	.	is	a	martingale.	i∈I	(iii)	Let	μ	be	a	σ	-finite	measure	on	A,	and	assume	every	Ei	is	also	a	π-system.	19.2	Parallel
connection	of	six	resistors.	,	jn	∈	{1,	.	Note	that	ϕ(t)	=	ψ(t)	for	|t|	≤	π/2	and	ϕ(t)	=	0	for	|t|	>	π/2;	hence	ϕ	2	=	ϕ	·	ψ.	Now	apply	(16.2)	with	zn	=	|ϕn	(t)|2	.	(iii)	Determine	E[ei	t1	X1	+i	t2	X2	]	and	E[eit1	Y1	+it2	Y2	]	for	t1	=	12	and	t2	=	2.	For	every	ω	∈	Ω,	we	say	that	the	map	I	→	E,	t	→	Xt	(ω)	is	a	path	of	X.	Hence	also	(Xn	(k),	k	=	1,	.	0	=	ν(An	)	−	ν(An	)
=	An	By	Theorem	4.8(i),	f2	1An	=	f1	1An	μ-a.e.	As	f1	>	f2	on	An	,	we	infer	μ(An	)	=	0	and			μ({f1	>	f2	})	=	μ	An	=	0.	Further,	we	write	f	(x)	=	f	(x1	,	.	367	16.2	Stable	Distributions	..	Let	I	be	the	19.3	Finite	Electrical	Networks	469	corresponding	current	flow.	(vii)	(Two-sided	exponential	distribution)	If	X	and	Y	are	independent	expθ	distributed	random
variables,	then	it	is	easy	to	check	that	X	−	Y	∼	exp2θ	.	A	map	ϕ	:	E	→	E		is	called	Hölder-continuous	of	order	γ	(briefly,	Hölder-γ	-continuous)	at	the	point	r	∈	E	if	there	exist	ε	>	0	and	C	<	∞	such	that,	for	any	s	∈	E	with	d(s,	r)	<	ε,	we	have	d		(ϕ(r),	ϕ(s))	≤	C	d(r,	s)γ	.	286	13	Convergence	of	Measures	D	Note	that	(13.7)	implies	F	(∞)	≤	lim	infn→∞	Fn	(∞).
Then		*	)	Sn−1	+	M	.	i=1	(ii)	There	is	a	modification	of	W	such	that	t	→	Wt	is	almost	surely	continuous	(see	Remark	21.7).	By	Theorem	7.33,	we	get	that	ν	=	νa	has	a	density	with	respect	to	μ.	We	say	that	(με	)ε>0	satisfies	a	large	deviations	principle	(LDP)	with	rate	function	I	if	(LDP	1)	lim	inf	ε	log(με	(U	))	≥	−	inf	I	(U	)	for	every	open	U	⊂	E,	(LDP	2)
lim	sup	ε	log(με	(C))	≤	−	inf	I	(C)	for	every	closed	C	⊂	E.	(Here	P	could	be	an	arbitrary	measure	on	(Ω,	A).)		∗	(ii)	If	(An	)n∈N	is	independent	and	∞	n=1	P[An	]	=	∞,	then	P[A	]	=	1.	Each	of	the	x	individuals	has	an	exponentially	distributed	lifetime	with	parameter	1.	,	2n	},	n	≥	n0	.	Theorem	8.36	Let	E	be	a	Polish	space	with	Borel	σ	-algebra	E.	The
numbers	r1	,	r2	,	.	On	the	other	hand,	∞		)	*	)	*	E	1A	Yn	E[X	|F	]	=	E	1A	1{Yn	=k	2−n	}	k	2−n	E[X	|F	]	k=1	=	∞		)	*	E	1A	1{Yn	=k	2−n	}	k	2−n	X	k=1	)	*	n→∞	=	E	1A	Yn	X	−→	E[1A	Y	X].	Then	there	exists	an	F	∈	V	and	a	subsequence	(Fnk	)k∈N	with	k→∞	Fnk	(x)	−→	F	(x)	at	all	points	of	continuity	of	F.	1.1	Classes	of	Sets	In	the	following,	let	Ω	=	∅	be	a
nonempty	set	and	let	A	⊂	2Ω	(set	of	all	subsets	of	Ω)	be	a	class	of	subsets	of	Ω.	Then		Xσ	≥	E[Xτ		Fσ	],	and,	in	particular,	E[Xσ	]	≥	E[Xτ	].	First	consider	l	=	n.	By	construction,	for	any	f	∈	Cc	(E),	we	infer			f	dμ	=	lim	f	dμknn	.	2.3)	is	transient.	Takeaways	Consider	an	i.i.d.	sequence	of	random	variables	with	values	in	a	finite	set.	For	any	x	∈	R,	we	have
{X∗	≤	x}	∈	T	((Xn	)n∈N	);	n→∞	hence	P[X∗	≤	x]	∈	{0,	1}.	n=2	∞		An	as	a	countable	n=1	An	=	A1	(A2	\A1	)	((A3	\A1	)\A2	)	(((A4	\A1	)\A2	)\A3	)	.	For	any	p	∈	[1,	∞],	N	is	a	subvector	space	of	Lp	(μ).	,		StnN	−		StnN−1	)	−→	L[(Bt1	−	Bt0	,	.	(17.33)	In	fact,	let	f	:	{0,	.	Consequently,	hn	(P,	τr	;	P)	≤	log(2n).	As	with	the	voter	model	(see	Example	11.16)	that	is
closely	related	to	Wright’s	model,	we	can	argue	that	the	limit	X∞	can	take	only	the	stable	values	0	and	1.	Hence	Evidently,	Z	◦	τ	=	Z;	hence	F	∈	I.	We	first	investigate	convergence	with	respect	to		·	p	.	The	powers	of	M	are	easy	to	compute:		Mψ	=		0	1	,	−1	2	Mψ2	=			−1	2	,	−2	3	Mψ3	=			−2	3	,	−3	4	and	inductively	Mψn	=		−(n	−	1)	−n	n		n+1	.	<
e−cn/2	k=−n	Therefore,	−	RW	=	∞		1		k−1	n−	0	−1	≤	n=1	k=−n	1			k−1	+	∞		e−cn/2	<	∞	a.s.	n=n−	0	n=1	k=−n	+	Similarly,	there	is	an	n+	0	=	n0	(ω)	with	n		k	>	ecn/2	for	all	n	≥	n+	0.	In	the	first	section,	we	study	which	probability	measures	on	R	are	infinitely	divisible	and	give	an	exhaustive	description	of	this	class	of	distributions	by	means	of	the
Lévy–Khinchin	formula.	This	is	often	called	the	mean	field	assumption.	are	i.i.d.	real	random	variables,	then	(PSn	/n	)n∈N	satisfies	an	LDP	with	rate	function	Λ∗	.	♦	19.4	Recurrence	and	Transience	0	479	1	R(0,	1)	=	1/3	2	R(1,	2)	=	2/9	3	R(2,	3)	=	4/27	Reff	(0	↔	2)	=	5/9	Reff	(0	↔	3)	=	19/27	Fig.	Reflection	In	the	proof	of	Theorem	5.10,	where	did	we	use
the	independence	of	T	?	Hence	the	measure	PX	is	characterized	by	its	values	on	I.	Then,	by	symmetry,	also	f	≥	0	and	hence	f	≡	0.	If	E	has	a	finite	diameter	diam(E),	then	dW	(P	,	Q)	≤	(diam(E)	+	1)dP	(P	,	Q)	for	all	P	,	Q	∈	M1	(E).	n!	Thus,	for	|h|	<	1/(3α),		)	n	*	*1/n	)	·	|h|	·	e/n	lim	sup	E	|X|n	·	|h|n	/n!	=	lim	sup	(2π	n)−1/2	E	|X|n	n→∞	n→∞	≤	lim	sup	(2π
n)−1/2	(e/3)n	=	0.		Hint:	Let	π	=	0	be	an	invariant	measure	for	X	and	abbreviate	Pπ	=	π({x})Px	x∈E	(note	that,	in	general,	this	need	not	be	a	finite	measure).	and	thus	h(P,	τ	)	=	0.	Since	f	nk	−→	f	for	k	→		∞,	we	can	choose	a	subsequence	(fnkl	)l∈N	such	that	μ	Al	∩	d	f,	fnkl	>	1/	l	<	2−l	for	any	l	∈	N.	In	the	following,	we	assume	that	there	exists	an	α	∈
(0,	2]	such	that	U	(x)	x	α−2	is	slowly	varying	at	∞.	By	Lemma	4.6(iii),	we	infer		(f	+g)+	dμ+		f	−	dμ+	Hence				(f	+	g)	dμ	=	g	−	dμ	=		(f	+g)−	dμ+		+	(f	+	g)	dμ	−		=		+	f	dμ	−		=	f	+	dμ+		g	+	dμ.	Theorem	1.15	(Intersection	of	classes	of	sets)	Let	I	be	an	arbitrary	index	set,	and	assume	that	Ai	is	a	σ	-algebra	for	every	i	∈	I	.	The	probabilistic	meaning	of
this	fact	is	that	as	a	continuous	function	log(ϕ(t))	is	uniquely	defined	and	thus	there	exists	only	one	continuous	function	ϕ	1/n	=	exp(log(ϕ)/n).	442	18	Convergence	of	Markov	Chains	ˆ	Yˆ	)	such	that	Yˆ	is	independent	of	By	Step	1,	there	exists	a	successful	coupling	(X,	Xˇ	and	Z1	,	Z2	,	.	The	family	(Ei	)i∈I	is	called	independent	if,	for	any	finite	subset	J	⊂	I
and	any	choice	of	Ej	∈	Ej	,	j	∈	J	,	we	have	P	+	j	∈J	,	Ej	=		P[Ej	].	(i)	F	is	the	distribution	function	of	a	12	-stable	distribution.	Here	φ(t)	=	D1	D	i=1	cos(ti	).	For	any	c	>	0,	we	have						|f	−	g|p	=	|f	−	g|p	1{|f	−g|≤c}	+	|f	−	g|p	1{|f	−g|>c}	≤	cp	+	cp	−p	|f	−	g|p	.	Definition	12.20	(Conditional	independence)	Let	(Ω,	F	,	P)	be	a	probability	space,	let	A	⊂	F	be	a
sub-σ	-algebra	and	let	(Ai	)i∈I	be	an	arbitrary	family	of	sub-σ	-algebras	of	F	.	Takeaways	For	a	Markov	process,	the	conditional	distribution	at	time	t	given	the	full	history	until	some	time	s	<	t	is	a	function	of	the	state	at	time	s	only	and	can	be	described	by	a	stochastic	kernel	κs,t	.	Further,	let	D1	,	.	What	is	the	probability	that	the	first	position	changes
infinitely	often?	It	is	natural	to	use	the	entropy	in	order	to	quantify	also	the	randomness	of	a	dynamical	system.	♣	13.2	Weak	and	Vague	Convergence	289	Exercise	13.2.8	Show	that	(13.4)	defines	a	metric	on	M1	(E)	and	that	this	metric	induces	the	topology	of	weak	convergence.	It	is	easy	to	see	that	α	:=	inf{h(x)	:	|x|	≥	1}	=	1	−	sin(1)	>	0.	Clearly,	it	is
a	crucial	requirement	for	any	strategy	that	the	decision	for	the	next	stake	depend	only	on	the	information	available	at	that	time	and	not	depend	on	the	future	results	of	the	gamble.	k,N=1	Hence	the	claim	follows.	,	p	−	1},	n→∞	log(d	+	1)	−	log(d)	1	#	i	≤	n	:	ai	=	d	−→	.	♣	Exercise	8.3.2	Let	p,	q	∈	(1,	∞)	with	p1	+	q1	=	1	and	let	X	∈	Lp	(P)	and	Y	∈	Lq
(μ).	Then			lim	n→∞	fn	dμ	=	f	dμ,	where	both	sides	can	equal	+∞.	For	λ	≥	0,	applying	(21.45)	twice	yields			κt	(x,	dy)κs	(y,	dz)	e−λz	=				λy	κt	(x,	dy)	exp	−	λs	+	1			λ	=	exp	−		=	exp	−		=	λs+1	λ	λs+1	t	+	1	x	λx	λ(t	+	s)	+	1	κt	+s	(x,	dz)	e−λz	.	Clearly,	for	1	log	Pn	((x,	∞))	n	1	≥	sup	lim	inf	log	Pn	([y,	∞))	=	−	inf	I	(y)	n→∞	y>x	n	y>x	−I	(x)	≥	lim	inf	n→∞	1
log	Pn	((−∞,	x))	≥	−	inf	I	(y)	for	x	<	0.	What	is	the	voltage	u(x)	at	x	∈	E	\	A?	Show	that	the	statement	of	the	source	coding	theorem	holds	for	b-adic	prefix	codes	with	H2	(p)	replaced	by	Hb	(p).	n=0	Takeaways	A	state	of	a	Markov	chain	is	called	recurrent	if	the	chain	returns	to	it	almost	surely.	♣	Exercise	5.3.6	We	want	to	check	the	efficiency	of	the
Morse	alphabet.	◦	F1	(x).	Then	u(x)	=	Ex	[u(XτA	)].	Reflection	Can	we	relax	the	condition	in	(viii)	that	the	Xn	be	dominated	to	uniform	integrability	of	(Xn	)n∈N	?	♦	We	collect	the	most	important	rules	of	expectations	in	a	theorem.	Choose	h	and	δ(ε)	>	0	as	in	(ii)	and	C	as	C	in	(i).	Assume	there	exists	an	a	>	0	such	that	for	any	A	∈	A	either	μ(A)	=	0	or
μ(A)	≥	a.	2	Lemma	15.47	If	(i)	of	Theorem	15.44	holds,	then	kn			)	*		lim		log	ϕn	(t)	−	E	eit	Xn,l	−	1		=	0.	♣	7.4	Lebesgue’s	Decomposition	Theorem	In	this	section,	we	employ	the	properties	of	Hilbert	spaces	that	we	derived	in	the	last	section	in	order	to	decompose	a	measure	into	a	singular	part	and	a	part	that	is	absolutely	continuous,	both	with
respect	to	a	second	given	measure.	♣	Exercise	17.3.3	Show	that,	almost	surely,	infinitely	many	balls	of	each	color	are	∞		1	drawn	if	=	∞.	(ii)	For	almost	all	ω	∈	Ω,	the	map	x	→	f	(ω,	x)	is	continuous	at	the	point	x0	.	For	simplicity,	assume	that	Λ	=	{0,	.	i=1	i=1	Hence	Theorem	2.21	(and	Theorem	2.13(i))	yields	the	independence	of	(Xi	)i=1,...,n	.	Theorem
11.20	(Kesten–Stigum	[95])	Let	m	>	1.	Formally,	the	set	of	edges	is	a	subset	of	the	set	of	subsets	of	Zd	with	two	elements:	E	=	{x,	y}	:	x,	y	∈	Zd	with	x	−	y2	=	1	.	Then	P[Nn,t	+1	≥	l]	=	E[hn,l	(Nn,t	)]	and	hn,l	(k)	is	monotone	increasing	both	in	k	and	in	n.	l=1	Hence	Ym	is	σ	(Xm,l	,	l	∈	N)-measurable	and	thus	(Ym	)m∈N	is	independent.	Compute	ψ		(1)
and	the	extinction	probability.	For	any	ω	∈	Ω,	let	κ(ω,	·	)	be	the	probability	measure	on	(Ω,	A)	with	distribution	function	F˜	(	·	,	ω).	(Hint:	Use	Exercise	21.2.3	and	the	optional	sampling	theorem.)	(ii)	τb	has	a	12	-stable	distribution	with	Lévy	measure		√	ν(dx)	=	b/(	2π)	x	−3/2	1{x>0}	dx.	Let	F0	=	{∅,	Ω}	and	Fn	=	σ	(Y1	,	.	Define		I	:=		:=	and	N		0	Q	∩	I,
(Q	∩	I	)	∪	max	I,	r∈	I	Nr	.	,	XT	).	Lemma	15.50	If	(i)	of	Theorem	15.44	holds,	then		n→∞	ft	dνn	−→	−	t2	.	Thus,	the	theorem	is	in	fact	an	improvement	of	Corollary	16.8.	The	benefit	of	this	theorem	will	become	clear	through	the	following	observation.	Hence	μ(B)	=	μ(A)	+	ni=1	μ(Ci	)	≥	μ(A)	and	thus	μ	is	monotone.	We	say	that	(Xn,l	)	=	Xn,l	,	l	=	1,	.
Definition	18.1	(i)	For	x,	y	∈	E,	define	N(x,	y)	:=	n	∈	N0	:	pn	(x,	y)	>	0	.	Define	ST	:=	T		Xi	.	Then	I	(x1	)	is	the	total	flow	into	the	network	and	−I	(x0	)	is	the	total	flow	out	of	the	network.	The	fact	that	in	the	complex	plane	ϕ	has	a	singularity	at	t	=	−iθ	implies	that	the	power	series	of	ϕ	about	0	has	radius	of	convergence	θ	.	5.5	The	Poisson	Process	.	In
this	case,	we	denote	Z	◦	X−1	:=	ϕ	(even	if	the	inverse	map	X−1	itself	does	not	exist).	Proof	Let	k1	,	.	Let	Hn	be	the	number	of	euros	to	bet	in	the	nth	gamble.	Let	Ξ∞	be	a	random	variable	(with	values	in	M1	(E))	such	that	PΞ∞	=	w-lim	Pξnl	(X)	for	a	suitable	subsequence	(nl	)l∈N	.	♣	5.2	Weak	Law	of	Large	Numbers	121	Exercise	5.1.4	Let	X1	,	X2	,	.	For
all	A	∈	A	with	μ(A)	<	δ/(2K),	we	obtain			h	dμ	≤	Kμ(A)	+	h	dμ	<	δ;	{h≥K}	A	hence	3	A	|f	|	dμ	≤	ε	for	all	f	∈	F	.	Then	f	is	Lebesgue	integrable	on	I	with	integral			b	f	dλ	=	f	(x)	dx.	Let	δ	:=	d(K,	Lc	)	>	0	and	let	ρK,δ	be	as	in	Lemma	13.10.	Then	f	is	the	characteristic	function	of	a	probability	measure.	Finally,	for	k	∈	{1,	.	However,	the	map	ω	→	Zt	(ω)	:=	|Xt
(ω)	−	Xt	(ω0	)|	∧	1	is	A-measurable.	This	is	trivial.	Theorem	12.26	(de	Finetti	representation	theorem)	The	family	X	=	(Xn	)n∈N	is	exchangeable	if	and	only	if	there	is	a	σ	-algebra	A	⊂	F	and	an	A-measurable	random	variable	Ξ∞	:	Ω	→	M1	(E)	with	the	property	that	given	Ξ∞	,	(Xn	)n∈N	is	i.i.d.	with	L[X1	|Ξ∞	]	=	Ξ∞	.	,	p−1}.	Then	ψ(x,	y)	=	x	1/p	+	y	1/p	is
concave.	be	independent	and	identically	distributed	with	PXˆ	i	=	μ.	The	random	variable	(Sk	+c)	1Ak	is	σ	(X1	,	.	ε	n	123	0.15	0.10	0.05	3.3	3.33	3.37	3.4	3.43	3.47	3.5	3.53	3.57	3.6	3.63	3.67	3.7	0.00	0.00	0.05	0.10	0.15	0.20	0.20	0.25	0.25	5.2	Weak	Law	of	Large	Numbers	3.3	3.33	3.37	3.4	3.43	3.47	3.5	3.53	3.57	3.6	3.63	3.67	3.7	3.2	3.3	3.4	3.5	3.6
Fig.	Example	20.31	Assume	that	P	is	a	product	measure	with	marginals	π	on	E.	Then	(since	E[Xn+1	−	Xn		Fn	]	=	0)			E[(H	·X)n+1		Fn	]	=	E[(H	·X)n	+	Hn+1	(Xn+1	−	Xn	)		Fn	]		=	(H	·X)n	+	Hn+1	E[Xn+1	−	Xn		Fn	]	=	(H	·X)n	.	Combining	the	Greek	words	gives	rise	to	the	name	ergodic	theory,	which	studies	laws	of	large	numbers	for	possibly
dependent,	but	stationary,	random	variables.	t	almost	surely	and	hence	X		is	a	modification	of	X.	Why	is	it	not	enough	to	assume	in	the	theorem	that	(Xn	)n∈N	be	uncorrelated	(instead	of	pairwise	independent)?	♣	Exercise	18.4.2	Show	(18.17).	18.3	Markov	Chain	Monte	Carlo	Method	..	Hint:	Show	that	the	difference	of	two	independent	recurrent
random	walks	is	a	recurrent	random	walk.	By	the	one-dimensional	central	limit	theorem,	n→∞	we	have	PSnλ	−→	N0,)λ,Cλ*	=	P)λ,	S∞	*	.	Definition	1.103	(Distributions)	Let	X	be	a	random	variable.	,	Dn	.	Here	we	have	the	connection	to	Shannon’s	theorem.	In	particular,	un	(1)	>	0	for	sufficiently	large	n.	We	can	compute	the	effective	resistances	in
parallel	and	serial	connections.	n→∞	n→∞	(iv)	μ	=	v-lim	μn	and	{μn	,	n	∈	N}	is	tight.	,	XT	−1	,	±1)	and	VT±	=	gT	(X1	,	.	are	identically	distributed.			p	)	*	)	*	*	)	p	(ii)	For	any	p	>	1,	we	have	E	|XT	|p	≤	E	(|X|∗T	)p	≤	p−1	E	|XT	|p	.	We	have	thus	shown	the	following	theorem	of	Pólya	[134].	In	this	case,	it	is	enough	to	compute	at	each	step	F	(0)	and	F	(1)
since	F	is	constant	if	the	values	coincide.	Definition	2.3	(Independence	of	events)	Let	I	be	an	arbitrary	index	set	and	let	(Ai	)i∈I	be	an	arbitrary	family	of	events.	1	n	n	k=0	Xk	diverges	16.2	Stable	Distributions	389	Hint:	Compute	the	density	of	F	,	and	show	that	the	Laplace	transform	is	given	by	√	λ	→	e−	2λ	.	If	in	addition	μ	is	σ	-subadditive,	then	μ∗	(A)
=	μ(A)	for	all	A	∈	A.	♣	lim	n→∞	n→∞	integrable	function	on	Exercise	4.2.3	Let	f	∈	L1	([0,	∞),	λ)	be	a	Lebesgue		[0,	∞).	For	any	weak	366	15	Characteristic	Functions	and	the	Central	Limit	Theorem	limit	point	Q	for	(PXn	)n∈N	and	for	any	λ	∈	Rd	,	we	have		)	λ*	Q(dx)	ei)λ,x*	=	E	eiX	.	The	general	case,	can	be	inferred	by	the	usual	approximation
arguments	(see	Theorem	1.96((i))).	As	a	shorthand,	we	write	sup	L(ϕ)	for	the	map	x	→	sup{f	(x)	:	f	∈	L(ϕ)}.	As	F	is	tight,	for	every	ε	>	0,	there	is	a	K	<	∞	with	Fn	(x)	−	Fn	(−∞)	<	ε	for	all	n	∈	N	and	x	<	−K.	3	3	3	(a)	3	(f	+	g)	dμ	3=	f	dμ	+	g	dμ.	X	is	called	the	multi-period	binomial	model	or	the	Cox–Ross–Rubinstein	model	(without	interest	returns).	Now
σ	({Fn	,	n	∈	N})	=	2Ω	,	and	22	1	Basic	Measure	Theory	hence	E	=	{Fn	,	n	∈	N}	is	a	π-system	that	generates	2Ω	and	such	that	μ(Fn	)	<	∞	for	all	n	∈	N.	“	⇐	”	This	is	trivial.	Show	that	the	map	Φ	:	L1	(F∞	)	→	M,	X∞	→	(E[X∞	|Fn	])n∈N	is	an	isomorphism	of	vector	spaces.	For	ε	>	0,	let		μ	{|fm	−	fn	|	>	ε}	≤	ε−1	fm	−	fn	1	−→	0	for	m,	n	→	∞.	Assume	that
the	following	conditions	are	satisfied.	The	Lebesgue	integral	does	not	do	that.	Compare	Example	12.3(iii).	Taking	the	formal	derivative	∞	√		d	X˙	t	:=	Xt	=	ξ0	+	2	ξn	cos(nπ	t)	dt	n=1	we	get	independent	identically	distributed	Fourier	coefficients	for	all	frequencies.	In	particular,	the	assumption	that	the	factors	are	of	Lebesgue–	Stieltjes	type	can	be
dropped.	+	Xn	)2k−1		≤	d2k−1	nk−1	and		)	*	(2k)!	)	*k			E	(X1	+	.	Proof	The	first	equation	holds	by	definition.	The	probabilities	of	the	possible	random	observations	will	be	described	in	terms	of	the	distribution	of	the	corresponding	random	variable,	which	is	the	image	measure	of	P	under	X.	Now	lim	inf	n→∞		1	log	Pn	(x	−	ε,	∞)	≥	−I	(x)	>	−I	(x	+	ε)	n		1
log	Pn	[x	+	ε,	∞)	.	(ii)	If	σ,	τ	≥	0,	then	σ	+	τ	is	also	a	stopping	time.	Evidently,	μ∗	(∅)	=	0	and	μ∗	is	monotone.	Then		1	1	n→∞	Xk	=	f	◦	τ	k	−→	E[X0		I]	n	n	n−1	n−1	k=0	k=0	In	particular,	if	τ	is	ergodic,	then	1	n	n−1		P-a.s.	n→∞	Xk	−→	E[X0	]	P-a.s.	k=0	Proof	If	τ	is	ergodic,	then	E[X0	|I]	=	E[X0	]	and	the	supplement	is	a	consequence	of	the	first
statement.	Assume	for	every	T	>	0,	there	are	numbers	α,	β,	C	>	0	such	that	*	)	E	|Xt	−	Xs	|α	≤	C|t	−	s|1+β	for	all	s,	t	∈	[0,	T	].	Then	X	is	called	*	)	*	)	(v)	stationary	if	L	(Xs+t	)t	∈I	=	L	(Xt	)t	∈I	for	all	s	∈	I	,	and	(vi)	a	process	with	stationary	increments	if	X	is	real-valued	and	)	*	)	*	L	Xs+t	+r	−	Xt	+r	=	L	Xs+r	−	Xr	(If	0	∈	I	,	then	it	is	enough	to	consider	r
=	0.)	for	all	r,	s,	t	∈	I.	♦	Theorem	15.6	(Laplace	transform)	A	finite	measure	μ	on	[0,	∞)	is	characterized	by	its	Laplace	transform		Lμ	(λ)	:=	e−λx	μ(dx)	for	λ	≥	0.	,	ck	).	12.3	De	Finetti’s	Theorem	.	Hint:	(i)	Compute	the	Laplace	transforms	LY1	,	.	Then	E[X1	]	=	−i	ϕ		(0)	<	∞.	(14.18)	(14.19)	To	this	end,	define	stochastic	kernels	κt	(x,	dy)	:=	δx	∗	N0,t	(dy)
for	t	∈	[0,	∞)	where	N0,0	=	δ0	.	∞		(λeit	)n	it	=	eλ(e	−1)	.	Exercise	3.3.1	Assume	that	we	have	a	branching	process	Z	=	(Zn	)n∈N0	with	Z0	=	1	whose	offspring	distribution	is	given	by	p0	=	1/3	and	p2	=	2/3.	Reflection	Check	that	each	of	the	families	E1	,	.	♠♠	Owing	to	the	last	theorem,	it	is	natural	to	define	the	convolution	of	two	probability	measures
on	Rn	(or	more	generally	on	an	Abelian	group)	as	the	distribution	of	the	sum	of	two	independent	random	variables	with	the	corresponding	distributions.	Proof	The	random	variables	(Xn+	)n∈N	and	(Xn−	)n∈N	again	form	pairwise	independent	families	of	square	integrable	random	variables	(compare	Remark	2.15(ii)).	<	tn	,	we	have	Px	◦	(Xt0	,	.	At	the
other	end	of	the	scale,	the	strongest	notion	is	“i.i.d.”.	A	locally	compact,	separable	metric	space	is	manifestly	σ	-compact	and	there	even	exists	a	countable	basis	U		of	the	topology	consisting	of	relatively	compact	open	sets.	Finally,	let	Px	:=	L[Xx	]	be	the	distribution	of	Xx	.	3.1	Definition	and	Examples	Definition	3.1	(Probability	generating	function)	Let
X	be	an	N0	-valued	random	variable.	Show	that	Y	has	distribution	Q.	,	ωn	∈	{0,	1},	n	∈	N).	∈	A	with	AN	↑	Ω	and	μ(AN	)	<	∞	for	all	N	∈	N.	3	n→∞	If	we	define	un	(t)	:=	(1−e−t	x	)	νn	(dx),	then	(as	in	(16.1))	un	(t)	−→	u(t)	for	all	t	≥	0.	P	(iii)	Let	n	=	Tε	.	(23.21)	606	23	Large	Deviations	Proof	This	is	left	as	an	exercise.	Proof	By	Theorem	14.12(iii),	the
finite-dimensional	distributions	determine	P	uniquely.	,	ωn	]	is	compact.	(iii)	Let	(Yn	)n∈Z	be	i.i.d.	real	random	variables	and	let	c1	,	.	Remark	7.48	As	F	is	continuous,	for	any	δ	>	0,	there	exists	an	ε	>	0	such	that	|F	(f	)|	<	δ	for	all	f	∈	V	with	f		<	ε.	Then:	(i)	F	:=	{r	∈	[0,	1]	:	ψ(r)	=	r}	=	{q,	1}.	=		e∈A˜	i		pe	.	An	alternative	strategy	of	proof	is:	Sort	the
values	of	the	Xi	by	size	M	=	X(1)	>	D	X)	(2)	>	.	,	Sn	}	−	Mn	◦	τ	)	1{Mn	>0}	)	*	=	E	(Mn	−	Mn	◦	τ	)	1{Mn	>0}	*	)	≥	E	Mn	−	Mn	◦	τ	=	E[Mn	]	−	E[Mn	]	=	0.	“	⇒	”	Assume	F	is	uniformly	integrable.	(3.10)	Proof	The	map	f	:	x	→	(1	+	x)α	is	holomorphic	up	to	possibly	a	singularity	at	x	=	−1.	We	call	(Zd	,	E	p	)	a	percolation	model	(more	precisely,	a	model
for	bond	percolation,	in	contrast	to	site	percolation,	where	vertices	can	be	open	or	closed).	18.1	Periodicity	of	Markov	Chains	We	study	the	conditions	under	which	a	positive	recurrent	Markov	chain	X	on	the	countable	space	E	(and	with	transition	matrix	p),	started	in	an	arbitrary	μ	∈	M1	(E),	converges	in	distribution	to	an	invariant	distribution	π;	that
is,	n→∞	μpn	−→	π.	Now	assume	inf	f	(K)	<	∞.	♦	However,	this	is	the	CFP	of	br,p	rν	r,p	Not	every	infinitely	divisible	distribution	is	of	the	type	CPoiν	,	however	we	have	the	following	theorem.	,	Mn,m	=	km	·	P[L	=	n]	n	n!	km	−α	α	p1k1	·	·	·	pm	e	k1	!	·	·	·	km	!	n!			m	k	i		λ	e−λi	i	.	By	what	we	have	shown	already,	there	exists	a	compact	set	C	⊂	A	∩	Kn	with
λ((A	∩	K	n	)	\	C)	<	1;	hence	λ(C)	>	L.	Exercise	11.2.1	For	p	=	1,	the	statement	of	Theorem	11.10	may	fail.	By	Theorem	2.26,	the	two	random	variables	are	independent,	and	*	)	*	)	*	)	E	(Sk	+	c)	1Ak	(Sn	−	Sk	)	=	E	(Sk	+	c)	1Ak	E	Sn	−	Sk	=	0.	n→∞	n→∞	By	assumption,	|fn	|	≤	h	and	fn	−→	f	(	·	,	x0	)	almost	everywhere.	Let	E	:=	g	−1	({1}).	That	is,	e−t	Xt
converges	in	distribution	to	a	random	variable	W	with	W	∼	exp1	.	The	Markov	process	X	on	N0	with	this	semigroup	is	called	a	Poisson	process	with	(jump)	rate	θ	.					(i)	X	is	called		a	random	variable	with	values	in	(Ω	,	A	).	Proof	A	=	2Ω	is	a	σ	-algebra	with	E	⊂	A.	Let	N	:=	max	n	∈	N0	:	X1	+	.	Hence	there	exists	an	n0	=	1	we	conclude	that	n1	n−1	A	i=0
i		pn	pnε	−	ε	n0	(ω)	such	that	n−1	i=0	1Ai	≥	2	for	all	n	≥	n0	.	By	Corollary	9.34,	Y	is	a	submartingale,	and	(by	Theorem	9.39)	so	are	H	·Y	and	(1	−	H	)·Y	.	By	Remark	1.17,	this	implies	σ	(E1	)	⊂	σ	(E4	).	6.3	Exchanging	Integral	and	Differentiation	161	By	assumption	(ii),	we	have	n→∞	gn	−→	f		(	·	,	x0	)	μ-almost	everywhere.	We	define	F	:=	σ	(Bi	,	i	∈	I	).
Assuming	rs	=	0	for	all	s	≤	(n	−	1)t,	we	conclude		nt	sup	rs	∞	≤	2λ	ru	∞	du	≤	2λt	sup	rs	∞	=	0,	s≤nt	s≤nt	(n−1)t	s	=	ps	for	all	hence	rs	=	0	for	all	s	≤	nt.	,	k,	the	limit	Ξ∞	(Al	)	=	limN→∞	ΞN	(Al	)	exists	in	a	suitable	sense.	n=1	We	have	to	show	A	∈	M(μ∗	);	that	is,	μ∗	(A	∩	E)	+	μ∗	(Ac	∩	E)	≤	μ∗	(E)	Let	Bn	=	n		for	any	E	∈	2Ω	.	In	Definition	4.16,	for
measurable	f	:	Ω	→	R,	we	defined		f	p	:=	1/p	|f	|	dμ	p	for	p	∈	[1,	∞)	and	f	∞	:=	inf	K	≥	0	:	μ(|f	|	>	K)	=	0	.	Step	2.	Apply	a	voltage	of	1	at	the	origin	and	0	at	the	endpoints	of	the	paths	at	the	nth	stage.	(Hint:	Assume	the	contrary	and	show	that	the	corresponding	random	variable	would	have	variance	zero.)	♣	α	Exercise	15.4.4	Let	X1	,	X2	,	.	(16.32)
Theorem	16.28	(i)	If	PX	is	in	the	domain	of	attraction	of	some	distribution,	then	there	exists	an	α	∈	(0,	2]	such	that	(16.32)	holds.	are	i.i.d.	and	∼	Rad1/2	;	that	is,	P[Ri	=	1]	=	1	−	P[Ri	=	−1]	=	1	.	We	show	P[A]	=	0.	Is	this	true	also	for	P[	·	|X	=	x]?	By	Lemma	1.51,		μ	is	a	measure	and		μ	is	σ	-finite	since	μ	is	σ	-finite.	Let	An	=	En	∩	{f1	>	f2	}	for	n	∈	N.
Without	loss	of	generality,	we	may	assume	that	X	is	the	canonical	process	on	the	probability	space	(Ω,	A,	P)	=	E	N0	,	B(E)⊗N0	,	P	.	Remark	4.14	We	still	have	to	show	that	ν	is	a	measure.	♦	Remark	6.11	Both	L1	-convergence	and	almost	everywhere	convergence	imply	convergence	in	measure.	♦	Remark	6.4	Almost	everywhere	convergence	implies
convergence	in	measure:	For	ε	>	0,	define	Dn	(ε)	=	d(f,	fm	)	>	ε	for	some	m	≥	n	.	(18.17)	Apart	from	the	double	zero	at	1,	we	get	the	zeros	σ	cos	πk/N),	k	=	1,	.		−n	be	Exercise	7.4.1	For	every	x	∈	(0,	1],	let	x	=	(0,	x1	x2	x3	.	Definition	1.29	Let	A	be	a	semiring.	However,	since	X	is	a	supermartingale,	for	every	s	>	t,	we	have	Xt	≥	E[Xs	|Ft	]	Q+	s↓t,	s>t
−→	t	|Ft	]	=	X	t	E[X	in	L1	.	k=1	For	c	=	Var[Sn	]/t	≥	0,	we	obtain	P[A]	≤	Var[Sn	]	c(t	+	c)	tc	Var[Sn	]	+	c2	=	2	.	Show	that	λ	=	v-lim	μn	but	that	(μn	)n∈N	does	not	converge	weakly.	+	Tn−1	≤t	and	s	≤t	.	♣	k=1,...,n	k=1,...,n	5.5	The	Poisson	Process	139	5.5	The	Poisson	Process	We	develop	a	model	for	the	number	of	clicks	of	a	Geiger	counter	in	the
(time)	interval	I	=	(a,	b].	,	d,	the	map	yi	→	f	(x1	,	.	Definition	15.21	Let	(E,	d)	be	a	metric	space.	<	yN	of	F	such	that	F	(y0	)	<	ε,	F	(yN	)	>	F	(∞)	−	ε	and	yi	−	yi−1	<	ε	for	all	i.	If	there	is	no	infinite	open	component,	then	the	water	may	wet	only	a	thin	layer	at	the	surface.	Hence	we	have	constructed	a	(random)	subgraph	(Zd	,	E	p	)	of	(Zd	,	E).	440	18
Convergence	of	Markov	Chains	Definition	18.5	A	bivariate	process	((Xn	,	Yn	))n∈N0	with	values	in	E	×	E	is	called	a	coupling	if	(Xn	)n∈N0	and	(Yn	)n∈N0	are	Markov	chains,	each	with	transition	matrix	p.	Then	F	(x)	=	)x,	f	*	for	all	x	∈	V	.	Definition	7.24	(Orthogonal	complement)	Let	V	be	a	real	vector	space	with	inner	product	)	·	,	·	*.	(ii)	For	t	∈	I	and	ε
>	0,	let	Uε	(t)	:=	{s	∈	I	:	|s	−	t|	<	ε}.	What	goes	wrong	if	∩-stability	is	missing?	Indeed,	let	fn	−→	f	and	meas	fn	−→	g.	(23.15)	Proof	We	consider	the	set	of	possible	values	for	the	n-tuple	(X1	,	.	♠♠	Example	5.21	(Monte	Carlo	integration)	Let	f	:	[0,	1]	→	R	be	a	function	and	31	assume	we	want	to	determine	the	value	of	its	integral	I	:=	0	f	(x)	dx
numerically.	Theorem	measure)	There	exists	a	uniquely	determined	measure	1.55	(Lebesgue		λn	on	Rn	,	B(Rn	)	with	the	property	that	λn	((a,	b])	=	n		(bi	−	ai	)	for	all	a,	b	∈	Rn	with	a	<	b.	Other	important	convergence	theorems	for	integrals	follow	in	Chaps.		n	If	m,	n	∈	N,	then	write	mn	if	m	is	a	divisor	of	n;	that	is,	if	m	∈	N.	,	αm	∈	(0,	∞),	and	for
mutually	disjoint	sets	A1	,	.	Proof	This	is	obvious.	In	order	to	show	that	DE	is	a	λ-system,	we	check	the	properties	of	Definition	1.10:	(i)	Clearly,	Ω	∈	DE	.	By	Theorem	13.16,	it	is	enough	to	show	that			n→∞	f	dμn	−→	f	dμ.	Then	the	bivariate	Markov	chain	Z	:=	((X˜	n	,	Y˜n	))n∈N0	has	the	transition	matrix	p		defined	by		p		(x1	,	y1	),	(x2	,	y2	)	=	p(x1	,	x2	)	·
p(y1	,	y2	).	Finally,	there	are	more	exercises	and	some	new	illustrations.	A	prominent	role	will	be	played	by	the	complex	exponential	function	exp	:	C	→	C,	which	can	be	defined	either	by	Euler’s	formula	exp(z)	=	exp(u)	cos(v)	+	i	sin(v)		n	or	by	the	power	series	exp(z)	=	∞	n=0	z	/n!.	˜	B˜	⊂	{1,	.	♣	19.5	Network	Reduction	Example	19.32	Consider	a
random	walk	on	the	graph	in	Fig.	The	statement	can	be	derived	more	simply	than	by	direct	computation	if	∗n	(see	Example	3.4(ii)).	For	continuous	time,	however,	in	general,	some	work	has	to	be	done	to	establish	the	strong	Markov	property.	However,	an	infinitely	divisible	real	random	variable	X	is	not	simply	the	difference	of	two	infinitely	divisible
nonnegative	random	variables,	as	the	normal	distribution	shows.	♣	Chapter	3	Generating	Functions	It	is	a	fundamental	principle	of	mathematics	to	map	a	class	of	objects	that	are	of	interest	into	a	class	of	objects	where	computations	are	easier.	It	should	•	be	random	and	independent	for	disjoint	intervals,	•	be	homogeneous	in	time	in	the	sense	that
the	number	of	clicks	in	I	=	(a,	b]	has	the	same	distribution	as	the	number	of	clicks	in	c	+	I	=	(a	+	c,	b	+	c],	•	have	finite	expectation,	and	•	have	no	double	points:	At	any	point	of	time,	the	counter	makes	at	most	one	click.	Let	f	:	Z	→	R	be	an	arbitrary	map.	Then	z	=	0	and	F	(z)	=	F	(v)	−	F	(y)	=	F	(v)	=	0.	,	n,/let	(Ωi	,	A/	i	,	Pi	)	be	a	probability	space.	We
can	interpret	X	+	1	as	the	waiting	time	for	the	first	success	in	a	series	of	independent	random	experiments,	any	of	which	yields	a	success	with	probability	p.	5.)	Takeaways	Independent	coin	tosses	decide	if	an	edge	of	Zd	is	retained	(probability	p)	or	removed.	,	0)	and	x	N	=	(0,	.	Proof	(i),	(ii)	and	(iii)	These	are	evident.	However,	we	show	that,	for	open
A	this	can	be	done	at	least	asymptotically.	For	example,	in	the	preceding	theorem,	claim	(i)	holds	with	the	words	“submartingale”	and	“supermartingale”	interchanged,	claim	(iv)	holds	for	submartingales	if	the	minimum	is	replaced	by	a	maximum,	and	so	on.	Exercise	20.5.1	Show	that	“strongly	mixing”	implies	“weakly	mixing”,	which	in	turn	implies



“ergodic”.	If	)	·	,	·*	is	an	inner	product,	then	(V	,	)	·	,	·	*)	is	called	a	(real)	Hilbert	space	if	the	norm	defined	by	x	:=	)x,	x*1/2	is	complete;	that	is,	if	(V	,		·	)	is	a	Banach	space.	Definition	2.32	(Convolution	of	measures)	Let	μ	and	ν	be	probability	measures	on	Rn	and	let	X	and	Y	be	independent	random	variables	with	PX	=	μ	and	PY	=	ν.	22,	we	will	see	that
for	independent	identically	distributed,	square	integrable,	centered	random	variables	X1	,	X2	,	.	Although	it	is	sometimes	convenient	to	allow	also	time-inhomogeneous	Markov	processes,	for	a	wide	range	of	applications	it	is	sufficient	to	consider	time-homogeneous	Markov	processes.	Let	v	∈	V	\	W	and	let	v	=	y	+	z	for	y	∈	W	and	z	∈	W	⊥	be	the
orthogonal	decomposition	of	v.	(i)	If	E[|X|n	]	<	∞,	then	ϕ	is	n-times	continuously	differentiable	with	derivatives	*	)	ϕ	(k)(t)	=	E	(iX)k	eit	X	for	k	=	0,	.	be	measurable	maps	Ω	→	[0,	∞].	(ii)	Conclude	that	Prohorov’s	theorem	holds	for	E	=	Rd	.	Thus	X	is	recognized	as	a	Markov	process.	are	not	independent	but	only	pairwise	independent,	then	the	rate	of
convergence	deteriorates,	although	not	drastically.	C	21.5	Construction	via	L2	-Approximation	537		Hence	Xtn	n∈N	is	a	Cauchy	sequence	in	L2	(P)	and	thus	(since	L2	(P)	is	complete,	see	Theorem	7.3)	has	an	L2	-limit	Xt	.	First	generate	the	transition	matrix	p	of	the	Markov	chain.	Let	A,	B	⊂	Ω	=	E	N0	be	measurable.	y↓x	(iii)	For	x	∈	I	◦	,	we	have	D	−
ϕ(x)	≤	D	+	ϕ(x)	and	ϕ(x)	+	(y	−	x)t	≤	ϕ(y)	for	any	y	∈	I	⇐⇒	t	∈	[D	−	ϕ(x),	D	+	ϕ(x)].	Ik	(Note	that	it	is	not	a	priori	clear,	that	the	logarithm	in	the	two	equations	above	is	well-defined.	Then	(Yn	)n∈N	is	i.i.d.	and	E[Yn	]	=	H	(p),	where	H	(p)	:=	−		e∈E	pe	log(pe	)	5.3	Strong	Law	of	Large	Numbers	131	is	the	entropy	of	the	distribution	p	=	(pe	)e∈E
(compare	Definition	5.25).	(ii)	Gamma	distribution:	Γθ,r	∗	Γθ,s	=	Γθ,r+s	for	all	θ,	r,	s	>	0.	Without	proof,	we	quote	the	following	strengthening	of	Corollary	16.8	that	relies	on	a	finer	analysis	using	the	arguments	from	the	proof	of	Theorem	16.6.	Theorem	16.12	Let	(ϕn,l	;	l	=	1,	.	This	is	the	reason	for	phase	transitions	at	critical	temperatures	(e.g.,
melting	ice).	Let	n	∈	N	and	let	(Ω2	,	A2	)	=	{0,	1}n	,	(2{0,1}	)⊗n	be	the	space	of	n-fold	coin	tossing.	be	i.i.d.	random	variables	with	values	in	the	finite	set	Σ	and	with	distribution	μ.	Lemma	1.49	A	∈	M(μ∗	)	if	and	only	if	μ∗	(A	∩	E)	+	μ∗	(Ac	∩	E)	≤	μ∗	(E)	for	any	E	∈	2Ω	.	Otherwise	there	would	be	a	last	point	in	time	when	we	see	a	six	and	after	which
the	face	only	shows	a	number	one	to	five.	The	nth	convolution	roots	are	thus	unique	if	the	distribution	is	infinitely	divisible.	,	be	i.i.d.	random	variables	with	distribution	μα	.	Klenke,	Probability	Theory,	Universitext,	229	230	10	Optional	Sampling	Theorems	Theorem	10.1	(Doob	decomposition)	Let	X	=	(Xn	)n∈N0	be	an	adapted	integrable	process.	While
the	Lebesgue	measure	is	ubiquitous	in	analysis,	the	infinite	product	measure	plays	an	important	role	in	probability	theory	for	modelling	infinitely	many	independent	events.	Definition	1.20	(Topology)	Let	Ω	=	∅	be	an	arbitrary	set.	♦	Reflection	Let	X	=	(Xn	)n∈Z	be	a	reversible	Markov	chain	(with	transition	matrix	p)	with	respect	to	π	and	assume	that
PX0	=	π.	Theorem	7.21	)	·	,	·	*	is	an	inner	product	on	L2	(μ)	and	a	semi-inner	product	on	L2	(μ).	That	is,	fX	,	fY	:	Rn	→	[0,	∞]	are	measurable	and	integrable	with	respect	to	n-dimensional	Lebesgue	measure	λn	and,	for	all	x	∈	Rn	,			P[X	≤	x]	=	fX	(t)	λn	(dt)	(−∞,x]	and	P[Y	≤	x]	=	fY	(t)	λn	(dt).	Proof	For	any	j	∈	J	,	Xj	=	XjJ	◦	XJI	is	measurable	with	respect
to	A	–	Aj	.	Hence	we	now	consider	the	case	where	only	two	values	are	possible.	Together	with	stochastic	convergence,	uniform	integrability	is	equivalent	to	L1	-convergence	(see	Fig.	Define	Y	=	X1	+	.	Theorem	13.35	Let	E	be	a	locally	compact	Polish	space	and	let	μ,	μ1	,	μ2	,	.	∞	Then	F=	n=1	αn	1[xn	,∞)	is	the	distribution	function	of	the	finite	measure
μF	=	∞	n=1	αn	δxn	.	Define	the	composition	of	κ1	and	κ2	by	κ1	·	κ2	:	Ω0	×	A2	→	[0,	∞),		(ω0	,	A2	)	→	κ1	(ω0	,	dω1	)	κ2	(ω1	,	A2	).	Definition	9.1	(Stochastic	process)	Let	I	⊂	R.	We	conclude	that	P[F	]	=	0.	1.2	Set	Functions	13	Then	A	is	an	algebra.	“(iii)	⇒	(i)”	This	is	trivial.	Then	|fn	(s)	−	f	(s)|	≤	|fn	(s)	−	fn	(ti	)|	+	|fn	(ti	)	−	f	(ti	)|	+	|f	(ti	)	−	f	(s)|	≤	3ε.
Hence	(κt	)t	∈I	is	a	Markov	semigroup.	Remark	1.22	In	many	cases,	we	are	interested	in	B(Rn	),	where	Rn	is	equipped	with	the	Euclidean	distance			n		d(x,	y)	=	x	−	y2	=		(xi	−	yi	)2	.	Since	ψ	is	monotone	increasing,	it	follows	that	r	=	ψ(r)	≥	ψ(q0	)	=	q1	.	Then,	for	any	t	>	0,	)	*	P	max{Sk	:	k	=	1,	.	We	still	have	to	show	that	uniform	integrability	implies
(ii).	If	B(n)	denotes	the	set	of	points	up	to	the	nth	generation,	then	n−1	n−1							Reff	2k	3−k	.		Proof	By	Lemma	15.37	and	Lévy’s	continuity	theorem	(Theorem	15.24),	PSn∗	n→∞	a	converges	to	the	distribution	with	characteristic	function	ϕ(t)	=	e−t	/2	.	In	the	Borel-Cantelli	lemma	we	have	encountered	a	special	case.	.,	and	let	X	:=	α	+	∞	Xk	.	How	can
we	quantify	the	information	inherent	in	a	message	X1	(ω),	.	The	problem	consists	in	finding	a	candidate	for	a	weak	limit	point.	X	and	Y	are	called	uncorrelated	if	Cov[X,	Y	]	=	0	and	correlated	otherwise.	,	ωn	]	:	ω1	,	.	Then	X	is	not	stationary.	Denote	by	τ	:=	inf{n	∈	N0	:	Xn	=	Yn	}	the	time	of	coalescence.	Since	E[Zn−1	]	=	mn−1	(Lemma	11.18),	by	the
Blackwell–	Girshick	formula	(Theorem	5.10),		Var[Wn	]	=	m−2n	σ	2	E[Zn−1	]	+	m2	Var[Zn−1	]	=	σ	2	m−(n+1)	+	Var[Wn−1	].	Rotations	are	not.	Then	Lq	(μ)	is	isomorphic	to	its	dual	space	(Lp	(μ))	by	virtue	of	the	isometry	κ.	Then,	for	n	≥	m,				E[Sn		Fm	]	=	E[X1		Fm	]	+	.	1.3	The	Measure	Extension	Theorem	27	Further	choose	aε	∈	(a,	b)	such	that
μ((aε	,	b])	≥	μ((a,	b])	−	2ε	.	n	n→∞	n	By	the	strong	law	of	large	numbers,	we	have	limn→∞	n1	Bn	=	0	a.s.	Using	a	generalization	of	the	reflection	principle	(Theorem	17.15;	see	also	Theorem	21.19),	for	x	>	0,	we	have	(using	the	abbreviation	B[a,b]	:=	{Bt	:	t	∈	[a,	b]})	)	*	)	*	P	sup	B[n,n+1]	−	Bn	>	x	=	P	sup	B[0,1]	>	x	=	2	P[B1	>	x]		∞	1	2	2	2	e−u	/2	du
≤	e−x	/2	.	n	(23.10)	Proof	By	passing	to	Xi	−	x	if	necessary,	we	may	assume	E[Xi	]	<	0	and	x	=	0.	Hence	G	=	A1	⊗	A2	by	Dynkin’s	π-λ	theorem	(Theorem	1.19).	Define	the	stopping	time	τa,b	=	inf{t	≥	0	:	Bt	∈	{a,	b}}.	Starting	here,	a	shift	in	the	meaning	towards	the	mathematical	notion	seems	plausible.	Now	let	m	>	1.	♣	Exercise	8.3.6	(Rejection
sampling	for	generating	random	variables)	Let	E	be	a	countable	set	and	let	P	and	Q	be	probability	measures	on	E.	140	5	Moments	and	Laws	of	Large	Numbers	k→∞	k→∞	Then	(because	(1	−	ak	/k)k	−→	e−a	if	ak	−→	a)	n	−1	+	2	,	P	there	is	a	double	click	in	(0,	1]	=	lim	P	N(k	2−n	,(k+1)2−n]	≥	2	)	*	n→∞	=	1	−	lim	P	n→∞	k=0	n	−1	+	2	k=0	n	−1	2	=	1	−
lim	n→∞	N(k	2−n	,(k+1)2−n]	≤	1	,	)	*	P	N(k	2−n	,(k+1)2−n]	≤	1	k=0	2n	=	1	−	lim	1	−	P[N2−n	≥	2]	n→∞	=	1	−	e−λ	.	For	all	j	∈	L,	let	Aj	∈	B(E)	and	Ajl	:=	E.	Then	LI	≤	LJ	with	equality	if	and	only	if	I	=	J	.	Lemma	18.3	Let	X	be	irreducible.	l=0	Hence	k−1		u(k)	−	u(0)	Reff	(0	↔	k)	=	=	R(l,	l	+	1).	Then,	for	r	∈	Q	and	B	=	(−∞,	r],	ω	→	κ(ω,	B)	=	F	(r,	ω)	1N
c	(ω)	+	F0	(r)	1N	(ω)	(8.16)	is	F	-measurable.	)	*		1	n	<	∞.	We	even	have	ν	0	μ.	Let	L	:=	lim	infn→∞	Sn	.	Now	define,	for	any	A	∈	A,		νa	(A)	:=	f	dμ	and	νs	(A)	:=	ν(A)	−	νa	(A).	In	order	to	describe	formally	the	irreducibility	condition	that	we	have	to	impose,	we	introduce	the	transition	matrix	pA	of	the	chain	stopped	upon	reaching	A	by	0	pA	(x,	y)	:=	p(x,
y),	1{x=y}	,	if	x	∈	A,	if	x	∈	A.	,	xk	)	:=	f1	(x1	)	·	·	·	fk	(xk	).	In	this	case,	we	interpret	pω	as	the	probability	of	the	elementary	event	ω.	In	this	case,	integral	and	derivative	commute.	Theorem	8.38	Let	X	be	a	random	variable	on	(Ω,	A,	P)	with	values	in	a	Borel	space	(E,	E).	For	further	reading,	see,	e.g.,	[21,	26,	64,	66,	91,	116,	123,	124,	144,	153].
Therefore,	P[X1	=	x1	,	.	402	17	Markov	Chains	To	this	end,	let	(qk	)k∈N0	be	a	probability	vector,	the	offspring	distribution	of	one	individual.	1.1	Classes	of	Sets	5	Definition	1.13	(liminf	and	limsup)	Let	A1	,	A2	,	.	By	the	linearity	of	the	integral,	ϕνn	=	k=1	assumption,	μ	=	w-lim	νn	;	hence	also	ϕμ	(t)	=	lim	ϕνn	(t).	Assume	that	there	exist	sets	Ω1	,	Ω2	,	.
E	(Xn	−	Xn−1	)2		Fn−1	=	E	(Yn	−	1)2	Xn−1	Fn−1	=	Var[Yn	]	Xn−1		2	.	Show	that	the	conditional	distribution	of	X	given	{X	∈	B}	is	the	uniform	distribution	on	B.	Define	the	sign	function	sign(x)	=	1(0,∞)	(x)	−	1(−∞,0)	(x).	The	full	strength	of	that	theorem	will	become	manifest	when	suitable	separating	classes	of	functions	are	at	our	disposal.	∈	L1	(μ)
and	let	f	:	Ω	→	R	be	measurable.	To	this	end,	enumerate	the	nodes	of	the	graph	from	1	to	12	as	in	Fig.	Hence	the	value	of	Lx,y	is	unique		in	{0,	.	-	∞	-∞	∞				)	∗	c*	c	c	P	(A	)	=	P	An	=	lim	P	An	.	This	is	the	standard	procedure	in	order	to	change	a	seminorm	into	a	proper	norm.	ϕ	is	an	infinitely	divisible	CFP	if	and	only	if	there	is	a	sequence	(ϕn	)n∈N	of
CFPs	such	that	ϕnn	(t)	→	ϕ(t)	for	all	t	∈	R.	By	(5.9),	we	also	have	Tkn	/kn	−→	E[X1	]	a.s.	As	in	the	proof	of	Theorem	5.16,	we	also	get	(since	Yn	≥	0)	lim	l→∞	Tl	=	E[X1	]	almost	surely.	(i)	Find	a	sequence	(fn	)	of	elementary	3	3	functions	such	that	fn	↑	f	.	Theorem	15.32	(Moments	and	differentiability)	Let	X	be	a	real	random	variable	with	characteristic
function	ϕ.	We	consider	pN	⊂	Ω	as	an	event.	Then,	by	the	Cauchy–	Schwarz	inequality,	we	have	E[|XY	|]	<		*	)	∞.	We	can	thus	replace	f	by	f	+	f	∞	and	hence	assume	that	f	≥	0.	Define	(e)	∈	N	for	any	e	∈	E	by	2−(e)	≤	pe	<	2−(e)+1	.	Example	8.30	Let	Z1	,	Z2	be	independent	Poisson	random	variables	with	parameters	λ1	,	λ2	≥	0.	,	Xsn	=	in	}	(using	the
Markov	property	in	the	second	equation),	)	*	P	Xt	=	i	,	Xs1	=	i1	,	.	Theorem	1.36	(Continuity	and	premeasure)	Let	μ	be	a	content	on	the	ring	A.	Hence,	m	solves	the	equation	m	=	tanh(β(m	+	h)).	(ii)	Let	t	∈	I	.	Choose	n	∈	N	such	that	rn	∈	N0	.	,	X(An	)	are	independent.	21.2	Construction	and	Path	Properties	.	As	we	will	need	a	similar	computation	for
Pólya’s	urn	model	in	Example	12.29,	we	give	the	details	here.	For	a	practical	simulation	use	the	computer’s	random	number	generator	to	produce	independent	random	variables	I1	,	I2	,	.	Then:	(i)	F	is	tight	⇒	F	is	weakly	relatively	sequentially	compact.	If	ν	∈	M1	(R)	with	CFP	ϕν	and	if	λ	>	0,	then	one	can	easily	check	that	ϕ(t)	=		−λ	λk	ν	∗k	.	(ii)	For
finite	families	of	random	variables	there	is	no	perfect	analog	of	de	Finetti’s	theorem.	An	even	simpler	coupling	can	be	used	to	show	that	bm,p	≤st	bn,p	for	m	≤	n	and	p	∈	[0,	1].	,	Xk	)|]	<	∞.	Clearly,	ξn	is	an	nsymmetric	map.	We	first	introduce	the	abstract	principle	of	such	couplings	and	then	give	some	examples.	2.1	for	a	computer	simulation	of	the
percolation	model.	In	the	following,	let	E	be	a	countable	space	and	let	p	be	a	stochastic	matrix	on	E.	However,	in	the	long	run,	we	might	see	certain	patterns.	The	triple	(Ω,	A,	P)	is	called	the	Wiener	space,	and	X	is	called	the	canonical	Brownian	motion	or	the	Wiener	process.	In	the	following,	F	⊂	A	will	be	a	sub-σ	-algebra	and	X	∈	L1	(Ω,	A,	P).	t	The
process	Xt	:=	0	f	(s)	dWs	,	t	∈	[0,	1],	is	centered	Gaussian	with	covariance	function		s∧t	Cov[Xs	,	Xt	]	=	f	2	(u)	du.	In	particular,	if	X	is	a	random	variable	on	(Ω,	A,	P),	then				f	(x)	P[X	∈	dx]	:=	f	(x)	PX	[dx]	=		f	dPX	=	f	(X(ω))	P[dω].	Hence	A	is	a	λ-system	but	is	not	an	algebra.	Define	Sn	=	X1	+	.	Hence,	for	fixed	Θ,	a	complete	great	circle	is	described
when	Φ	runs	through	its	domain.	f	(x,	Y	)	λ(dx)	(ii)	Let	X	and	Y	be	independent	and	expθ	-distributed	for	some	θ	>	0.	Hence	p	p	p		n→∞	fm	−	fn	p	≤	2p	fm	−	f	p	+	fn	−	f	p	−→	0	for	m,	n	→	∞.	If	two	(or	more)	edges	are	in	a	row	such	that	the	nodes	along	them	do	not	have	any	further	adjacent	edges,	this	sequence	of	edges	can	be	substituted	by	a	single
edge	whose	resistance	is	the	sum	of	the	resistances	of	the	single	edges	(see	Fig.		⎞	p(x1	,	x)⎠	x∈A0	Therefore,	)	*	pF	(x1	,	A0	)	:=	Px1	τA0	<	τx1	=	1	1	Ceff	(x1	↔	A0	)	=	.	Further,	let	U	a,b	=	lim	U−n	n→∞	*	)	)	)	a,b	*	1	+	inequality	(Lemma	11.3),	we	have	E	U−n	≤	b−a	E	(X0	−	a)	;	hence	P	U	a,b	<	*	∞	=	1.	Note	that	this	is	not	a	new	operation	but	only
stresses	the	fact	that	the	sets	involved	are	mutually	disjoint.	Hence	there	is	a	T	-measurable	function	ψ	with	ψ	=	1A	almost	surely.	be	i.i.d.	Rad1/2	-distributed	random	variables	(that	is,	P[Di	=	−1]	=	P[Di	=	1]	=	12	for	all	i	∈	N).	Lemma	13.2	Let	(E,	τ	)	be	a	Polish	space	with	complete	metric	d.	Since	V	is	complete	and	W	is	closed,	W	is	also	complete;
hence	there	is	a	y	∈	W	n→∞	with	wn	−→	y.	Further,	let	μ	be	the	stable	distribution	with	index	α	whose	characteristic	function	is	given	by	(16.23)	with	c+	=	Cp	and	c−	=	C(1	−	p).	♠	The	similarity	of	the	variance	estimates	in	the	weak	law	of	large	numbers	and	in	(5.7)	suggests	that	in	the	preceding	theorem	the	condition	that	the	random	variables	X1	,
X2	,	.	Then	π({x})	>	0	for	every	x	∈	E.	Definition	12.11	(Backwards	martingale)	Let	F	=	(Fn	)n∈−N0	be	a	filtration.	n→∞	Hence	(Xt	)t	∈[0,1]	is	a	centered	Gaussian	process	with	Cov[Xs	,	Xt	]	=	min(s,	t).	(The	first	inequality	holds	by	assumption.)	We	infer	that	Yt	=	Xt	almost	surely	for	all	t	and	thus	(Xt	)t	∈{0,...,T	}	is	a	martingale.	In	fact,	here	a
probability	measure	μ	is	not	uniquely	determined	by	the	values,	say	μ({1,	2})	=	μ({2,	3})	=	12	.	We	say	that	(Fn	)n∈N	converges	weakly	to	F	,	formally	Fn	⇒	F	,	D	Fn	−→	F	or	F	=	w-lim	Fn	,	if	n→∞	F	(x)	=	lim	Fn	(x)	for	all	points	of	continuity	x	of	F.	Hence,	let	τ	:=	min	k	∈	{1,	.	19.14.	For	this	in	turn	it	is	enough	to	show	Nn1	,t	≤st	Nn2	,t	for	all	t	∈	N0	.
Then	μ(B)	=	0	n→∞	and	(fn	(ω))n∈N	is	a	Cauchy	sequence	in	E	for	any	ω	∈	Ω	\	B.	♦	Definition	1.25	(Trace	of	a	class	of	sets)	Let	A	⊂	2Ω	be	an	arbitrary	class	of	subsets	of	Ω	and	let	A	∈	2Ω	\	{∅}.	(2.3)	Note	that	(2.2)	does	not	imply	(2.3)	(and	(2.3)	does	not	imply	(2.2)).	312	14	Probability	Measures	on	Product	Spaces	We	come	next	to	a	concept	that
generalizes	the	notion	of	product	measures	and	points	in	the	direction	of	the	example	from	the	introduction	to	this	chapter.	Thus	P[A]	∈	{0,	1}.	By	choosing	a	suitable	sequence	Ωn	↑	Ω,	we	can	assume	that	ν	is	finite.	Formally,	we	say	that	A	and	B	are	independent	if	P[A	∩	B]	=	P[A]	·	P[B].	,	ωn	]	:=	{ω	∈	Ω	:	ωi	=	ωi	for	all	i	=	1,	.	Proof	We	use	a
diagonal	sequence	argument.	The	corresponding	network	(E,	C)	will	be	called	the	unit	network	on	(E,	K).	18.2	Coupling	and	Convergence	Theorem	.	Hint:	In	particular,	one	has	to	show	that	μ	is	∅-continuous.	Check	if	the	logarithmic	moment	generating	function	3	−∞	1	+	|x|	Λ	is	continuous	and	sketch	the	graph	of	Λ.	For	r	∈	Q,	let	F	(r,	·	)	be	a	version
of	the	conditional	probability	P[Y	∈	(−∞,	r]|F	].	We	denote	by	E	the	vector	space	of	simple	functions	(see	Definition	1.93)	on	(Ω,	A)	and	by	E+	:=	{f	∈	E	:	f	≥	0}	the	cone	(why	this	name?)	of	nonnegative	simple	functions.	♣	Exercise	21.2.6	Let	B	be	a	Brownian	motion,	a	∈	R,	b	>	0	and	τ	=	inf{t	≥	0	:	Bt	=	at	+	b}.	(21.2)	Then	the	following	statements
hold.	♣	Exercise	14.2.3	(Partial	integration)	Let	Fμ	and	Fν	be	the	distribution	functions	of	locally	finite	measures	μ	and	ν	on	R.	♦		Theorem	4.19	Let	μ(Ω)	<	∞	and	1	≤	p	≤	p	≤	∞.	♦	While	weak	convergence	implies	convergence	of	the	total	masses	(since	1	∈	Cb	(E)),	with	vague	convergence	a	mass	defect	(but	not	a	mass	gain)	can	be	experienced	in	the
limit.		Manifestly,	Xtn1	,	.	Then						T	(Ai	)i∈I	:=	σ	Aj	J	⊂I	#J	0.	Without	loss	of	generality,	assume	E	=	{1,	.	Let	q	be	the	transition	matrix	of	an	arbitrary	irreducible	Markov	chain	on	E	(with	q(x,	y)	=	0	for	most	y	∈	E).	If	p	∈	{0,	1},	then	Berq	0	Berp	if	and	only	if	p	=	q,	and	Berq	⊥	Berp	if	and	only	if	q	=	1	−	p.	Since	Ω	∈	D	and	by	property	(ii)	of	the	λ-
system,	we	get	that	Ac	=	Ω	\	A	∈	D.	+	Yn	)/σn	⇒	0.	Further,	let	f	:	Ω	→	R	be	measurable	and	Xn	(ω)	=	f	◦	τ	n	(ω)	for	all	n	∈	N0	.	,	n}	≥	t	.	A	content	μ	on	A	is	called	(i)	finite	if	μ(A)	<	∞	for	every	A	∈	A	and	(ii)	σ	-finite	if	there	exists	a	sequence	of	sets	Ω1	,	Ω2	,	.	Then	(X	−	a)+	is	a	submartingale.	9.4	Discrete	Martingale	Representation	Theorem	and	the
CRR	Model	..	(ii)	The	integrability	condition	in	(i)	cannot	be	waived.	Then	σ	(Xi	,	i	∈	I	)	:=	σ			i∈I		σ	(Xi	)	=	σ				Xi−1	(Ai	)	i∈I	is	called	the	σ	-algebra	on	Ω	that	is	generated	by	(Xi	,	i	∈	I	).	We	will	have	some	work	to	do	to	establish	continuity	of	the	paths,	and	we	will	come	back	to	this	in	Chap.	Lip1	(E;	[0,	1])	is	separating	for	Mf	(E)	and	for	M(E).	Now
assume	F	is	not	identically	zero.	The	following	theorem	formalizes	this	idea	and	will	come	in	handy	in	many	applications.	The	Feller-Lindeberg	theorem	makes	rigorous	sense	of	the	expressions	“mainly	small	values”	and	“close	to	a	normal	distribution”	and	formulates	the	precise	statement.	Chapter	10	Optional	Sampling	Theorems	In	Chap.	i=1	Again
due	to	additivity	and	monotonicity,	we	get		μ(A)	=	μ	ck	n		(Ck,i	∩	A)	=	k=1	i=1	≤	ck	n			k=1	i=1	μ(Ck,i	)	≤	ck	n			μ(Ck,i	∩	A)	k=1	i=1	n		μ(Ak	).		(ii)	(Ei	)i∈I	is	independent	⇐⇒	(Ej	)j	∈J	is	independent	for	all	finite	J	⊂	I	.	(1)	(2)	(3)	(4)	Let	F	←	idE	and	n	←	0.	(16.3)	If	(i)	and	(ii)	hold,	then	log	ϕ(t)	=	lim	n	log(ϕn	(t))	=	lim	n(ϕn	(t)	−	1)	=	ψ(t).	Let	Re(u	+	iv)	=
u	and	Im(u	+	iv)	=	v	denote	the	real	part	and	the	imaginary	part,	respectively,√of	z	=	u	+	iv	∈	C.	♠	492	19	Markov	Chains	and	Electrical	Networks	Takeaways	One-dimensional	random	walks	in	random	environment	can	be	regarded	as	random	walks	in	a	network	of	random	conductances.	Note	that	the	sign	of	each	expression	changes	with	the	number
of	sets	that	are	cut.	Proof	This	is	a	direct	consequence	of	(16.3).	Hence	we	can	describe	the	strategy	by	the	formula	Hn	=	0,	2n−1	,	if	there	is	an	i	∈	{1,	.	,	Xn	be	exchangeable,	square	integrable	random	variables.	drawn	from	a	finite	alphabet	E	(that	is,	from	an	arbitrary	finite	set	E).	Theorem	7.9	(Jensen’s	inequality)	Let	I	⊂	R	be	an	interval	and	let	X
be	an	I	-valued	random	variable	with	E[|X|]	<	∞.	Proof	For	n	∈	N,	let	Ω	=	Ωn+	Ωn−	be	a	Hahn	decomposition	for	(ν	−	n1	μ)	∈	M±	.	Thus	-	k	.	♣	15.6	Multidimensional	Central	Limit	Theorem	365	15.6	Multidimensional	Central	Limit	Theorem	We	come	to	a	multidimensional	version	of	the	CLT.	be	nonnegative	numbers	with	∞	∞			pn	μn	(Rd	)	<	∞.
(13.12)	13.3	Prohorov’s	Theorem	297	Then	μ(E)	≥	sup	α(Kn	)	=	sup	lim	μnk	(Kn	)	n∈N	k→∞	n∈N			1	≥	sup	lim	sup	μnk	(E)	−	n	n∈N	k→∞	=	lim	sup	μnk	(E).	Hence,	by	Theorem	3.2(ii),	X	+	Y	is	bm+n,p	-distributed	and	thus	(by	Theorem	2.31)	bm,p	∗	bn,p	=	bm+n,p	.	i∈I	P[A|Bi	]	P[Bi	]	(8.3)	8.1	Elementary	Conditional	Probabilities	193	Proof	We	have
P[Bk	|A]	=	P[A|Bk	]	P[Bk	]	P[Bk	∩	A]	=	.	⊗I	If	(Ωi	,	Ai	)	=	(Ω0	,	A0	)	for	all	i	∈	I	,	then	we	/	also	write	A	=	A0	.	Then	there	exists	a	real	d	×d	matrix	A	=	(akl	)	with	A·AT	=	C.	Then	Lp	(μ)	⊂	Lp	(μ)	and		the	canonical	inclusion	i	:	Lp	(μ)	→	Lp	(μ),	f	→	f	is	continuous.	We	do	not	give	the	details	but	refer	to	[170,	Chapter	14.13].	,	μin	)	and	with	Σ	=	Σ	I	the
diagonal	matrix	with	entries	σi21	,	.	However,	we	still	have	the	following.	Hence	any	predictable	H	is	an	admissible	gambling	strategy.	Thus			Xτ−1	(A)	∩	{τ	≤	t}	=	{τ	=	s}	∩	Xs−1	(A)	∈	Ft	.	We	develop	it	only	to	the	point	to	which	it	is	needed	for	our	purposes:	construction	of	measures	and	integrals,	the	Radon–Nikodym	theorem	and	regular
conditional	distributions,	convergence	theorems	for	functions	(Lebesgue)	and	measures	(Prohorov),	and	construction	of	measures	in	product	spaces.	Cw	(−i,	−i	−	1)	i=1	k=−i	+	and	R	−	are	the	effective	resistances	from	0	to	+∞	and	from	0	to	Note	that	Rw	w	−∞,	respectively.	For	n	=	1	and	f	an	indicator	function,	this	is	the	(time-homogeneous)
Markov	property.	,	6}3	endowed	with	the	discrete	σ	-algebra	A	=	2Ω	and	the	uniform	distribution	P	=	UΩ	(see	Example	1.30(ii)).	To	this	end,	we	can	assume	p	=	p∗	.	Let	K	>	0	and	Yn	:=	Xn	1{|Xn	|≤K}	for	all	n	∈	N.	In	(iii)	one	can	even	show	that	almost	surely	there	are	infinitely	many	infinite	connected	components.	,	pk	∈	P,	we	have	ki=1	(pi	N)	=
(p1	·	·	·	pk	)N.	Furthermore,	E[Xi−1	Xi	Fi−1	]	=	Xi−1	E[Xi	Fi−1	]	=	2	;	hence	(as	in	(10.1))	Xi−1	n					2	An	=	E[Xi2		Fi−1	]	−	Xi−1	i=1	=	n						2	+	2	E[Xi−1	Xi		Fi−1	]	E[(Xi	−	Xi−1	)2		Fi−1	]	−	2Xi−1	i=1	=	n			*	)	E	(Xi	−	Xi−1	)2		Fi−1	.	Additionally,	define	the	left-sided	limits	F	(x−)	=	limy↑x	F	(y)	and	similarly	for	Fn	.	Determine	h(P,	τ	).	By	Corollary
6.13,	there	is	a	k→∞	subsequence	(fnk	)k∈N	of	(fnk	)k∈N	with	fnk	−→	f	almost	everywhere.		(0	↔	∞)	=	∞.	Show	that	PA	Xi	i∈I	is	tight	if	and	only	if	(Xi	)i∈I	is	uniformly	integrable.	♦	Definition	1.6	A	class	of	sets	A	⊂	2Ω	is	called	an	algebra	if	the	following	three	conditions	are	fulfilled:	(i)	Ω	∈	A.	Thus,	by	Corollary	1.82,	XJI	is	measurable.	However,	the
proof	is	a	little	more	involved.	Note	that	kn	≥	α	n	/2.	Let	p˜e	=	2−(e)	for	any	e	∈	E	and	let	q˜k	=		l	k;	hence			for	all	l	>	k.	m=1	In	particular,	for	every	f	∈	H	,	Parseval’s	equation	f	2	=	∞		)f,	bm	*2	(21.22)	)f,	bm	*)g,	bm	*.	Then	μ	((A	\	B)	∩	E)	=	μ(A	∩	E)	−	μ(B	∩	E)	=	ν(A	∩	E)	−	ν(B	∩	E)	=	ν	((A	\	B)	∩	E)	.	Define	the	measures	νa	and	νs	for	A	∈	A	by	νa
(A)	:=	ν(A	\	E)	and	νs	(A)	:=	ν(A	∩	E).	Otherwise	the	proposal	is	accepted	only	with	probability	π(x	i	)/π(x).	♣	1.3	The	Measure	Extension	Theorem	In	this	section,	we	construct	measures	μ	on	σ	-algebras.	Xti	−	Xti	lim	E	n→∞	i=1		n→∞		In	particular,	Xtn1	,	.	Proof	As	A	is	a	π-system,	uniqueness	follows	by	Lemma	1.42.	Clearly,	the	value	of	Hn	has	to	be
decided	at	time	n	−	1;	that	is,	before	the	result	of	Xn	is	known.	Proof	For	the	existence	of	E[ϕ(X)|F	]	with	values	in	(−∞,	∞]	note	that	ϕ(X)−	∈	L1	(P)	and	see	Remark	8.16.	19.16	Crossed	ladder	graph	z	a	Fig.	474	19	Markov	Chains	and	Electrical	Networks	Let	u	=	ux1	,A0	be	the	unique	potential	function	on	E	with	u(x1	)	=	1	and	u(x)	=	0	for	any	x	∈	A0
.	In	particular,	{x}	∈	B(Rn	)	for	every	x	∈	Rn	.	Example	13.20	If	X,	X1	,	X2	,	.	For	this	generalization	of	the	conditional	expectation,	we	still	have	E[X	|F	]	≤	E[Y	|F	]	a.s.	if	Y	≥	X	a.s.	(see	Exercise	8.2.1).	Summing	up,	we	get	#φn	([0,	1))	≤	2n.	Hence,	let	0	=	t0	<	t1	<	.	In	probability	theory,	in	the	second	category	fall	quantities	such	as	the	median,	mean
and	variance	of	random	variables.	Then	f	∈	L1	(μ)	and	fn	−→	f	3	3	n→∞	in	L1	;	hence	in	particular	fn	dμ	−→	f	dμ.	We	will	exploit	the	following	criterion	for	tightness	of	subsets	of	M1	(M1	(E)).	This	process	can	be	regarded	as	a	Galton-Watson	branching	process	in	continuous	time.	i=1	Letting	ε	↓	0	implies	(4.2)	and	hence	the	claim	(ii).	we	denote	the
path	that	starts	with	one	step	in	direction	x,	then	chooses	y,	then	x,	then	z	and	so	on.	(19.17)	This	is	the	triangle	inequality	for	the	effective	resistances	and	it	shows	that	the	effective	resistance	is	a	metric	in	any	electrical	network.	For	N	∈	N	and	0	=	t0	<	t1	<	.	♣	Exercise	17.6.6	Let	X	be	irreducible	and	recurrent.	(ii)	Show	that	the	expected	time	to
return	to	0	is	M	and	infer	that	the	chain	is	positive	recurrent	if	and	only	if	M	<	∞.	Proof	F1	is	continuous	with	respect	to	d	and	hence	B(Ω,	d)-measurable.	The	most	important	properties	of	weak	and	vague	convergence	are	summarised	in	the	portemanteau	theorem	and	the	continuous	mapping	theorem.	By	monotone	convergence,	E1	supn∈N	τ	is,	in
finite	time,	X	exceeds	all	levels.	Since	Ej	∪	{∅}	is	a	π-system,	Lemma	1.42	yields	that	μ(Ej	)	=	ν(Ej	)	for	all	Ej	∈	σ	(Ej	).	Recall	that	Bε	(x)	=	{y	∈	E	:	d(x,	y)	<	ε}	denotes	the	open	ball	of	radius	ε	>	0	that	is	centered	at	x	∈	E.	(Note	that	this	is	not	a	stopping	time.)	By	the	Markov	property,	for	all	k	≤	n,	)	)	*	*	Pπ	σxn	=	k	=	Pπ	Xk	=	x,	Xk+1	=	x,	.	21.1
Continuous	Versions	A	priori	the	paths	of	a	canonical	process	are	of	course	not	continuous	since	every	map	[0,	∞)	→	R	is	possible.	At	this	point	we	use	Lemma	7.46.	+s	−	Ts	nσ	2	In	either	case,	we	have	√			Kn	,n		t	n		Kn	Kn	Kn	,n		T¯	¯	−	T	|	,	≤	|Yk	|	+	|Yk+1	t	+s	s	σ	hence	'	'	2	4		(		(	n	,n	¯	Kn	,n	4	≤	n	t	(2Kn	)2	E	|Y	Kn	|	+	|Y	Kn	|	2	E	T¯tK	+s	−	Ts	1	2	4	σ
)	*	16n5/2t	4	16	≤	Var	Y1Kn	≤	2	t	3/2	.	,	Xn	be	independent	exponentially	distributed	random	variables	with	parameters	θ1	,	.	428	17	Markov	Chains	If	μ	=	0,	then	μ	is	a	finite	measure	if	and	only	if	M	:=	∞	n−1			pk	<	∞.	,	∞.	be	i.i.d.	Define	Sn	=	X1	+	.	By	Remark	6.3,	it	is	enough	to	consider	the	case	μ(Ω)	<	∞.	Then	the	stochastic	kernel		(x,	A)	→	κY,X
(x,	A)	=	P[{Y	∈	A}|X	=	x]	=	κY,σ	(X)	X−1	(x),	A	(the	function	from	the	factorization	lemma	with	an	arbitrary	value	for	x	∈	X(Ω))	is	called	a	regular	conditional	distribution	of	Y	given	X.	Together	with	(12.8),	we	get	(12.7).	♦	Takeaways	If	a	random	variable	is	the	sum	of	many	independent	centred	random	variables,	each	of	which	takes	mainly	small
values,	then	its	distribution	is	close	to	a	normal	distribution.	,	N	−	1},	r	∈	(0,	1)	and	p(i,	j	)	=	⎧	⎨	r,	1	−	r,	⎩	0,	if	j	=	i	+	1	(mod	N),	if	j	=	i	(mod	N),	else.	g	+	(f	+	−	g	+	)+	dμ	=	100	4	The	Integral	Similarly,	we	use	f	−	≥	g	−	a.e.	to	obtain			f	−	dμ	≥	g	−	dμ.	Proof	One	implication	is	trivial.	Thus	X	+	Y	∼	Poiλ+μ	.	If	in	the	ith	game	the	player	makes	a
(random)	stake	of	Hi	euros,	then	the	cumulative	profit	after	the	nth	game	is	Sn	=	n		Hi	Di	.	Let	F1	and	F2	be	the	distribution	functions	of	μ1	and	μ2	.	,	Xn	)	∈	G]	=	1.	Then	f	is	B(Ω)	–	B(Ω	)-measurable.	Then	ν	can	be	uniquely	decomposed	into	an	absolutely	continuous	part	νa	and	a	singular	part	νs	(with	respect	to	μ):	ν	=	νa	+	νs	,	where	νa	0	μ	and	νs
⊥	μ.	♣	0	1	x	Exercise	19.5.3	Consider	the	graph	of	Fig.	We	ignore	the	spatial	structure	and	assume	that	any	particle	interacts	with	any	other	particle	in	the	same	way.	By	the	martingale	convergence	theorem,	this	is	consonant	with	the	fact	that	X	is	not	uniformly	integrable.	k	k=0	Using	this	formula	with	x	=	(1	−	p)	eit	gives	the	claim.	♣	Exercise
13.1.9	Show	that	the	set	of	rationals	Q	(with	the	standard	topology)	is	not	a	Polish	space.	370	16	Infinitely	Divisible	Distributions	Theorem	16.5	A	probability	measure	μ	on	R	is	infinitely	divisible	if	and	only	if	n→∞	there	is	a	sequence	(νn	)n∈N	in	Mf	(R	\	{0})	such	that	CPoiνn	−→	μ.	The	length	l(e)	of	the	sequence	that	codes	for	e	may	depend	on	e.
Then	there	is	an	ε	>	0	and	a	subsequence	(fnk	)k∈N	with	f	−	fnk	1	>	2ε	for	all	k	∈	N.	,	xn	)	∈	E	n	,	denote	x		=	(x(1),	.	By	assumption,	P[τK	=	∞]	→	1	for	K	→	∞;	hence	X	converges	almost	surely.	♣	Exercise	15.1.6	Let	X,	Y,	Z	be	independent	nonnegative	random	variables	such	that	P[Z	>	0]	>	0	and	such	that	the	Mellin	transform	mXZ	(s)	is	finite	for
some	s	>	0.	inf	0≤		g	∈L1	(μ)	f	∈F	(6.3)	{|f	|>	g}	If	μ(Ω)	<	∞,	then	uniform	integrability	is	equivalent	to	either	of	the	following	two	conditions:		(i)	inf	sup	(|f	|	−	a)+	dμ	=	0,	a∈[0,∞)	f	∈F		(ii)	inf	sup	|f	|	dμ	=	0.	(A	∩	Bi	)	=		i∈I	P[A	∩	Bi	]	=		P[A|Bi	]P[Bi	].	However,	in	general,	this	property	is	weaker	than	(i)	in	Definition	1.6.	Theorem	1.7	A	class	of	sets	A
⊂	2Ω	is	an	algebra	if	and	only	if	the	following	three	properties	hold:	(i)	Ω	∈	A.	Hence	An	∈	Ai	for	every	n	∈	N	and	i	∈	I	.	,	n}	normal	distribution	Nμ,σ	2	on	R	exponential	distribution	expθ	on	[0,	∞)	Gamma	distribution	Γθ,r	on	[0,	∞)	Beta	distribution	βr,s	on	[0,	1]	Cauchy	distribution	Caua	on	R		n+k−1	k	Exercise	1.5.1	Use	the	identity	−n	to	deduce
(1.17)	by	combik	(−1)	=	k	natorial	means	from	its	interpretation	as	a	waiting	time.	n−2	≤	4	for	all	x	≥	0.	By	Remark	6.3,	(fnkl	)l∈N	converges	to	f	almost	everywhere.	9	we	saw	that	martingales	are	transformed	into	martingales	if	we	apply	certain	admissible	gambling	strategies.	.)	∈	E	N	.	21.10	Square	Variation	and	Local	Martingales	..	,	2n−1	,	let
bn,k	(t)	=	⎧	⎪	2(n−1)/2,	⎪	⎪	⎪	⎪	⎨	−2	⎪	⎪	⎪	⎪	⎪	⎩	(n−1)/2	,	0,	2k	−	2	2k	−	1	≤	t	<	,	n	2	2n	2k	−	1	2k	if	≤	t	<	n,	2n	2	if	else.	Indeed,	Caua	has	CFP	ϕa	(t)	=	n	−a|t	|	e	;	hence	ϕa/n	=	ϕa	.	is	a	Markov	chain	with	state	space	{0,	.	Note	that,	for	infinite	E,	the	entropy	need	not	be	finite.	Let	U1	,	U2	,	.	Now,	let	n	∈	N,	and	assume	ϕ	is	2n-times	(not
necessarily	continuously)	differentiable	at	0.	The	Feller	property	and	Theorem	21.24	ensure	the	existence	of	an	RCLL	version	g	of	Xg	.	Example	17.60	Let	n	∈	N	and	0	≤	p1	≤	p2	≤	1.	Proof	In	Theorem	17.9,	let	ti	=	i	for	every	i	∈	N0	.	Proof	This	is	a	consequence	of	Theorem	6.25,	as	the	dominating	function	ensures	uniform	integrability	of	the	sequence
(fn	)n∈N	.	,	pm	)	be	a	probability	vector	on	{1,	.	The	star-shaped	part	of	a	network	(left	in	Fig.	In	fact	σ	((−∞,	a],	a	∈	Rd	)	=	B(Rd	)	by	Theorem	1.23.	for	all	z	∈	[0,	η)	for	some	η	∈	(0,	1).	However,	we	have	just	shown	that	such	a	path	could	not	exist.	In	other	words:	For	any	simple	event	ω	∈	Ω,	Xn	(ω)	yields	the	result	of	the	nth	experiment.	In	this	case,
we	also	write	ν	=	fμ	and	f	=	dν	.	i=1	Can	we	extend	the	set	function	μ	to	a	(uniquely	determined)	measure	on	the	Borel	σ	-algebra	B(Rn	)	=	σ	(A)?	♦	Takeaways	Assume	that	the	price	of	a	risky	asset	at	discrete	trading	times	n	=	0,	1,	2,	.	n=1	n=1	(ii)	For	any	A	∈	σ	(A)	with	μ(A)	<	∞	and	any	ε	>	0,there	exists	an		n	∈	N	and	n		mutually	disjoint	sets	A1	,	.
Letting	r	=	n1	,	we	get	that	ϕ	=	(ϕ	1/n	)n	is	infinitely	divisible.	23.1	Cramér’s	Theorem	.	Letting	ϕk	:=	1Ck	,	Theorem	12.17	implies	that		(	'		1A	=	E[1A	|E]	=	E	lim	ϕkl	(X)		E	=	lim	E[ϕkl	(X)|E]	l→∞	=	lim	E[ϕkl	(X)|T	]	=:	ψ	l→∞	l→∞	almost	surely.	Proof	We	compute	ψS	(z)	=	∞		P[S	=	k]	zk	k=0	=	∞		∞		P[T	=	n]	P[X1	+	.	Exercise	5.3.1	Show	the	following
improvement	of	Theorem	5.16:	If	X1	,	X2	,	.	(ii)	If	E	is	locally	compact,	then	in	((i))	we	can	choose	the	neighborhoods	Ux	to	be	relatively	compact.	However,	since	f	is	continuous,	we	even	have	f	−1	(A	)	∈	τ	for	all	A	∈	τ		.	7.4.	Definition	7.19	Let	V	be	a	real	vector	space.	2.	Thus	X	would	not	be	irreducible	contradicting	the	assumption.	dx	[0,x]	13.2	Weak
and	Vague	Convergence	281	Hint:	Use	Exercise	13.1.6	with	μq	(dx)	=	(f	(x)	−	q)+	λd	(dx)	for	q	∈	Q,	as	well	as	the	inequality	μq	(x	+	rC)	μ(x	+	rC)	≤	q	+	.	25.1	Itô	Integral	with	Respect	to	Brownian	Motion	.	,	tn	)	for	x	=	(x1	,	.	Since	μ(Z)	=	ϕ(0)	=	1,	μ	is	indeed	a	probability	measure.	Then	there	exists	an	F∞	-measurable	random	n→∞	variable	X∞	with
E[|X∞	|]	<	∞	and	Xn	−→	X∞	almost	surely.	The	following	statements	are	equivalent.	2α	Let	X1	,	X2	,	.	this,	we	construct	a	subgraph	for	which	we	can	compute	Reff	Sketch	We	consider	the	set	of	all	infinite	paths	starting	at	0	and	that	•	begin	by	taking	one	step	in	the	x-direction,	the	y-direction	or	the	z-direction,	•	continue	by	choosing	a	possibly
different	direction	x,	y	or	z	and	make	two	steps	in	that	direction,	and	•	at	the	nth	stage	choose	a	direction	x,	y	or	z	and	take	2n+1	steps	in	that	direction.	Furthermore,	in	some	places	“reflection”	blocks	have	been	added.	We	construct	a	finite	covering	Uz1	,	.	Since	ρ	dμn	converges	by	assumption,	we	thus	have		sup	μn	(E)	≤	1	+	sup	μn	(L)	≤	1	+	sup
n∈N	n∈N	ρ	dμn	<	∞.	To	this	end,	let	σn2	=	nk=1	Var[Yk	]	and	define	an	array	(Xn,l	;	l	=	1,	.	Then	there	exists	a	probability	space	(Ω,	A,	P)	and	an	independent	family	(Xn	)n∈N	of	E-valued	random	variables	on	(Ω,	A,	P)	such	that	P[Xn	=	e]	=	pe	for	any	e	∈	E.	(iii)	Every	algebra	is	a	ring.	However,	here	we	sketch	a	particular	situation	where	this	is
possible.	with	A	⊂	i=1	i=1	Definition	1.28	Let	A	be	a	semiring	and	let	μ	:	A	→	[0,	∞]	be	a	set	function	with	μ(∅)	=	0.	By	(i),	we	get	E[Xτ	∧n	]	≤	E[X0	]	for	any	n	∈	N.	Define	Pπ	=	x∈E	π({x})Px	.	Since	μ	is	inner	regular	(Theorem	13.6),	there	is	a	compact	set	K	⊂	G	with	μ(G)	−	μ(K)	<	ε.	Summing	up,	we	have	'	2	(	*	)	E	(X	−	Y	)2	−	E	X	−	E[X	|F	]	(	'	=	E	X2
−	2XY	+	Y	2	−	X2	+	2XE[X	|F	]	−	E[X	|F	]2	(	'	=	E	Y	2	−	2Y	E[X	|F	]	+	E[X	|F	]2	'	2	(	≥	0.	As	a	consequence	we	get	Lebesgue’s	dominated	convergence	theorem.	By	Corollary	6.26	n→∞	(dominated	convergence),	we	have	E[Zn	]	−→	0;	hence,	by	the	triangle	198	8	Conditional	Expectations	inequality,	*		)	n→∞	E	E[Xn	|	F	]−E[X	|	F	]	≤	E[E[|Xn	−X|		F	]]	=
E[|Xn	−X|]	≤	E[Zn	]	−→	0.	(ii)	Define	independent	random	variables	Xn,i	,	Yn,i	,	n	∈	N,	i	=	1,	2,	and	Θn	,	n	∈	N	such	that	Xn,i	has	characteristic	function	ϕi	,	Yn,i	has	characteristic	function	ψi	and	P[Θn	=	1]	=	P[Θn	=	−1]	=	12	.	If,	in	particular,	all	the	Ωi	are	equal,	say	Ωi	=	Ω0	,	then	we	write	Ω	=	×	Ωi	=	Ω0I	.	Furthermore,	for	large	β,	there	is	another
minimum	with	the	opposite	sign	(Fig.	These	concepts	form	the	basic	vocabulary	for	the	description	of	stochastic	processes,	in	particular	martingales,	in	the	subsequent	sections.	Then	)	*	P	Xn	≥	n	for	infinitely	many	n	=	0.	Hence		*		*	)		*	)	)	E	ϕk	(X1	,	.	,	n}	and	transition	matrix	pn	(k,	l)	=	⎧	⎪	⎨	⎪	⎩	k/n,	1	−	k/n,	0,	if	l	=	k,	if	l	=	k	+	1,	otherwise.	Let	Pπ
=	x∈E	π({x})Px	.	(ii)	Let	A	=	{ω	:	f	(ω)	=	∞}.	For	the	latter	case,	the	claim	of	the	theorem	would	be	incorrect	since,	loosely	speaking,	with	H	we	can	bet	on	X	but	not	on	the	Di	.	452	18	Convergence	of	Markov	Chains	The	Gibbs	sampler	for	the	Ising	model	is	thus	the	Markov	chain	(Xn	)n∈N0	with	values	in	E	=	{−1,	1}Λ	and	with	transition	matrix	⎧		'
(−1	⎨	1	1+exp	2β		(1{x(j	)=x(i)}	−	1	)	,	if	y	=	x	i	for	some	i	∈	Λ,	2	p(x,	y)	=	#Λ	j	:	j	∼i	⎩	0,	otherwise.	♦	The	Stone–Weierstraß	theorem	implies	that	a	characteristic	function	determines	a	probability	distribution	uniquely.	♦		Definition	1.57	(Lebesgue–Stieltjes	measure)	The	measure	μF	on	R,	B(R)	defined	by	μF	((a,	b])	=	F	(b)	−	F	(a)	for	all	a,	b	∈	R	with
a	<	b	is	called	the	Lebesgue–Stieltjes	measure	with	distribution	function	F	.	Similarly,	there	exist	dk	∈	N	and	Dk,1	,	.	Recall	that	a	σ	-algebra	I	is	called	P-trivial	if	P[A]	∈	{0,	1}	for	every	A	∈	I.	Define	a,b	UNa,b	=	UQa,b	+	∩[0,N]	.	,	Xn	}	=	Y1	+	.	Then	μ∗	is	an	outer	measure.	Definition	20.5	An	event	A	∈	A	is	called	invariant	if	τ	−1	(A)	=	A	and
quasiinvariant	if	1τ	−1	(A)	=	1A	P-a.s.	Denote	the	σ	-algebra	of	invariant	events	by	I	=	A	∈	A	:	τ	−1	(A)	=	A	.	,	Xk	)]	=	E[F	(Xi1	,	.	♣	Exercise	18.4.5	Let	E	=	{0,	.	♣	Exercise	8.2.7	Let	X1	,	.	Of	course,	any	of	the	pairs	(A1	,	A2	),	(A1	,	A3	)	and	(A2	,	A3	)	has	to	be	independent.	We	will	also	assume	that	(E,	τ	)	is	a	Hausdorff	space;	that	is,	for	any	two	points
x,	y	∈	E	with	x	=	y,	there	exist	disjoint	open	sets	U,	V	such	that	x	∈	U	and	y	∈	V	.	Define	μ1	=	μ(E1	∩	·	)	and	μn	=	μ((En	\	En−1	)	∩	·	)	for	n	≥	2.	16.1	Lévy–Khinchin	Formula	369	As	convolutions	of	Poisson	distributions	play	a	special	role,	we	will	consider	them	separately.	Proof	This	is	a	consequence	of	Theorem	24.5	and	the	uniqueness	theorem	for
characteristic	functions	(Theorem	15.9)	and	for	Laplace	transforms	(Exercise	15.1.2)	of	random	variables	on	[0,	∞)n	.	Therefore,	X	does	not	even	converge	improperly.	461	462	465	467	473	480	488	20	Ergodic	Theory	.	We	consider	a	strengthening	of	(20.7).	Note	that	t	→	Λ(t)	is	differentiable	(with	derivative	Λ	)	and	is	strictly	convex.	Here	we	used	the
exchangeability	of	X	in	the	first	equality	and	the	symmetry	of	F	in	the	second	equality.	Let	sk	=	x1	+	.	Hence,	there	exist	N	∈	N	and	y0	≤	−f	∞	<	y1	<	.			(ii)	Let	γ	∈	0,	βα	.	i=1	1.1	Classes	of	Sets	9	(i)	There	are	subsets	of	Rn	that	are	not	Borel	sets.	(16.23)	♦	2	Lemma	16.24	Let	μ	be	infinitely	divisible	with	3	canonical	triple	(σ	,	b,	ν);	that	is,	it	x	with
log-characteristic	function	ψ(t)	:=	log	e	μ(dx)	given	by	σ2	ψ(t)	=	−	t	2	+	ibt	+	2			it	x	e	−	1	−	itx	1{|x|	0,	d	∈	R,	n	∈	N	and	let	X,	X1	,	.	“(iii)	⇒	(i)”	Assume	that	(i)	does	not	hold.	(ii)	If	in	addition	A	is	σ	-∪-closed,	then	A	is	σ	-∩-closed.	Show	the	following	statements:		2	(i)	∞	n=0	An	<	∞	almost	surely.	(ii)	Does	the	converse	implication	hold	in	(i)?	By
choosing	the	minimal	n	≥	n0	such	that	|t	−	s|	≥	2−n	,	we	obtain	by	(21.8),	|Xt	(ω)	−	Xs	(ω)|	≤	C0	|t	−	s|γ	.	A	Proof	(i)	Let	f	be	the	map	f	:	Ω	→	I	with	f	(ω)	=	i	⇐⇒	Bi		ω.	(Result:	Λ∗	(x)	=	θ	x	−	log(θ	x)	−	1	if	x	>	0	and	=	∞	otherwise.)	♣	Exercise	23.2.5	Compute	Λ	and	Λ∗	for	the	case	where	X1	is	Cauchy	distributed	and	interpret	the	statement	of	Theorem
23.11.	Q±	(A)	=	A	Now	define	Y	=	Y	+	−	Y	−	.	22,	24,	and	25,	26	can	be	read	independently.	,	xn	).	We	conclude	that	(since	P[X2j	=	0]	=	and	P[X2j	+1	=	0]	=	0)	2j		j	4−j	)	*	E[|Xn	|]	=	E	#{i	≤	n	−	1	:	Xi	=	0}	=	n−1		P[Xi	=	0]	=	i=0	(n−1)/2!			j	=0		2j	−j	4	.	Indeed,	∞	the	improper	integral	0	f	(x)	dx	:=	limn→∞	0	f	(x)	dx	is	defined	by	a	limit	procedure	that
respects	the	geometry	of	R.	♦	Example	12.3	(i)	If	(Xi	)i∈I	is	i.i.d.,	then	(Xi	)i∈I	is	exchangeable.	(24.2)	Proof	The	class	of	sets	I	=	(If1	,	.	Then			M	=	B(τv	)	=	σ	If	:	f	∈	Cc	(E)	=	σ	If	:	f	∈	Cc+	(E)	.	,	mr	∈		N0	with	n	dx	=	ri=1	ki	mi	.	,	Xk	)		A	a.s.	and	in	L1	.	Example	21.13	Another	example	of	a	continuous	Gaussian	process	is	the	so-called	Brownian	bridge	X
=	(Xt	)t	∈[0,1]	that	is	defined	by	the	covariance	function	Γ	(s,	t)	=	s	∧	t	−	st.	Remark	5.31		Condition	(5.15)	is	sharp	in	the	sense	that	for	any	increasing	sequence	−2	2	(an	)n∈N	with	∞	n=1	an	(log	n)	=	∞,	there	exists	a	sequence	of	pairwise	independent,	square	integrable,	centered	random	variables	X1	,	X2	,	.	However,	if	F1n	turns	out	to	be	a
constant	map	(e.g.,	F1n	≡	x	∗	for	some	random	x	∗	),	then	we	will	also	have	F1m	≡	x	∗	for	all	m	≥	n.		n=1	Clearly,	C	is	a	countable	set	of	compact	sets	in	E,	and	C	is	stable	under	formation	of	unions.	Inductively,	we	get	(finite)	additivity.	As	an	application,	we	(Zε	)	e	get	the	statistical	physics	principle	of	minimising	the	free	energy.	(iii)	X	has	the	time-
homogeneous	Markov	property	(MP):	For	every	A	∈	B(E),	every	x	∈	E	and	all	s,	t	∈	I	,	we	have		*	)	Px	Xt	+s	∈	A		Fs	=	κt	(Xs	,	A)	Px	-a.s.	Here,	for	every	t	∈	I	,	the	transition	kernel	κt	:	E	×	B(E)	→	[0,	1]	is	the	stochastic	kernel	defined	for	x	∈	E	and	A	∈	B(E)	by		κt	(x,	A)	:=	κ	x,	{y	∈	E	I	:	y(t)	∈	A}	=	Px	[Xt	∈	A]	.	Proof	Let	f	:	E	→	R	be	bounded	and
Lipschitz	continuous	with	constant	K.	Lemma	15.37	Let	X1	,	X2	,	.	Inductively,	we	get		n		κk	(0,	ϕn	(A1	×	·	·	·	×	An	))	k=1		n−1		=	=	κk	ϕn−1	(A1	×···×An−1	)		n−1					0,	d(y1,	.	Let	I˜(x)	:=	inf	Iμ	(Ex	)	(where	Iμ	(ν)	=	H	(ν	|μ)	is	the	602	23	Large	Deviations	relative	entropy).	Hence	we	have	(Ω,	A,	P,	τ	)	is	ergodic	⇐⇒	gcd(r,	n)	=	1.	(2.12)	Consequently,	the
edges	in	E	\	E	p	are	called	closed.	Similarly,	we	can	use	the	first	inequality	in	Lemma	23.12	to	get	*		)	P	ξn	(X)	∈	A	≥	(n	+	1)−#Σ	exp	−	n	inf	Iμ	(A	∩	En	)	and	thus	lim	inf	n→∞	)	*	1	log	P	ξn	(X)	∈	A	≥	−	lim	sup	inf	Iμ	(A	∩	En	).	With	this	interpretation,	it	is	particularly	evident	that	it	is	natural	to	construct	new	stochastic	processes	by	considering
investment	strategies	for	the	stock.	Proof	Let	ϕ	be	the	CFP	of	μ.	n	(iii)	k=0	Ak	,	n	∈	N	converges	almost	surely.	∈	A	with	An	↑	A.	154	6	Convergence	Theorems	By	construction,	3	{|f	|>gε	}	(|f	|	−	gε/2	)+	dμ	≤	ε/2	and	+	gε/2	1{|f	|>gε	}	≤	|f	|	−	gε/2	1{|f	|>gε	}	;	hence	also			{|f	|>gε	}	gε/2	dμ	≤	{|f	|>gε	}	(|f	|	−	gε/2	)+	dμ	≤	ε	.	Define	νn	=	n→∞	nμn	∈
Mf	([0,	∞)).	Let	I	⊂	R	be	an	interval.	n	20.2	Ergodic	Theorems	499	Let	ε	>	0	and	F	:=	{Z	>	ε}.	k=1	Hence	μ	is	subadditive.	In	particular,	letting	c	=	f	−	gp	we	obtain							p	1/p	f	−	gp	≤	cp	μ(Ω)	+	cp	−p	f	−	gp	=	(1	+	μ(Ω))1/p	f	−	gp	.	However,	we	have	to	make	sure	also	that	the	simultaneous	occurrence	of	A1	and	A2	does	not	change	the	probability	that
A3	occurs.	Then	PX	=:	Poiλ	is	called	the	Poisson	distribution	with	parameter	λ.	For	all	t	≥	0,	the	function	(compare	(15.8))	ft	:	[0,	∞)	→	[0,	∞),	x	→	1−e−tx	,	1−e−x	t,	if	x	>	0,	if	x	=	0,	374	16	Infinitely	Divisible	Distributions	is	continuous	and	bounded	(by	t	∨	1).	(2.17)	This	part	of	the	proof	is	the	most	difficult	one.	Accordingly,	assume	F	is	uniformly
integrable	(but	not	necessarily	μ(Ω)	<	∞).	16.2,	we	will	show	that	this	is	true	for	all	α	∈	(0,	2].	For	measurable	g	:	Ω	→	R,	let	Ug	be	the	set	of	points	of	discontinuity	of	g.	By	the	Hahn–Banach	theorem	n→∞	of	functional	analysis	(see,	e.g.,	[87]	or	[174]),	F	can	be	extended	to	a	continuous	linear	functional	on	∞	.	By	construction,	X			is	stationary	with
respect	to		P	lim	P	and	←−	n→∞				n	)n∈N0	−1	=	P	◦	(Xn	)n∈N0	−1	.	On	the	other	hand,/	each	Xi	is	continuous	and	thus	measurable	with	respect	to	B	–	Bi	.	That	is,	we	obtain	the	following	lemma.	n	n	n−1	n−1	k=0	k=0	n→∞	By	Birkhoff’s	ergodic	theorem,	we	have	Yn	−→	P[B]	almost	surely.	Similarly,	the	claim	follows	for		(IA1	,	.	As	a	by-product	we	get
a	discrete	version	of	the	celebrated	Black-Scholes	formula.	Proof	The	space	L2	(μ)	fulfills	the	conditions	of	Corollary	7.27.	Then	use	the	approximation	arguments	as	in	Exercise	4.2.5.	♣	4.3	Lebesgue	Integral	Versus	Riemann	Integral	We	show	that	for	Riemann	integrable	functions	the	Lebesgue	integral	and	the	Riemann	integral	coincide.	By	the
Borel–	n=1	Cantelli	lemma	(Theorem	2.7),	we	infer	lim	sup	n→∞	1	sup	Bt	−	Bn	,	t	∈	[n,	n	+	1]	=	0	n	Hence	X	is	also	continuous	at	0.	19.6).	,	BtN	).	(14.5)	i=1	n	μi	:=	μ1	⊗	·	·	·	⊗	μn	:=	μ	is	called	the	product	measure	of	the	μi	.	Proof	Assume	that	there	does	exist	a	topology	that	induces	almost	everywhere	meas	convergence.	♣	wn	n=0	17.4	Discrete
Markov	Chains:	Recurrence	and	Transience	In	the	following,	let	X	=	(Xn	)n∈N0	be	a	Markov	chain	on	the	countable	space	E	with	transition	matrix	p.	As	a	simple	application	of	the	strong	Markov	property,	we	show	the	reflection	principle	for	random	walks.	(x)	Somewhat	more	generally,	there	is	no	nontrivial	infinitely	divisible	distribution	that	is
concentrated	on	a	bounded	interval.	TV	;	;	Thus,	for	every	x	∈	E,	we	have	lim	sup	;δx	pn	−	π	;T	V	>	0.	∈	M≤1	(E).	If	x	∈	E,	then	denote	by	x	i,σ	the	state	in	which	at	site	i	the	spin	is	changed	to	σ	∈	{−1,	+1};	that	is,	x	i,σ	(j	)	=	σ,	if	j	=	i,	x(j	),	if	j	=	i.	At	the	first	stage,	a	probability	distribution	Ξ	on	E	is	drawn	at	random.	only	be	computed	numerically
(Fig.	13.1	A	Topology	Primer	3	Here	come	the	details.	x≥0,	λ∈I	dλ	x≥0,	λ∈I	Thus	F	fulfills	the	assumptions	of	Theorem	6.28.	L1	Remark	6.9	If	fn	−→	f	,	then	in	particular	L1	3	n→∞	fn	dμ	−→	3	f	dμ.	Clearly,	|YiK	|	≤	K	for	every	i.	Then	(X,	Y	)	is	a	successful	coupling	and	Xn	=	Yn	for	n	≥	τ	.	The	set	of	such	rectangular	cylinders	for	which	in	addition	Aj	∈
Ej	for	all	j	∈	J	holds	will	be	denoted	by	ZJE	,R	.	17.5	Application:	Recurrence	and	Transience	of	Random	Walks	419	Hence	we	only	have	to	compute	the	asymptotics	of	P0	[Yt1	=	0]	for	large	t.	Therefore,	(iii)	does	n→∞	not	hold.	Under	certain	assumptions	on	the	continuity	of	the	paths,	however,	the	two	notions	coincide.	We	assume	that	there	exists	a
map	ψ	:	[0,	∞)	→	[0,	1]	n→∞	that	is	continuous	in	0	and	such	that	ψn	−→	ψ	pointwise.	(i)	Let	p	∈	[0,	1]	and	P[X	=	1]	=	p,	P[X	=	0]	=	1	−	p.	Show	that	the	following	hold.	The	final	step	is	to	show	convergence	in	path	space.	Furthermore,	we	have	pf	=	f	on	E	\	A	if	and	only	if	pf	˜	=	f	on	E	\	A.	416	17	Markov	Chains	j	Clearly,	Y1	=	(Y11	,	.	Proof	“	⇐	”	This	is
obvious.	n→∞	Proof	Let	(fN	)N∈N	be	a	sequence	in	Cc	(E;	[0,	1])	with	fN	↑	1.	This	is	Donsker’s	theorem	that	is	known	in	the	physics	literature	as	the	invariance	principle.	ε→0	Note	that	ρC,ε	−→	1C	.	Furthermore,	P[A	∩	B]	=	˜	#(A˜	×	B)	#A˜	#B˜	=	·	=	P[A]	·	P[B].	Our	intuitive	understanding	of	an	edge	is	a	connection	between	two	points	x	and	y	and
not	an	(unordered)	pair	{x,	y}.	Note	that	R(x)	>	0,	as	A	is	open.	As	we	want	to	use	only	zeros	and	ones	(and	no	gap-like	symbols),	we	have	to	arrange	the	code	in	such	a	way	that	no	code	is	the	beginning	of	the	code	of	a	different	symbol.	If,	on	the	other	hand,	(Nt	,	t	≥	0)	is	a	Poisson	process,	then	(Nt	−	Ns	,	(s,	t]	∈	I)	has	properties	(P1)–(P5).	(ii)
Consider	the	Bernoulli	distributions	Berp	and	Berq	for	p,	q	∈	[0,	1].	Define	u(0)	=	0	and	u(2)	=	1.	11.2	Martingale	Convergence	Theorems	..	One	can	use	second	moments	and	Chebyshev’s	inequality	to	establish	a	weak	law	of	large	numbers.	For	extensive	literature	on	stochastic	aspects	of	mathematical	finance,	we	refer	to	the	textbooks	[9,	42,	48,	57,
86,	102,	121]	or	[160].	=	2	and	Var[X]	<	∞,	let	E[X]	=	0.	Unlike	a,	of	s	depends	on	every	coordinate	if	it	is	finite.	(ii)	If	F	,	G	⊂	L1	(μ)	are	uniformly	integrable,	then	(f	+	g	:	f	∈	F	,	g	∈	G),	(f	−	g	:	f	∈	F	,	g	∈	G)	and	{|f	|	:	f	∈	F	}	are	also	uniformly	integrable.	Definition	9.10	A	stochastic	process	X	=	(Xt	,	t	∈	I	)	is	called	adapted	to	the	filtration	F	if	Xt	is	Ft	-
measurable	for	all	t	∈	I	.	For	probability	measures	on	R,	weak	convergence	is	tantamount	to	convergence	of	distribution	functions	at	all	points	of	continuity	of	the	limiting	function.	♣	488	19	Markov	Chains	and	Electrical	Networks	a	z	Fig.	,	ωn	]	=	B2−n	(ω)	=	{ω	∈	Ω	:	d(ω,	ω	)	<	2−n	}.	=	ω	:	|ω(0)|	≤	Kε	,	V	(ω,	δN,k,ε	)	≤	k	548	21	Brownian	Motion	By
the	Arzelà–Ascoli	theorem,	Cε	:=		CN,ε	is	relatively	compact	in	C([0,	∞))	N∈N	and	we	have	Pi	(Cεc	)	≤	∞			ε	+	Pi	ω	:	V	N	(ω,	δN,k,ε	)	>	1/k	≤	ε	2	for	all	i	∈	I.	In	the	special	cases	f	(x)	=	x	2	and	f	(x)	=	|x|,	the	second	derivative	is	f		(x)	=	2	and	f		(x)	=	2·1{0}	(x),	respectively.	With	the	notation	of	Theorem	1.53,	this	completion	is		Ω,	M(μ∗	),	μ∗			M(μ∗	)	.	−
∗	b−	=	b−	Exercise	3.1.1	Show	that	br,p	r+s,p	for	r,	s	∈	(0,	∞)	and	p	∈	(0,	1].	2.1	Independence	of	Events	57	Proof	This	is	left	as	an	exercise.	♦	The	following	two	definitions	make	sense	also	for	more	general	index	sets	I	that	are	partially	ordered.	Existence	Let	X+	=	X	∨	0	and	X−	=	X+	−	X.	(iii)	Since	|αf	+	βg|	≤	|α|	·	|f	|	+	|β|	·	|g|,	Lemma	4.6(i)	and
(iii)	yield	that	αf	+βg	∈	L1	(μ).	.})	+	μ({N	+	1,	N	+	2,	.	be	distribution	functions	of	probability	mean→∞	sures	on	R.	For	B	∈	A,	P[B	|F	]	:=	E[1B	|F	]	is	called	a	conditional	probability	of	B	given	the	σ	-algebra	F	.	By	k=1	n→∞	n→∞	(ii)	Clearly,	ϕY	(t)	=	∞		*	)	P[N	=	n]	E	ei)t,X1	+...+Xn	*	n=0	=	∞		P[N	=	n]	ϕX	(t)n	=	fN	(ϕX	(t)).	Rather,	we	just	used	the	fact
that	the	differences	(ΔX)n	:=	Xn	−	Xn−1	take	only	the	values	−1	and	+1.	Hence	t	=0	X	is	the	required	Markov	process.	,	αN	∈	(0,	∞)	and	mutually	disjoint	sets	A1	,	.	Therefore,	by	Theorem	19.25,	is	finite	if	and	only	if	Rw	w	X	is	transient	⇐⇒	−	+	<	∞	or	Rw	<	∞.	Now	assume	that	a	prefix	code	is	given.	Indeed,	ϕr,p	(t)	=	erψp	(t	),	where	(br/n,p		ψp	(t)
=	log(p)	−	log	1	−	(1	−	p)eit	.	Since	{A}	∈	U(A),	we	have	μ	(A)	≤	μ(A).	r	k!	k	−	=	CPoi	If	we	had	br,p	rν	for	some	ν	∈	Mf	(N),	then	we	would	have	ν({k})	=	k	(1	−	p)	/k.	We	conclude	that	Nn1	,t	+1	≤st	Nn2	,t	+1	which	completes	the	induction	and	the	proof	of	the	theorem.	Use	the	martingale	convergence	theorem	to	n=1	n2	show	the	strong	law	of	large
numbers	for	(Xn	)n∈N	.	Definition	1.46	(Outer	measure)	A	set	function	μ∗	:	2Ω	→	[0,	∞]	is	called	an	outer	measure	if	(i)	μ∗	(∅)	=	0,	and	(ii)	μ∗	is	monotone,	(iii)	μ∗	is	σ	-subadditive.	We	denote	the	effective	conductance	from	x1	to	∞	by	Ceff	(x1	↔	∞)	:=	C(x1	)	inf	pF	(x1	,	A0	)	:	A0	⊂	E	with	|E	\	A0	|	<	∞,	A0		x1	.	That	is,	Z		∈	Z	is	a	finite	subset	of	A	such
that	the	sets	C	∈	Z	are	pairwise	disjoint	and	C∈Z	C	=	Ω	for	all	Z.	Thus	also	Ac	∈	Ai	for	any	i	∈	I	.	(5–12)	Exhaustion	arguments	similar	to	that	in	(4)	also	work	for	rectangles.	♠	Example	19.28	Symmetric	simple	random	walk	on	E	=	Z2	is	recurrent.	Let	L	>	0	and	let	(Xn	)n∈N	be	a	martingale	with	the	property			Xn+1	−	Xn		≤	L	a.s.	(11.2)	Define	the
events	C	:=	(Xn	)n∈N	converges	as	n	→	∞	,			A+	:=	lim	sup	Xn	<	∞	,		n→∞		A−	:=	lim	inf	Xn	>	−∞	,	n→∞			F	:=	sup	)X*n	<	∞	.	Of	course,	you	do	not	want	to	invent	a	new	code	for	every	message	but	rather	use	one	code	that	allows	for	the	shortest	average	coding	of	the	messages	for	the	particular	information	source.	Since	we	will	not	need	the	statement
here,	we	leave	its	proof	as	an	exercise	(compare	Exercise	17.6.6;	see	also	[39,	Section	6.5]).	For	example,	such	a	process	can	be	used	to	describe	the	motion	of	a	particle	immersed	in	water	or	the	change	of	prices	in	the	stock	market.	260	12	Backwards	Martingales	and	Exchangeability		(iii)	For	x	∈	E	N	,	define	the	nth	empirical	distribution	by	ξn	(x)	=
n1	ni=1	δxi	(recall	that	δxi	is	the	Dirac	measure	at	the	point	xi	).	In	this	case,	κn	is	called	the	family	of	n-step	transition	probabilities.	The	maximal	entropy	of	a	probability	measure	on	N	points	is	achieved	by	the	uniform	distribution	and	is	log(N).	15.2	illustrate	this.	∗1/n	Proof	Apply	Theorem	16.6,	where	ϕn	is	the	CFP	of	μn	.	In	many	cases,	the	lower
bound	is	a	lot	easier	to	show	than	the	upper	bound.	482	19	Markov	Chains	and	Electrical	Networks	Step-by-Step	Reduction	of	the	Network	Having	seen	how	to	compute	u(x)	from	the	effective	resistances,	we	now	turn	to	the	systematic	computation	of	these	effective	resistances.	At	first	reading,	the	reader	might	wish	to	skip	this	rather	analytically
flavored	chapter.	Here	the	statement	is	trivial	(choose	a	=	0,	b	=	1	and	c	=	−E[Y	]).	Due	to	the	analogy	of	(19.3)	to	Green’s	formula	in	continuous	˜	is	called	the	Green	function	for	the	equation	space	potential	theory,	the	function	G	(p	−	I	)f	=	0	on	E	\	A.	Define	p(x,	y)	=	1	q(x,	y)	+	I	(x,	y)	λ	for	x,	y	∈	E,	if	λ	>	0	and	p	=	I	otherwise.	For	n	∈	N0	,	define
YnN	:=	Yn	.	In	particular,	a	probability	measure	μ	on	R	is	uniquely	determined	by	its	distribution	function	F	:	R	→	[0,	1],	x	→	μ((−∞,	x]).	That	is,	(2.8)	holds	with	J	replaced	by	J	∪	{j	}.	For	n	∈	N	choose	μn	∈	M1	(R)	n	such	that	μ∗n	n	=	μ	and	let	ϕn	the	CFP	of	μn	.	∈	A	with	(a,	b]	⊂	∞		(a(k),	b(k)].	Denote	by	μ0n	∈	M1	(M1	(Σ))	the	corresponding	a	priori
distribution	of	x;	that	is,	of	the	n-particle	system.	Since	1	∧	x	≤	2(1	−	e−x	)	for	all	x	≥	0,	clearly			(1	∧	x)	ν(dx)	≤	2	(1	−	e−x	)	ν(dx)	≤	2u(1)	<	∞.	Remark	24.11	The	definition	of	the	PPP	(and	its	construction	in	the	following	theorem)	still	works	if	(E,	E,	μ)	is	only	assumed	to	be	a	σ	-finite	measure	space.	By	the	triangle	inequality,																	f	dμ1	−	f	dμ2	
≤		f	dμ1	−	g	dμ1		+		g	dμ1	−	g	dμ2													+		g	dμ2	−	f	dμ2		≤	ε	(μ1	(E)	+	μ2	(E)).	It	remains	to	show	that	PNt	=	Poiαt	.	n	+	1	−	ns	Proof	Compute	ψ(s)	=	∞		2−k−1	s	k	=	k=0	1	.	Hence,	the	random	walk	X	=	(Xn	)n∈N	:=	(XnN	)n∈N	fulfills	the	condition	from	Step	2.	Then			lim	sup	sup	Fn	(x)	−	F	(x)	=	0	almost	surely.	One	can	even	construct	infinite
products	if	all	factors	are	probability	spaces	(Theorem	14.39).	That	is,	two	points	x,	y	∈	E	are	connected	by	an	edge	if	they	differ	in	exactly	one	coordinate.	By	Fatou’s	lemma,			lim	sup		gk	dμ	=	k→∞	g	dμ	−	lim	inf	k→∞	(g	−	gk	)	dμ					≤	g	dμ	−	lim	(g	−	gk	)	k→∞	dμ	=	0.	,	Xtn+1	∈	Bn+1		Ftn	=	EXs	[f	(X)]	.	Since	ϕ	r	(t)	=	0	for	all	t	∈	R,	we	have	ϕ	r	→	1	for
r	→	0	and	thus	the	semigroup	is	continuous.	F	is	called	right	continuous	if	F	(x)	=	limn→∞	F	(xn	)	for	all	x	∈	Rd	and	every	sequence	(xn	)n∈N	in	Rd	with	x1	≥	x2	≥	x3	≥	.	be	identically	distributed.	This	shows	(ii).	Then	Y	is	manifestly	a	σ	(X)-martingale.	k→∞	(13.11)	Assume	that	we	can	show	that	there	is	a	measure	μ	on	the	Borel	σ	-algebra	E	of	E	such
that	μ(A)	=	sup	α(C)	:	C	∈	C	with	C	⊂	A	for	all	A	⊂	E	open.	meas	With	our	definition	of	stochastic	convergence	we	have	fn	−→	f	.	Since	μ	is	lower	semicontinuous,	we	have	Fμ	(∞)	=	μ(R);	hence	Fμ	is	indeed	a	(possibly	defective)	distribution	function	if	μ	is	a	(sub-)	probability	measure.	Clearly,	σ	(E)	=	2Ω	but	E	is	not	a	π-system.	j	∈Λ:	i∼j	Here	i	∼	j
indicates	that	i	and	j	are	neighbors	in	Λ	(that	is,	coordinate-wise	mod	N,	we	also	speak	of	periodic	boundary	conditions).	This	implies			lim	sup	P[A	∩	τ	−n	(B)]	−	P[A]	P[B]	|n|→∞			≤	lim	sup	P[Aε	∩	τ	−n	(B	ε	)]	−	P[Aε	]	P[B	ε	]	+	4ε	=	4ε.	In	particular,	F	and	σ	(X)	are	independent.	Define	Mn	=	max{0,	S1	,	.	Proof	The	proof	makes	use	of	the	Radon–
Nikodym	theorem	(Corollary	7.34).	If	c−	=	c+	,	then	μ	is	a	Cauchy	distribution.	We	now	take	the	waiting	times	as	the	starting	point	and,	based	on	them,	construct	the	Poisson	process.	Hence,	for	n	∈	N0	,	pl+n+k	(y,	y)	≥	pl	(y,	x)	pn	(x,	x)	pk	(x,	y).	♣	Exercise	9.2.2	Let	(Xn	)n∈N0	be	a	predictable	F-martingale.	As	(Zn	)n∈N	is	decreasing,	by	(ii)	also
(E[Zn		F	])n∈N	decreases	to	some	limit,	say,	Z.	(ii)	Let	E(ω)	be	a	property	that	a	point	ω	∈	Ω	can	have	or	not	have.	The	procedure	of	defining	two	families	of	random	variables	that	are	related	in	a	specific	way	(here	“≤”)	on	one	probability	space	is	called	a	coupling.	/	Then	(Ω,	τ	)	is	Polish	and	B	=	Bi	.	Define	the	evaluation	map	Xt	:	Ω	→	R,	ω	→	ω(t),
(21.27)	that	is,	the	restriction	of	the	canonical	projection	R[0,∞)	;	→	R	to			;	For	f,	g	∈	C	[0,	∞)	and	n	∈	N,	let	dn	(f,	g)	:=	;(f	−	g)	Ω.	Further,	define	Z∗R	=	∞		N=1	N			An	:	A1	,	.	Monotonicity	is	implied	by	convexity.	Theorem	18.8	Let	X	be	an	arbitrary	aperiodic	and	irreducible	random	walk	on	Zd	with	transition	matrix	p.	(21.46)	Hence	Y	is	a	martingale,
and	the	first	centered	moments	are	Ex	[(Yt	−	x)2	]	=	2x	t,	Ex	[(Yt	−	x)3	]	=	6x	t	2	,	Ex	[(Yt	−	x)4	]	=	24x	t	3	+	12x	2	t	2	,	(21.47)	Ex	[(Yt	−	x)5	]	=	120x	t	4	+	120x	2	t	3	,	Ex	[(Yt	−	x)6	]	=	720x	t	5	+	1080x	2	t	4	+	120x	3	t	3	.	Show	that	v-lim	μn	=	0	but	n→∞	that	(μn	)n∈N	does	not	converge	weakly.	That	is,	Xn	=	n		Rk	,	where	R1	,	R2	,	.	Define	Yn	:=	k		ci
Xn−i	.	Give	an	example	of	a	nonnegative	martingale	X	with	E[Xn	]	=	1	for	all	n	∈	N	but	such	that	n→∞	Xn	−→	0	almost	surely.	In	this	chapter,	we	establish	a	similar	stability	property	for	martingales	that	are	stopped	at	a	random	time.	What	is	the	probability	P	that	this	Markov	chain	visits	1	before	it	visits	0?	Consider	first	the	simplest	situation	of
symmetric	simple	random	walk	X	on	ZD	.	We	define	an	Nm	0	-valued	random	variable	Y	=	(Y1	,	.	In	addition	to	the	properties	we	required	here,	Brownian	motion	has	continuous	paths;	that	is,	the	maps	t	→	Xt	are	almost	surely	continuous.	(v)	(Gamma	distribution)	Again	it	suffices	to	consider	the	case	θ	=	1.	For	n	∈	N0	and	ε	>	0,	let	Aεn	:=	Sm	>	Sn	+
ε	for	all	m	≥	n	+	1	∩	B.	Show	that	the	entropy	H	(p)	is	minimal	(in	fact,	zero)	if	p	=	δe	for	some	e	∈	E.	6.2	Uniform	Integrability	155	Proof	“	⇐	”	Assume	there	is	an	H	with	the	advertised	properties.	x=−∞	Now	what	about	symmetric	simple	random	walk	in	dimension	D	=	2	or	in	higher	dimensions?	,	ωn	].	♣	A	∈	B(R)	is	a	μ-null	set,	then	dx	Exercise
13.1.7	(Fundamental	theorem	of	calculus)	(Compare	[37].)	Let	f	∈	L1	(Rd	),	μ	=	f	λd	and	let	C	⊂	Rd	be	open,	convex	and	bounded	with	0	∈	C.	,	tn	∈	Rd	and	all	y1	,	.	(i)	The	Lindeberg	condition	holds.	,	E[Xn	]	=	ϕ	E[X1	],	.	Then	the	set	function	E[X]	:	B(E)	→	[0,	∞],	A	→	E[X(A)]	is	a	measure.	Exercise	17.2.1	(Discrete	martingale	problem)	Let	E	⊂	R	be
countable	and	let	X	be	a	Markov	chain	on	E	with	transition	matrix	p	and	with	the	property	that,	for	any	x,	there	are	at	most	three	choices	for	the	next	step;	that	is,	there	exists	a	set		Ax	⊂	E	of	cardinality	3	with	p(x,	y)	=	0	for	all	y	∈	E	\	Ax	.	Definition	14.16	Let	(Ω,	A,	μ)	a	measure	space	and	(Ω		,	A	)	a	measurable	space.	i=1	For	j	∈	{σk	,	.	That	is,	we
consider	a	two-stage	experiment:	At	the	first	stage	we	choose	a	realization	of	i.i.d.	random	variables	W	=	(Wi−	)i∈Z	on	(0,	1)	and	let	Wi+	:=	1	−	Wi−	.	m=1	n=m	m→∞	n=m	However,	for	every	m	∈	N	(since	log(1	−	x)	≤	−x	for	x	∈	[0,	1]),	by	upper	continuity	of	P	P	+	∞	+	,	,	N	∞			1	−	P[An	]	Acn	=	lim	P	Acn	=	N→∞	n=m	=	exp		∞	n=m	n=m	n=m					∞	
log	1	−	P[An	]	≤	exp	−	P[An	]	=	0.	Theorem	5.3	(Rules	for	expectations)	Let	X,	Y,	Xn	,	Zn	,	n	∈	N,	be	real	integrable	random	variables	on	(Ω,	A,	P).	20.4	Application:	Recurrence	of	Random	Walks	.	2	Reff	(0	↔	1)	(19.15)	In	particular,	in	the	case	R		(0,	1)	=	∞	(or	equivalently	Reff	(0	↔	1)	=	Reff	(0	↔	x)	+	Reff	(x	↔	1)),	we	have	Reff	(0	↔	x)	=	R		(0,	x)	and
Reff	(1	↔	x)	=	R		(1,	x),	hence	u(x)	=	Reff	(0	↔	x)	.	For	a1	<	b1	<	n		(ai	,	bi	],	define	a2	<	b2	<	.	Theorem	11.4	(Martingale	convergence	theorem)	Let	(Xn	)n∈N0	be	a	submartingale	with	sup{E[Xn+	]	:	n	≥	0}	<	∞.	Under	some	mild	conditions	on	the	continuity	of	φ,	the	main	contribution	to	the	integral	comes	from	those	points	x	that	are	not	too	unlikely
(for	με	)	and	for	which	at	the	same	time	φ(x)	is	large.	n=1	Hence	I	:	L2	([0,	1])	→	L2	(P),	f	→	I	(f	)	is	an	isometry.	Corollary	19.16	Let	X	be	a	Markov	chain	on	E	with	edge	weights	C.	In	some	of	the	examples,	the	elements	of	the	generating	class	are	simpler	sets	such	as	rectangles	or	compact	sets.	For	n	∈	N0	and	t	≥	0,	define	the	probability	fn	(t)	:=	P1
[Xt	>	n].	♣	n→∞	Exercise	13.2.14	Let	μ,	μ1	,	μ2	,	.	To	this	end,	we	first	study	more	general	set	functions	that	assign	nonnegative	numbers	to	subsets.	;	;	3	Note	that	;f¯;p	and	f¯	dμ	do	not	depend	on	the	choice	of	the	representative	f	∈	f¯.	n→∞	Hence	the	characteristic	function	can	be	expanded	about	any	point	t	∈	R	in	a	power	series	with	radius	of
convergence	at	least	1/(3α).	nπ	This	representation	of	the	Brownian	motions	goes	back	to	Paley	and	Wiener	who	also	show	that	along	a	suitable	subsequence	the	series	converges	uniformly	almost	surely	and	hence	the	limit	X	is	indeed	continuous,	see	[125,	Theorem	XLIII,	page	148].	E[ϕ(Xt	)+	]	=	E	ϕ	E[Xt	∗		Ft	]	(iii)	This	is	evident	since	x	→	|x|p	is
convex.	The	remainder	of	this	section	is	devoted	to	the	proof	of	this	theorem.	Using	the	binomial	theorem,	we	get	(note	that	the	mixed	terms	)	*	with	odd	moments	vanish	since	E	Y1Kn	=	0)	*	)	*	)	*2	)	E	(TnKn	)4	=	n	E	(Y1Kn	)4	+	3n(n	−	1)	E	(Y1Kn	)2	≤	nKn2	σ	2	+	3n(n	−	1)σ	4	.	Further,	for	any	n	∈	N	and	x	≥	2an	,	H	(x)/x	≥	nk=1	(1	−	ak	/x)+	≥	n/2;
hence	we	have	H	(x)/x	↑	∞.	Example	6.29	(Laplace	transform)	Let	X	be	a	nonnegative	random	variable	on	(Ω,	A,	P).	In	this	chapter,	we	define	the	integral	by	an	approximation	scheme	with	simple	functions.	(2.15)	We	need	a	0–1	law	similar	to	that	of	Kolmogorov.	By	Definition	4.13,	a	measurable	function	f	:	Ω	→	[0,	∞)	is	called	a	density	of	ν	with
respect	to	μ	if		ν(A)	:=	f	1A	dμ	for	all	A	∈	A.	,	BtN	−	BtN−1	)].	Indeed,	ϕα,γ	=	ϕα,γ	.	We	now	compute		∞	GY	:=		∞	∞	P0	[Yt	=	0]	dt	=	0	0	=	∞		n=0	*	)	P0	X2n	=	0,	Tt	=	2n	dt	n=0		p2n	(0,	0)	∞	e−t	0	t	2n	dt	=	G(0,	0).	We	formalize	the	description	given	above.	,	ωk	]	∩	Bn	=	∅	for	all	k,	n	∈	N.	If	we	place	n	indistinguishable	particles	independently
according	to	λ	on	the	random	positions		z1	,	.	Hence,	let	ν	0	μ.	Hence,	for	efficiency,	those	symbols	that	appear	more	often	get	a	shorter	code	than	the	more	rare	symbols.	Assume	that	k	∈	N	and	let	ϕ	:	E	k	→	R	be	measurable	with	E[|ϕ(X	1	,	.	Then	λ	can	be	extended	uniquely	to	a	measure	λ∗	on		B	∗	(Rn	)	=	σ	B(Rn	)	∪	N	,	where	N	is	the	class	of	subsets
of	Lebesgue–Borel	null	sets.	(16.31)	A	function	H	:	(0,	∞)	→	(0,	∞)	is	called	slowly	varying	at	∞	if	lim	x→∞	H	(γ	x)	=1	H	(x)	for	all	γ	>	0.	(21.5)		on	the	dyadic	rational	numbers	and	then	to	The	idea	is	first	to	construct	X	extend	it	continuously	to	[0,	1].	,	en−1	)})	=	P	{e0	}	×	.	n∈Z		be	the	canonical	process	on	Ω	=	E	Z	.	Remark	6.3	Let	A1	,	A2	,	.	1{x(j
)=x(i)}	−	2	j	:	j	∼i			Hence	π(x	i	)/π(x)	=	exp	−	2β	j	∼i	1{x(j	)=x(i)}	−	12	,	and	this	expression	is	easy	to	compute	as	it	depends	only	on	the	2d	neighboring	spins	and,	in	particular,	does	not	require	knowledge	of	the	value	of	Zβ	.	Let	π	be	the	invariant	˜	Then,	clearly,	the	product	measure	π	⊗π	∈	M1	(E	×E)	is	an	(and	distribution	of	X.	(b)	3	αf	dμ	=	α	f3	dμ
for	α	≥	0.	(P3)	If	J	⊂	I	with	I	∩	J	=	∅	for	all	I,	J	∈	J	with	I	=	J	,	then	(NJ	,	J	∈	J	)	is	an	independent	family.	Using	the	generalized	binomial	theorem	(see	Lemma	3.5),	we	get	(since	we	have	(1	−	4p(1	−	p))1/2	=	|2p	−	1|)	G(0,	0)	=	1	|2p−1|	,	if	p	=	12	,	∞,	if	p	=	12	.	be	Lp	-integrable	martingales.	We	write			3	L1	(μ)	:=	L1	(Ω,	A,	μ)	:=	f	:	Ω	→	R	:	f	is
measurable	and	|f	|	dμ	<	∞	.	Hence	it	can	be	developed	in	a	power	series	about	0	with	radius	of	convergence	at	least	1:	f	(x)	=	∞		f	(k)	(0)	k=0	k!	xk	for	|x|	<	1.	+	bk	=	n	and	bi	≤	Bi	for	all	i)	is	given	by	the	generalized	hypergeometric	distribution					Bk	B1	···		b1	bk	.	Theorem	17.15	(Reflection	principle)	Let	Y1	,	Y2	,	.	2	f	(Xn	)	−	f	(Xn−1	)	=	10.2
Optional	Sampling	and	Optional	Stopping	233	Summing	up,	we	get	the	discrete	Itô	formula:	f	(Xn	)	=	f	(x0	)	+	n		f		(Xi−1	)(Xi	−	Xi−1	)	+	i=1		=	f	(x0	)	+	(F	·X)n	+	n		1	i=1	n		i=1	2	f		(Xi−1	)	(10.6)	1		F	.	Now	let	μ	be	infinitely	divisible	with	CFP	ϕ.	Theorem	21.28	(Brownian	motion,	L2	-approximation)	There	is	a	continuous	˜	X	is	a	Brownian	motion	and
we	have	version	X	of	X.	This	implies	E[Z1		E]	=	E[Z1	].	Let	θ	:=	−	Cov[X,Y	Var[Y	]	.	Then	n!	12.2	Backwards	Martingales	265			E[ϕ(X)		E]	=	E[ϕ(X)		T	]	=	lim	An	(ϕ)	n→∞	a.s.	and	in	L1	.	This	connection	•	in	some	cases	allows	us	to	distinguish	between	recurrence	and	transience	by	means	of	easily	computable	quantities,	and	•	in	other	cases	provides	a
comparison	criterion	that	says	that	if	a	random	walk	on	a	graph	is	recurrent,	then	a	random	walk	on	any	connected	subgraph	is	recurrent.	For	two	square	summable	sequences	(an	)n∈N	and	(bn	)n∈N0	,	let	ha,b	:=	b0	+	∞	n=1	(an	Sn	+	bn	Cn	).	♣	598	23	Large	Deviations	Exercise	23.2.2	Let	E	=	R.	(−∞,x]	(ii)	In	(i),	replace	μ	by	PX	and	ν	by	PY	.	If	λ-
almost	everywhere	f	>	0,	then	μ(A)	=	A	f	dλ	>	0	if	λ(A)	>	0;	hence	μ	≈	λ.	.}	in	such	a	way	that	Y	is	a	random	walk	and	(X,	Y	)	is	a	successful	coupling.	Definition	2.14	(Independent	random	variables)	The	family	(Xi	)i∈I	of	random	variables	is	called	independent	if	the	family	(σ	(Xi	))i∈I	of	σ	-algebras	is	independent.	Since	I	is	discrete,	g	is	measurable.	In
particular,	G(x,	y)	=	Px	[XτA	=	y]	for	x	∈	E	\	A	and	y	∈	A.	“(ii)	⇒	(i)”	This	follows	from	Lemma	1.31(iv).	We	start	by	recalling	the	Arzelà–Ascoli	characterization	of	relatively	compact	sets	in	C([0,	∞))	(see,	e.g.,	[37,	Theorem	2.4.7]	or	[174,	Theorem	III.3]).	=	pe	e∈E	If	q	=	p,	then	there	is	an	e	∈	E	with	pe	>	0	and	qe	=	pe	.	The	supplement	is	trivial.	Let	X¯
be	a	Markov	chain	with	transition	matrix	p(x,	¯	y)	=	12	p(x,	y)	+	12	1{x}	(y).	Applying	(7.12)	with	g	≡	1	∈	L∞	(μ)	yields	κ(f	)∞	≥	f	1	.	Now	let	U		:=	{Ux	:	x	∈	E}	⊂	U.)	If	E	is	a	locally	compact	metric	space	and	if	U	⊂	E	is	open	and	K	⊂	U	is	compact,	then	there	exists	a	compact	set	L	with	K	⊂	L◦	⊂	L	⊂	U	.	By	Jensen’s	inequality	(for	x	→	|x|p	),	we	have	1
|Xk	|p	.	Somewhat	*	more	formally,	we	could	write:	If	x	∈	Ei	for	some	i,	then	Px	Xn	∈	Ei+n	(mod	d)	=	1.	147	147	153	160	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	.	(ii)	Show	that	dH	is	complete	if	(E,	d)	is	complete.	♦	Example	1.71	Let	λ	be	the	Lebesgue	measure	(more	accurately,	the	Lebesgue–		Borel	measure)	on	Rn	,	B(Rn	)	.	Can	you	come	up
with	a	counterexample	for	the	case	μ(Ω)	=	∞?	Any	of	the	questions	raised	above	can	be	answered	using	this	comparison	technique.	(ii)	If	X,	Y	∈	L2	(P),	then	XY	∈	L1	(P)	since	|XY	|	≤	X2	+	Y	2	.	Since	fnk	−→	f	in	measure,	by	Corollary	6.13,	l→∞	there	exists	a	further	subsequence	(fnkl	)l∈N	of	(fnk	)k∈N	with	fnkl	−→	f	almost	152	6	Convergence
Theorems	everywhere.	♣	Exercise	15.2.2	Show	that	there	are	real	random	variables	X,	X	and	Y,	Y		with	the	D	D	D	properties	(i)	X	=	X	and	Y	=	Y		,	(ii)	X	and	Y		are	independent,	(iii)	X	+	Y	=			X	+	Y	,	and	(iv)	X	and	Y	are	not	independent.	(17.13)	y=x	Then	we	define	q(x,	x)	=	−		q(x,	y).	This	is	the	kernel	on	[0,	∞)	whose	Laplace	transform	is	given	by		∞
κt	(x,	dy)	e−λy	=	ψt	(λ)x	.	It	is	enough	to	consider	the	case	f	≥	0.	If	κ2	is	a	kernel	from	(Ω1	,	A1	)	to	(Ω2	,	A2	),	then	we	define	the	product	κ1	⊗	κ2	similarly	by	formally	understanding	κ2	as	a	kernel	from	(Ω0	×	Ω1	,	A0	⊗	A1	)	to	(Ω2	,	A2	)	that	does	not	depend	on	the	Ω0	-coordinate.	Then	ST	=	n=1	Sn	1{T	=n}	.	In	particular,	ϕ	=	(ϕ	1/n	)n	is	infinitely
divisible.	By	φ(t)	=	x∈ZD	ei)t,x*	p(0,	x)	denote	the	characteristic	function	of	a	single	transition.	In	particular,	we	write	XJ	:=	XJI	.	In	particular,	the	paths	are	almost	surely	nowhere	differentiable.	Theorem	19.22	(Thomson’s	(or	Dirichlet’s)	principle	of	minimization	of	energy	dissipation)	Let	I	and	J	be	unit	flows	from	A1	to	A0	(that	is,	I	(A1	)	=	J	(A1	)	=
1).	Definition	7.35	Let	μ	and	ν	be	two	measures	on	(Ω,	A).	Use	Exercise	13.1.5	to	show	that	lim	r↓0	μ(x	+	rC)	=	0	rd	for	λd	-almost	all	x	∈	A.	,	k},	we	have		*	)	P	Xjr	∈	Air	for	all	r	=	1,	.	In	this	case,	we	have	'	(	(			'	p	n	(x,	y)p(y,	x)	=	Px	Xn	=	y;	τx1	>	n;	Xn+1	=	x	=	Px	τx1	=	n	+	1	.	In	fact,	in	many	cases,	it	is	enough	to	consider	moments,	Laplace
transforms	or	characteristic	functions.	,	Dk,dk	∈	A	i=1	Ck,i	=	Bk	⊂	A	k	such	that	Ak	\	Bk	=	di=1	Dk,i	.	(ii)	A	map	F	:	E	N	→	E		is	called	n-symmetric	if	F		=	F	for	all		∈	S(n).	468	19	Markov	Chains	and	Electrical	Networks	Definition	19.14	A	flow	I	:	E	×	E	→	R	on	E	\	A	is	called	a	current	flow	if	there	exists	a	function	u	:	E	→	R	with	respect	to	which	Ohm’s
rule	is	fulfilled:	I	(x,	y)	=	u(x)	−	u(y)	R(x,	y)	for	all	x,	y	∈	E,	x	=	y.	,	k	+	m}	=	m+	n−m		1Am	◦	τ	k	.	,	k	+	1)	⊂	σ	(Xm,l	,	l	∈	N).	Let	E	=	N	and	let	X	=	(Xt	)t	≥0	be	a	Markov	process	on	E	with	Q-matrix	⎧	⎪	⎨	x,	q(x,	y)	=	−x,	⎪	⎩	0,	if	y	=	x	+	1,	if	y	=	x,	else.	For	any	finite	I	=	{i1	,	.	If	we	had	μ	=	0,	then	there	would	exist	(since	μ(E)	=	0)	points	x1	,	x2	∈	E
with	μ({x1	})	>	0		and	μ({x2})	<	0.	Clearly,	for	every	y	∈	E,	(x1	,	y)	+			this	would	imply		μ({x1})	p						μ({x2})	p	(x2	,	y)	<	μ({x1	})	p	(x1	,	y)	+	μ({x2	})	p	(x2	,	y)	;	hence	;	;	;	μ	p;	TV						=	μ({x})	p(x,	y)		y∈E	x∈E	0	Ex	[τx1	]	for	all	x	∈	E.	(ii)	For	anyA,	B	∈	DE	with	A	⊂	B,	we	have	(B\A)∩E	=	(B∩E)\(A∩E)	∈	δ(E).	Let	Ei	=	f	−1	([yi−1	,	yi	))	for	i	=	1,	.	I
should	like	to	thank	all	those	who	read	the	manuscript	and	the	German	original	version	of	this	book	and	gave	numerous	hints	for	improvements:	Roland	Alkemper,	René	Billing,	Dirk	Brüggemann,	Anne	Eisenbürger,	Patrick	Jahn,	Arnulf	Jentzen,	Ortwin	Lorenz,	L.	In	both	cases,	let	ν	∗0	:=	δ0	.	s>0	Then	P[A]	∈	{0,	1}.	Definition	17.12	Let	I	⊂	[0,	∞)	be
closed	under	addition.	Now	use	the	fact	that	πpn	=	π	and	μx	pn	=	μx	for	all	n	∈	N	to	conclude	that	even	π({y})	=	π({x})μx	({y})	holds.	∞	n=1	Gn	∞		β(An	)	≤	ε	+	n=1		≤	∞	n=1	μ	∞		μ∗	(Gn	).	Then	B1	⊂	C1	⊂	A1	and	C1	∈	C.	Thus	we	have	gn	q	≤	F	p	.	Compare	Theorem	3.2(iii).		B		B	)	n	n*	C	C	Cov	Xs	,	Xt	=	E	ξk	1[0,s]	,	bk	ξl	1[0,t	]	,	bl	k=1	=	n		l=1	CB
C	B	E[ξk	ξl	]	1[0,s]	,	bk	1[0,t	]	,	bl	k,l=1	=	n		B	CB	C	1[0,s]	,	bk	1[0,t	]	,	bk	k=1	C	B	−→	1[0,s]	,	1[0,t	]	=	min(s,	t).	Then	Xn	(ω)	=	X0	(τ	n	(ω)).	A	A	Proof	Let	X	:	A	→	Ω,	ω	→	ω	be	the	canonical	inclusion;	hence	X−1	(B)	=	A∩B	for	all	B	⊂	Ω.	Firstly,	one	can	solve	the	system	of	linear	equations	belonging	to	the	Markov	chain	killed	in	the	two	points.	Assume
that	f	is	convex	on	[0,	∞).	Sn	=	E[X1	]	>	0	almost	surely.	Clearly,	we	have	pn0	(x0	,	y)	=	(pA	)n0	(x0	,	y)	for	all	y	∈	A.	♣	Exercise	11.2.6	Let	the	notation	be	as	in	Exercise	11.2.5.	However,	instead	of	(11.2)	we	make	the	weaker	assumption	'		(	E	sup	Xn+1	−	Xn		<	∞.	,	Sn	},	n	∈	N.	Example	17.18	(Random	walk	on	Z)	Let	E	=	Z,	and	assume	p(x,	y)	=	p(0,	y
−	x)	for	all	x,	y	∈	Z.	(2.7)	j	∈J	Example	2.12	As	in	Example	2.4,	let	(Ω,	A,	P)	be	the	product	space	of	infinitely	many	repetitions	of	a	random	experiment	whose	possible	outcomes	e	are	the	elements	of	the	finite	set	E	and	have	probabilities	p	=	(pe	)e∈E	.	k=1	We	show	that	μ((a,	b])	≤	∞			μ	(a(k),	b(k)]	.	Therefore,				lim	sup	μn	(E	\	K)	≤	lim	sup	μn	(E)	−
ρL,K	dμn	n→∞	n→∞	=	μ(E)	−		ρL,K	dμ	≤	μ(E	\	L)	<	ε.	4	5	For	N	∈	N,	the	random	variables	XN	:=	2−N	2N	|X|	∧	N	and	YN	:=	−N	4	N	5	2	2	|Y	|	∧	N	take	only	finitely	many	values	and	are	independent	as	well.	♦	Definition	7.40	(Signed	measure)	A	set	function	ϕ	:	A	→	R	is	called	a	signed	measure	on	(Ω,	A)	if	it	is	σ	-additive;	that	is,	if	for	any	sequence	of
pairwise	disjoint	sets	A1	,	A2	,	.	Clearly,	(Ω,	A,	P,	τr	)	is	a	measure-preserving	dynamical	system.	Show	that	convergence	in	probability	implies	almost	everywhere	convergence.	For	every	α	>	0,	1	ν({|f	|	>	α})	α	1	1	1	=	F	(1{|f	|>α}	)	≤	F	1	·	1{|f	|>α}	1	=	F	1	·	μ({|f	|	>	α}).	Then	the	following	statements	hold.	Let	C	⊂	Cb	(E;	K)	be	a	family	that	separates
points;	that	is,	stable	under	multiplication	and	that	contains	1.	By	approximating	f	by	simple	functions,	we	see	that	the	right-hand	side	in	(8.18)	is	F	-measurable	(see	Lemma	14.23	for	a	formal	argument).	.)	⊂	En	for	n	∈	N;	hence	T	⊂	E.	Em	B∈Pn+	n	\E	n−1	B⊂Em	m	n	\	E	n−1	)	≥	0.	Let	N	>	0.	Exercise	15.4.1	Let	X	and	Y	be	nonnegative	random
variables	with	1	lim	sup	E[|X|n	]1/n	<	∞,	n→∞	n	1	lim	sup	E[|Y	|n	]1/n	<	∞,	n→∞	n	354	15	Characteristic	Functions	and	the	Central	Limit	Theorem	and	E[Xm	Y	n	]	=	E[Xm	]	E[Y	n	]	for	all	m,	n	∈	N0	.	If	the	offspring	number	has	a	second	moment,	then	Zn	grows	of	order	mn	and	Zn	/mn	is	uniformly	integrable.	The	essential	assumptions	are	that	the
summands	are	independent,	each	summand	contributes	only	a	little	to	the	sum	and	the	sum	is	centered	and	has	variance	1.	(i)	E[X	|F	]	is	F	-measurable.	The	elements	of	M≤1	(E)	are	called	sub-probability	measures	on	E.	♠♠♠	Remark	8.15	Intuitively,	E[X	|F	]	is	the	best	prediction	we	can	make	for	the	value	of	X	if	we	only	have	the	information	of	the	σ
-algebra	F	.	Denote	by	Ω	=	×	Ωi	the	set	of	maps	ω	:	I	→	Ωi	such	that	ω(i)	∈	Ωi	i∈I	i∈I	for	all	i	∈	I	.	Thus	we	define	a	new	probability	measure	PB	on	(B,	2B	)	by	PB	[C]	=	#C	#B	for	C	⊂	B.	Now	restrict	ϕ	to	that	flat	piece	and	inductively	reduce	its	dimension	until	reaching	a	point,	the	case	that	has	already	been	treated	above.	However,	here	we	only
sketch	the	proof	since	we	do	not	want	to	go	into	the	details	of	signed	measures	and	signed	contents.	For	example,	VT	could	be	a	(European)	call	option	with	maturity	T	and	strike	price	K	≥	0.	Finally,	we	present	a	third	method	of	studying	recurrence	and	transience	of	random	walks	that	does	not	rely	on	the	Euclidean	properties	of	the	integer	lattice
but	rather	on	the	Fourier	inversion	formula.	We	introduce	the	notion	of	weak	convergence	of	probability	measures	on	general	(mostly	Polish)	spaces	and	derive	the	fundamental	properties.	,	Xn	)	such	that	ξn	(X)	=	ν:	n			1	An	(ν)	:=	k	=	(k1	,	.	If	the	X1	,	X2	,	.	k→∞	Furthermore,	for	open	A	and	for	C	∈	C	with	C	⊂	A,	α(C)	=	lim	μnk	(C)	≤	lim	inf	μnk	(A),
k→∞	k→∞	hence	μ(A)	≤	lim	infk→∞	μnk	(A).	I	would	be	grateful	for	further	suggestions,	errors,	etc.	Klenke,	Probability	Theory,	Universitext,	257	258	12	Backwards	Martingales	and	Exchangeability	Strictly	speaking,	the	definition	of	exchangeability	makes	sense	only	if	we	identify	Y	=	(Xi	)i∈I	and	Y		=	(X(i)	)i∈I	as	random	variables	on	the	product	space
E	I	.	♣	Exercise	19.5.4	For	the	graph	of	Fig.	For	irreducible	chains	all	states	are	in	the	same	class:	either	positive	recurrent,	null	recurrent	or	transient.	:	Ω	→	E	be	measurable	with	respect	to	A	–	B(E).	For	convenience,	also	the	diagonal	is	drawn.	k=1	In	the	case	d	=	1,	the	following	theorem	goes	back	to	Bochner	(1932).	Note	that	the	limit	does	not
depend	on	the	choice	of	the	subsequence	and	is	thus	unique.			¯	y)	=	ϕ	−1	(x)	−	ϕ	−1	(y)	for	x,	y	∈	R	defines	a	metric	on	R	such	that	In	fact,	d(x,	ϕ	and	ϕ	−1	are	continuous.	Klenke,	Probability	Theory,	Universitext,	515	516	21	Brownian	Motion	(ii)	indistinguishable	if	there	exists	an	N	∈	A	with	P[N]	=	0	such	that	{Xt	=	Yt	}	⊂	N	for	all	t	∈	I.	If	an	↓	inf	f
(K)	is	strictly	monotone	decreasing,	then	K	∩	f	−1	([−∞,	an	])	=	∅	is	compact	for	every	n	∈	N	and	hence	the	infinite	intersection	also	is	nonempty:	f	−1	(inf	f	(K))	=	K	∩	∞		f	−1	([−∞,	an	])	=	∅.	Let	Sn	=	n−1		Xk	k=0	denote	the	nth	partial	sum.	16.1	Lévy–Khinchin	Formula	375	Example	16.15	For	an	infinitely	divisible	distribution	μ	on	[0,	∞),	we	can
compute	the	Lévy	measure	ν	by	the	vague	limit		ν	=	v-lim	nμ∗1/n		n→∞	(0,∞)	(16.7)	.	In	the	reduced	network,	the	effective	resistances	are	easy	to	compute:	If	{a,	b,	c}	=	{0,	1,	x},	then		Reff	(a	↔	b)	=	1	1	+	R		(a,	b)	R		(a,	c)	+	R		(b,	c)	−1	.	Hence		1	∩	{τ	≤	n}.	Show	that	f	is	(properly)	Riemann	integrable	if	and	only	if	f	is	λ-a.e.	continuous.	Denote	by	Pn
the	partition	that	is	generated	by	the	sets	n−1	l=0	τ	(Ail	),	i1	,	.	We	say	that	X	explodes.	Since	μ1	and	μ2	are	locally	finite,	for	every	x	∈	K,	there	exists	an	open	set	Ux		x	with	μ1	(Ux	)	<	∞	and	μ2	(Ux	)	<	∞.	In	other	words,	(X1	,	.	As	uniform	limits	of	continuous	functions	are	continuous,	(21.25)	implies	that	X	is	continuous.	Loosely	speaking,	at	the
boundaries	of	closed	sets,	mass	can	immigrate	but	not	emigrate.	This	implies	that	E	∈	DB	for	any	B	∈	δ(E).	17.3	Discrete	Markov	Processes	in	Continuous	Time	.	Proof	Clearly,	0	and	Y	=	X	−	a	are	submartingales.	(p	)	(1	−	p	)	i	i=A	If	we	define	p	=	(1	+	b)p∗	,	then	p	∈	(0,	1)	and	1	−	p	=	(1	−	p∗	)(1	+	a).	5.2	Rolling	a	die	n	times:	For	a	fixed	realisation,
the	values	of	Sn	/n	converge	to	3.5.	We	have	n	on	the	horizontal	axis.	,	Xn	(ω)?	,	E12	are	countable.	Then	Z	:=	X	∧	Y	=	(min(Xt	,	Yt	))t	∈I	is	a	supermartingale.	Since	μ	is	upper	semicontinuous	(Theorem	1.36),	there	is	a	δ	>	0	such	that	μ(Bδ	)	≤	μ(B)+ε.	We	then	introduce	martingales	and	the	discrete	stochastic	integral.	k=1	)	*	Therefore,	Ex	τx1	=	1
π({x})	<	∞,	and	thus	X	is	positive	recurrent.	♦	Proof	(ii)	As	μ	and	the	outer	measure	μ∗	coincide	on	σ	(A)	and	since	μ(A)	is	finite,	by	the	very	definition	of	μ∗	(see	Lemma	1.47)	there	exists	a	covering	B1	,	B2	,	.	Here	also	the	convergence	has	exponential	speed	and	the	rate	is	determined	by	the	second	largest	eigenvalue	of	p.	+	−	For	any	3measurable
3map	f	:	Ω	→	R,	we	have	3	f	≤	|f	|	and	f	≤3|f	|,−	which	±	implies	3	f	dμ	≤	|f	|	dμ.	n→∞	n→∞	By	Lévy’s	continuity	theorem,	as	a	continuous	limit	of	CFPs,	ϕ	is	a	CFP.	Hence	convergence	in	measure	plus	relative	sequential	compactness	in	L1	yields	convergence	in	L1	.	By	the	triangle	inequality,	d(x,	z)	+	d(z,	y)	≥	d(x,	y)	for	all	x,	y	∈	E	and	z	∈	F	.	Further,
we	agree	on	the	following	notation	for	spaces	of	continuous	functions:	C(E)	:=	f	:	E	→	R	is	continuous	,	Cb	(E)	:=	f	∈	C(E)	is	bounded	,	Cc	(E)	:=	f	∈	C(E)	has	compact	support	⊂	Cb	(E).	For	the	first	equivalence,	we	distinguish	two	cases.	Hence,	in	this	case,	the	speed	of	convergence	is	known	precisely.	The	following	proof	shows	that	this	formal
argument	can	t	=0	be	made	rigorous.	Evidently,	gn	(x)	=	gm	(x)	for	every	x	≤	m	∧	n;	hence	there	exists	a	g	∈	Ω	with	g(x)	=	gn	(x)	for	every	x	≤	n	for	every	n	∈	N.	The	number	σ	:=	Var[X]	is	called	the	standard	deviation	of	X.	If	we	simulate	such	a	chain	and	let	it	run	long	enough	this	should	give	a	sample	that	is	distributed	approximately	like	π.	By
Theorem	6.25,	we	thus	have	lim	E[Yn	]	=	0.	Without	loss	of	generality,	assume	f	∞	∈	(0,	∞).	Now	let	(fn	)n∈N	be	a	sequence	of	simple	functions	with	fn	↑	f	.	,	Cn	∈	A	such	that	B	\	A	=	ni=1	Ci	.	In	particular,	if	the	network	is	irreducible,	an	electrical	potential	is	uniquely	determined	by	the	values	on	A.	Due	to	the	monotonicity,	we	can	make	the	following
definition.	A	complete	normed	vector	space	is	called	a	Banach	space.	Let	X	be	as	above	and	let	Z	be	a	σ	(X)-measurable	real	random	variable.	Then,	for	any	i	=	1,	.	Evidently,	the	distribution	function	of	(X1	,	X2	)	is	F	.	,	L}d	and	denote	by	EL	=	{e	=	)x,	y*	∈	E	:	x,	y	∈	BL	}	the	set	of	those	edges	with	both	vertices	lying	in	BL	.	Then	u	is	also	2n-times
differentiable	at	0	and	u(2k−1)(0)	=	0	for	k	=	1,	.	Let	F	=	σ	(X)	be	the	filtration	generated	by	X	and	define	F	:=	+	+	(Ft	)t	≥0	by	Ft	=	s>t	Fs	.	Rather,	we	have	to	peel	off	the	negative	portions	layer	by	layer.	22.2	Skorohod’s	Embedding	Theorem	.	Then	the	following	statements	hold:	(i)	A	is	∩-closed.	5.5)	has	the	Q-matrix	q(x,	y)	=	α(1{y=x+1}	−
1{y=x}	).	Define	the	left	continuous	inverse	of	F	:	F	−1	(t)	:=	inf{x	∈	R	:	F	(x)	≥	t}	for	t	∈	(0,	1).	=	Poiμ1	(A)	∗	Poiμ2	(A)	∗	.	♣	15.2	Characteristic	Functions:	Examples	Recall	that	Re(z)	is	the	real	part	of	z	∈	C.	458	18	Convergence	of	Markov	Chains	An	alternative	approach	to	the	eigenvalues	can	be	made	via	the	roots	of	the	characteristic	polynomial
χN	(x)	=	det(p	−	xI	),	x	∈	R.	The	map	ν	→	m(ν)	is	continuous;	hence	EA	is	open	(respectively	closed)	if	A	is	open	(respectively	closed).	♦	Remark	9.29	Let	F	and	F	be	filtrations	with	Ft	⊂	Ft	for	all	t,	and	let	X	be	an	F	-(sub-,	super-)	martingale	that	is	adapted	to	F.	In	the	following	theorem,	a	whole	bunch	of	such	statements	will	be	hung	on	a	coat	hanger
(French:	portemanteau).	Here	we	give	a	construction	for	X	that	could	actually	be	used	to	implement	a	computer	simulation	of	X.	15.5	The	Central	Limit	Theorem	.	♦	8.3	Regular	Conditional	Distribution	205	Definition	8.28	Let	Y	be	a	random	variable	with	values	in	a	measurable	space	(E,	E)	and	let	F	⊂	A	be	a	sub-σ	-algebra.	Proof	(i)	Let	x	∈	I	◦	.	25.4
Dirichlet	Problem	and	Brownian	Motion	..	ˆ	Then	)	ˆ	*	1	ϕ(t)	ˆ	:=	E	et	X1	=			R	et	x	eτ	x	μ(dx)	=	1	ϕ(t	+	τ	).	In	addition,	we	assume	that	there	is	an	exterior	magnetic	field	of	strength	h.	A	We	will	show	f	≤	0.		Ceff	(A0	↔	A1	)	≥	Ceff	(A0	↔	A1	).	However,	if	we	choose	c	=	0,	then	Sk2	1A¯	k	≥	t	2	1A¯	k	.	19.13).	α	Remark	15.27	In	fact,	ϕα,r	is	a
characteristic	function	for	every	α	∈	(0,	2]	(α	=	2	corresponds	to	the	normal	distribution),	see	Sect.	◦	Fn	(x)	=	Fn	◦	.	By	the	Kolmogorov–Chentsov	theorem	(Theorem	21.6(ii)),	for	ε	>	0	and	γ	∈	(0,	β/α),	there	exists	a	K	such	that,	for	every	i	∈	I	,	we	have	)	*	P	|Xti	−	Xsi	|	≤	K	|t	−	s|γ	for	all	s,	t	∈	[0,	N]	≥	1	−	ε.	The	transition	probabilities	are	given	by
stochastic	matrices.	On	An	,	we	have	Sτn	+1	<	L	−	ε.	Takeaways	Almost	everywhere	(almost	sure)	convergence	implies	stochastic	convergence.	♦	C(y)	(19.7)	Definition	19.11	Let	(E,	K),	C	and	X	be	as	in	Example	19.10.	,	Xn	)	is	independent	and	hence,	by	Theorem	2.13(ii),	(Xn	)n∈N	is	independent	as	well.	For	t	∈	[0,	1]	and	n	∈	N0	,	define		t	Bn	(t)	=	bn



(s)	λ(ds);	0	540	21	Brownian	Motion	that	is,	B0	(t)	=	t	and	√	Bn	(t)	=	2	sin(nπ	t)	nπ	for	n	∈	N.	7.4	Lebesgue’s	Decomposition	Theorem	.	Example	23.15	Let	Σ	⊂	Rd	be	finite	and	let	μ	be	a	probability	measure	on	Σ.	1	+	R	2	+	R	3	R	x3	R2	R3	R1	x1	z	R1	x1	R2	x2	Fig.	♦	Corollary	9.34	Let	X	be	a	submartingale	and	a	∈	R.	Hint:	Proceed	as	in	the	proof	of
Lévy’s	continuity	theorem.	Since	we	modeled	the	clicks	as	a	Poisson	process	with	intensity	α,	this	probability	can	easily	be	computed:	)	*	P	N(s,s+t	]	=	0	=	e−αt	.	24.1	Random	Measures	.	Further,	let	ϕ	be	the	characteristic	function	of	(X(A1	),	.	Now	let	P[X1	<	0]	>	0	and	P[X1	>	0]	>	0.	♦	We	now	come	to	the	situation	of	the	general	dynamical	system.
(iv)	Let	μ	be	a	distribution	on	Rn	and	let	X	be	a	random	variable	with	PX	=	μ.	As	a	further	application,	we	get	the	0-1	law	of	Hewitt	and	Savage	[72].	(For	example,	consider	Ω	=	Ω		=	R,	A	=	B(R),	and	X(ω)	=	ω	for	all	ω	∈	Ω.	(ii)	Use	Exercise	15.3.2	to	infer	that	μ	=	δ0	if	α	>	2.	Then,	for	any	t	>	s	≥	0,	there	is	an	N	∈	N	with	TN	>	t.	Mainz	October	2007
Achim	Klenke	Contents	1	Basic	Measure	Theory	.	The	chapter	finishes	with	the	investigation	of	random	stopping	times	with	an	infinite	time	horizon.	14.2	Finite	Products	and	Transition	Kernels	311	For	two	finite	measures	μ,	ν	∈	Mf	(Rn	),	define	the	convolution	μ	∗	ν	∈	Mf	(Rn	)	by			(μ	∗	ν)((−∞,	x])	=	1Ax	(u,	v)	μ(du)	ν(dv),	where	Ax	:=	{(u,	v)	∈	Rn	×
Rn	:	u	+	v	≤	x}.	The	(probability)	generating	function	(p.g.f.)	of	PX	(or,	loosely	speaking,	of	X)	is	the	map	ψPX	=	ψX	defined	by	(with	the	understanding	that	00	=	1)	ψX	:	[0,	1]	→	[0,	1],	z	→	∞		P[X	=	n]	zn	.	Proof	(i)	Let	X	=	M	+	A	be	Doob’s	decomposition	of	X.	If	B(Rn	)	were	a	topology,	then	it	would	be	closed	under	arbitrary	unions.	In	order	to	show
that	δ(E)	is	a	π-system,	it	is	enough	to	show	that	δ(E)	⊂	DB	for	any	B	∈	δ(E).	(i)	τC	is	an	F-stopping	time	(and	an	F+	-stopping	time).	♦	Reflection	Find	an	example	of	an	exchangeable	family	(Xn	)n∈N	of	{0,	1}-valued	random	variables	that	is	not	independent.♠	Let	X	=	(Xn	)n∈N	be	a	stochastic	process	with	values	in	a	Polish	space	E.	f	(ε)	♣	Exercise
8.2.6	Show	the	conditional	Cauchy–Schwarz	inequality:	For	square	integrable	random	variables	X,	Y	,	E[XY	|F	]2	≤	E[X2	|F	]	E[Y	2	|F	].	Hence	the	limit	t	(ω)	:=	lim	Xs	(ω)	X	Ds→t	(21.11)	exists.	Exercise	7.1.1	Let	f	:	Ω	→	R	be	measurable.	Therefore,	#An	(ν)	=	enH	(ν)	P[ξn	(Y	)	=	ν]	≥	enH	(ν)	≥	(n	+	1)−#Σ	enH	(ν).	Define	Yn	:=	1	1	1τ	−k	(B)	=	1B	◦	τ	k	.
R	Step	4.	Theorem	18.4	Let	X	be	irreducible	with	period	d.	.,	we	obtain	[ω1	,	.	♣	Exercise	1.1.5	Let	A	be	a	ring	on	the	set	Ω.	We	come	to	the	main	theorem	of	this	section,	Sanov’s	theorem	(see	[150]	and	[151]).	Since	#J˜	=	n	+	1,	this	verifies	the	induction	step.	Then,	for	any	c	∈	R,	we	have	f	−1	((c,	∞))	∈	I	and	thus	P[f	−1	((c,	∞))]	∈	{0,	1}.	P[A]	P[A]
Now	use	the	expression	in	(8.2)	for	P[A].	Gibbs	Sampler	We	consider	a	situation	where,	as	in	the	above	example,	a	state	consists	of	many	components	x	=	(xi	)i∈Λ	∈	E	and	where	Λ	is	a	finite	set.	n=1	Remark	1.32	The	inequality	in	(iv)	can	be	strict	(see	Example	1.30(iii)).	Somewhat	more	generally,	an	undirected	graph	G	is	a	pair	G	=	(V	,	E),	where	V	is
a	set	(the	set	of	“vertices”	or	nodes)	and	E	⊂	{{x,	y}	:	x,	y	∈	V	,	x	=	y}	is	a	subset	of	the	set	of	subsets	of	V	of	cardinality	two	(the	set	of	edges	or	bonds).	By	Theorem	15.15(iii),	we	have	n	'			(	ϕ(t)	=	E	exp	i	tl	X(Al	)	l=1	=	exp	μ(E)(ψ(t)	−	1)	=	exp	n		l=1		n	it			l	μ(Al	)	e	−	1	=	ϕl	(tl	).	The	transition	matrix	p	on	E	with	p(x,	y)	=	i,σ	)	qi	π(x	π(x−i	)	,	0,	if	y	=	x
i,σ	for	some	i	∈	Λ,	else,	is	called	a	Gibbs	sampler	for	the	invariant	distribution	π.	In	contrast	to	the	case	Mf	(E),	the	function	1	is	not	integrable.	Thus	(2.3)	does	not	hold	and	so	the	events	A1	,	A2	,	A3	are	not	independent.	Definition	5.33	(Poisson	process)	A	family	(Nt	,	t	≥	0)	of	N0	-valued	random	variables	is	called	a	Poisson	process	with	intensity	α	≥
0	if	N0	=	0	and	if:	(i)	For	any	n	∈	N	and	any	choice	of	n	+	1	numbers	0	=	t0	<	t1	<	.	We	come	back	to	this	point	in	Chap.	Based	on	this,	construct	a	set	that	is	not	Borel	and	whose	closure	is	a	null	set.)	♣	Exercise	4.3.4	Let	f	:	[0,	1]	→	(0,	∞)	be	Riemann	integrable.	In	this	case,	integrable	if	and	only	if	ω∈Ω		f	dμ	=		f	(ω)	αω	.	Pólya’s	theorem	gives	a
sufficient	condition	for	a	symmetric	real	function	to	be	a	characteristic	function.	Further,	let	w	:	E	→	R	be	a	function	that	is	constant	both	on	A0			and	on	A1	:	w	≡:	w0	and	w	≡:	w1	.	Assume	that	for	all	n	∈	N0	,	given	X0	,	.	By	the	conditional	version	of	the	Borel-Cantelli	Lemma	(see	Exercise	11.2.7),	we	infer	(	'	P	lim	sup	An	=	1.	be	independent	random
variables	with	Xi	∼	Berp	,	i	∈	N.	,	An	∈	E	with	nk=1	Ak	=	A	and	μ(Ak	)	=	μ(A)/n	for	any	k	=	1,	.	If	F	is	not	a	constant	map,	then	go	to	(2).	Furthermore,	/	i∈I	Ai	=	σ	(Z).	Hint:	Use	induction	on	n.	We	write	μ1	≤st	μ2	if			f	dμ1	≤	f	dμ2	for	every	monotone	increasing	bounded	function	f	:	Rd	→	R.	However,	we	now	know	that	m(νt	)	=	Λ	(t);	hence	we	have	νt	∗
(x)	∈	Ex	and	thus	Λ∗	(x)	=	)t	∗	(x),	x*	−	Λ(t	∗	(x))	=	inf	H	(ν	|μ)	=	I˜(x).	Define		h	=	δ(ε)	h.	:(y,	x)	F	1	⎤	⎡	τx1	−1	n=τy	)	*	Define	pn	(x,	y)	=	Px	Xn	=	y;	τx1	>	n	.	By	Example	6.29,	we	can	compute	the	moments	of	Zn	by	differentiating	the	Laplace	transform.	68	2	Independence	Example	2.33	Let	X	and	Y	be	independent	Poisson	random	variables	with
parameters	μ	and	λ	≥	0.	Let	i	∈	{0,	.	Note	that	A1	=	A2	=	A3	=	.	A	postulate	of	statistical	physics	is	that	the	distribution	of	the	state	x	is	the	Boltzmann	distribution:	μβn	(dx)	=	(Znβ	)−1	e−βUn	(x)	μ0n	(dx).	for	all	A	⊂	N0	.	Then	P	is	called	the	Wiener	measure.	In	a	manner	similar	to	the	above,	we	make	the	following	definition.	it	follows	that	μ	E	\	A	≤	μ
E	\	A	<	n=1	Theorem	13.6	If	E	is	Polish	and	if	μ	∈	Mf	(E),	then	μ	is	regular.	19.3	Finite	Electrical	Networks	..	Exercise	20.3.1	Let	(Ω,	A)	be	a	measurable	space	and	let	τ	:	Ω	→	Ω	be	a	measurable	map.	,	Xn	be	independent	random	variables	with	values	in	1,	.	In	order	to	check	independence,	it	is	enough	to	check	it	on	a	generator	of	the	σ	-algebra
(Theorem	2.16).	Here	we	follow	the	alternative	route	as	described	in	[13]	(and	later	[14])	or	[44].	The	l→∞	3	3	3	map	ξ	→	F	dξ	=	f1	dξ	·	·	·	fk	dξ	is	bounded	and	(as	a	product	of	continuous	maps)	is	continuous	with	respect	to	the	topology	of	weak	convergence	on	M1	(E);	hence	it	is	in	Cb	(M1	(E)).	The	random	variable	S	:=	∞	n=1	Xn	is	measurable	with
respect	to	E	but	not	with	respect	to	T	.	This	can	be	employed	to	prove	the	general	case.	,	kD	,	kD	(17.20)	is	the	multinomial	coefficient.	If	by	some	clever	choice	of	the	distribution	of	Fn	one	can	ensure	that	the	stopping	time	T	:=	inf{n	∈	N	:	F1n	is	constant}	is	almost	surely	finite	(and	this	is	always	possible),	then	we	will	have	P[F1T	(x)	=	y]	=	π(y)	for
all	x,	y	∈	E.	.,	then	this	is	exactly	Bayes’	formula	of	Theorem	8.7.	♣	Exercise	8.2.4	Give	an	example	for	E[E[X	|F	]|G]	=	E[E[X	|G]|F	].	Hence,	formally	we	can	exp(λ(ϕν	(t)	−	1))	is	the	CFP	of	μλ	=	∞	k=0	e	k!	write	μλ	=	e∗λ(ν−δ0	)	.	Then	μ	is	uniquely	determined	by	the	values	μ(E),	E	∈	E.	.})	<	ε2	.	Hence	G(0,	0)	<	∞	if	and	only	if	Now	∞	n=1	n	D	>	2.
Exercise	13.4.1	Show	that	a	subset	K	⊂	M1	(M1	(E))	is	tight	if	and	only	if,	for	any	ε	>	0,	there	exists	a	compact	set	K	⊂	E	with	the	property			μ	μ	∈	M1	(E)	:	μ(K	c	)	>	ε	<	ε	for	all		μ	∈	K.	♦	In	the	following,	we	will	use	the	somewhat	sloppy	notation	PXs	[X	∈	·	]	:=	κ(Xs	,	·	).	Exercise	17.4.1	Let	x	be	positive	recurrent	and	let	F	(x,	y)	>	0.	We	call	H	(p)	:=
He	(p)	(e	=	2.71	.	Clearly,	that	condition	is	not	necessary,	as,	for	example,	the	normal	distribution	does	not	fulfill	it.	k=0	Proof	First	we	show	that,	for	fixed	x	∈	E,	(14.16)	defines	a	probability	measure	n−1	/	κjk	,jk+1	.	In	order	that	the	random	walk	be	at	the	origin	after	2n	steps,	it	must	perform	ki	steps	in	the	ith	direction	and	ki	steps	in	the	opposite
direction	for	some	numbers	k1	,	.	By	the	unique−	;	hence	(see	ness	theorem	for	probability	generating	functions,	we	get	Y	∼	bn,p	−	∗n	Definition	2.29	for	the	nth	convolution	power)	bn,p	=	γp	.	♣	Exercise	7.5.2	Let	μ,	ν,	α	be	finite	measures	on	(Ω,	A)	with	ν	0	μ	0	α.	Define	the	map		m	:	E	→	Rd	,	ν	→	x	ν(dx)	=		x	ν({x}).	Let	(zn	)n∈N	be	a	sequence	in	F
n→∞	n→∞	with	zn	−→	x.	In	particular,	if	x	∈	E	and	σx	=	inf{n	∈	N0	:	Xn	=	x},	then	σx	<	∞	since	X	is	recurrent	and	irreducible.	Takeaways	In	order	to	draw	random	samples	(approximately)	according	to	a	given	distribution,	it	is	sometimes	feasible	to	simulate	a	suitable	Markov	chain	that	converges	to	this	distribution	as	its	invariant	measure.	For
convenience,	we	recall	the	construction	of	Z.	Corollary	7.44	(Jordan’s	decomposition	theorem)	Assume	ϕ	∈	M±	(Ω,	A)	is	a	signed	measure.	By	partial	y0	=	1	y1	ϕ(t)	y2	y3	−a4	−a3	−a2	−a1	a1	a2	Fig.	(i)	Give	a	formal	description	of	this	process	as	a	Markov	chain.	232	10	Optional	Sampling	Theorems	The	process	An	=	#	i	≤	n	−	1	:	|Xi	|	=	0	is	the	so-
called	local	time	of	X	at	0.	Furthermore,	for	E	=	R	and	γ	>	1,	every	locally	Hölder-γ	-continuous	function	is	constant.	*	random	variable	1{τ	=s}	Ex	f	(Xs+t	)t	∈I	|Fτ	is	measurable	with	respect	to	Fs	.	}.	of	random	variables	is	called	symmetric	if	finitely	many	of	the	Xi	can	be	permuted	without	changing	the	event.	Choose	an	arbitrary	probability	vector
(gn	)n∈N	with	gn	>	0	for	all	n	∈	N.	Sometimes	we	n→∞	D	n→∞	write	Xn	−→	PX	or	Xn	⇒	PX	if	we	want	to	specify	only	the	distribution	PX	but	not	the	random	variable	X.	In	general	dynamical	systems,	a	similar	statement	is	true	if	we	replace	the	average	over	ω	by	the	conditional	expectation	given	the	σ	-algebra	of	invariant	events.	∈	A	with	∞		Ai	∈	A,
i=1	(iv)	subadditive	if	for	any	choice	of	finitely	many	sets	A,	A1	,	.	Let	r	∈	{1,	.	144	5	Moments	and	Laws	of	Large	Numbers	Let	W1	,	W2	,	.	The	above	calculation	with	t	replaced	by	it	yields	ϕ(t)	=	θ/(θ	−	it),	and	this	function	is	indeed	analytic.	♦	Example	17.6	In	the	previous	example,	it	is	simple	to	pass	to	continuous	time;	that	is,	I	=	[0,	∞).	573	573
576	583	23	Large	Deviations	..	,	kn	)	∈	Σ	n	:	δki	=	ν	.	Let	(pe	)e∈E	be	a	probability	vector.	Let	F∞	:=	σ	(Fn	:	n	∈	N),	and	let	M	be	the	vector	space	of	uniformly	integrable	F-martingales.	,	μn	be	finite	measures	or,	more	generally,	Lebesgue–Stieltjes	measures	on	R,	B(R)	.	By	Exercise	5.1.3,	these	are	the	moments	of	the	Beta	distribution	βM,N−M	on	[0,
1]	with	parameters	(M,	N	−	M)	(see	Example	1.107(ii)).	(ii)	If	X	is	nonnegative	and	if	τ	<	∞	a.s.,	then	we	have	E[Xτ	]	≤	E[X0	]	<	∞,	E[Xσ	]	≤	E[X0	]	<	∞	and	Xσ	≥	E[Xτ		Fσ	].	(i)	I	is	countable.	Theorem	9.43	(Representation	theorem)	Let	X	be	a	binary	model	and	let	VT	be	an	FT	-measurable	random	variable.	Furthermore,	clearly	Ai	⊂	nj=1	Bj	if	αi	=	0,
and	Bj	⊂	m	i=1	Ai	if	βj	=	0.	We	now	come	to	a	formal	description	of	the	model.	i=1		λn	is	called	the	Lebesgue	measure	on	Rn	,	B(Rn	)	or	Lebesgue–Borel	measure.	(It	can	be	shown	that	dP	(μ,	ν)	=	dP	(ν,	μ)	if	μ,	ν	∈	M1	(E).)	If	E	is	locally	compact	and	Polish,	then	(Mf	(E),	τw	)	is	again	Polish	(see	[136,	page	167]).	,	Xn	be	independent	real	random
variables	and	let	Sk	=	X1	+	.	♣	11.3	Example:	Branching	Process	Let	p	=	(pk	)k∈N0	be	a	probability	vector	on	N0	and	let	(Zn	)n∈N0	be	the	Galton–	Watson	process	with	one	ancestor	and	offspring	distribution	p	(see	Definition	3.9).	Then	Fnk	(q)	k∈N	converges	for	all	q	∈	Q.	i=0	i=0	Corollary	14.46	(Measures	by	consistent	families	of	kernels)	Under
the	assumptions	of	Theorem	14.45,	for	every	probability		measure	μ	on	E,	there	exists	a	unique	probability	measure	Pμ	on	E	I	,	B(E)⊗I	with	the	following	property:	For	any	choice	of	finitely	many	numbers	0	=	j0	<	j1	<	/	j2	<	.	On	the	other	hand,	for	A	∈		n∈N	Fτn	and	σ	>	τ	a	stopping	time,	we	have	for	all	t	Ft		A	∩	{τn	≤	t}	∩	{σ	≤	t}	=	A	∩	{(σ	∨	τn	)	≤
t}	↑	A	∩	{σ	≤	t}.	♣	Exercise	4.3.2	Let	f	:	[0,	1]	→	R	be	bounded.	If	F	is	a	topological	space	and	m	:	E	→	F	is	continuous,	then	the	image	measures	(με	◦	m−1	)ε>0	satisfy	an	LDP	with	rate	function	I˜(x)	=	inf	I	(m−1	({x})).	,	n	−	1}.	x∈ZD	By	the	Fourier	inversion	formula	(Theorem	15.11),	we	recover	the	n-step	transition	probabilities	from	φ	n	by	pn	(0,
x)	=	(2π)−D		[−π,π)D	e−i)t,x*	φ	n	(t)	dt.	Note	that	“←→p	”	is	an	equivalence	relation;	however,	a	p	random	one,	as	it	depends	on	the	values	of	the	random	variables	(Xe	)e∈E	.	Hence,	letting	L	=	εN,	we	get	lim	inf	GN	(0,	0)	≥	N→∞	1	2ε		|y|≤εk	p	k	(0,	y)	=	1	for	for	every	ε	>	0.	0	For	εδ	≤	3	one	can	choose	C	=	12/δ	2	ε3	.	,	n,	define	Mn,t,l	=	#	s	≤	t	:	Xs	∈
((l	−	1)/n,	l/n]	and	the	number	of	nonempty	boxes	after	t	balls	are	thrown:	Nn,t	:=	n		1{Mn,t,l	>0}	.	By	convexity,	we	have	I	(y)	>	I	(x)	whenever	y	>	x	≥	0	or	y	<	x	≤	0.	,	N	−	1}2).		n→∞	Thus	X	<	∞	almost	surely	and	α	+	nk=0	Xk	⇒	X.	A	set	A	⊂	E	is	called	dense	if	A	=	E.	If	K	=	C,	then	in	addition	assume	that	C	is	closed	under	complex	conjugation.
Irreducibility	of	the	Gibbs	sampler,	however,	has	to	be	checked	for	each	case.	Then	the	map	Lp	(Ω,	A,	P)	→	Lp	(Ω,	F	,	P),	X	→	E[X	|F	],	is	a	contraction	(that	is,	E[X	|F	]p	≤	Xp	)	and	thus	continuous.	128	5	Moments	and	Laws	of	Large	Numbers	Proof	of	Theorem	5.17	As	in	the	proof	of	Theorem	5.16,	it	is	enough	to	consider	the	case	Xn	≥	0.	Assume	that	if
we	know	the	value	X	=	x,	the	random	variables	Y1	,	.	Since	d	is	continuous,	we	have	d(x,	zn	)	+	d(zn	,	y)	−→	d(x,	y).	At	the	first	stage,	we	determine	the	value	of	X.	Then,	for	any	A	∈	A,	P[A]	=		P[A|Bi	]	P[Bi	].	Theorem	18.13	(Convergence	of	Markov	chains)	Let	X	be	an	irreducible,	positive	recurrent	Markov	chain	on	E	with	invariant	distribution	π.	It	is
used	to	localise	the	convergence.	Let	A,	B	∈	E	⊗I	.	For	the	following	theorem,	compare	Definition	9.7.	Theorem	14.50	For	any	convolution	semigroup	(νt	:	t	∈	I	)	and	any	x	∈	Rd	,	there	exists	a	probability	measure	Px	on	the	product	space	(Ω,	A)	=	(Rd	)I	,	B(Rd	)⊗I	such	that	the	canonical	process	(Xt	)t	∈I	is	a	stochastic	process	with	Px	[X0	=	x]	=	1,	with
stationary	independent	increments	and	with	Px	◦	(Xt	−	Xs	)−1	=	νt	−s	for	t	>	s.	+	Tn−Ln	]	)	*	wLn	r	=	P	TLs	n	+1	<	Tn−L	=	.	(iii)	If	τ	is	an	F-stopping	time	and	X	is	adapted,	then	Xτ	is	an	Fτ	-measurable	random	variable.	By	a	similar	argument,	σ	-subadditivity	follows	from	σ	-additivity.	(ix)	Every	σ	-algebra	is	a	λ-system.	,	n}2	and	∂Bn	=	Bn	\Bn−1	.
Then	(as	in	the	proof	of	Wald’s	identity)	Sn	and	1{T	=n}	are	independent;	hence	Sn2	and	1{T	=n}	are	uncorrelated	and	thus	∞	(	'	(		'	E	ST2	=	E	1{T	=n}	Sn2	n=0	=	∞		'	(	E[1{T	=n}	]	E	Sn2	n=0	=	∞		n=0			P[T	=	n]	Var[Sn	]	+	E[Sn	]2	120	5	Moments	and	Laws	of	Large	Numbers	=	∞				P[T	=	n]	n	Var[X1	]	+	n2	E[X1	]2	n=0	)	*	=	E[T	]	Var[X1	]	+	E	T	2
E[X1	]2	.	On	the	other	hand,	limes	superior	is	the	event	where	infinitely	many	of	the	An	occur.	Hence	the	strong	law	of	large	numbers	is	in	force.	n	k=1	k=1	For	n	=	1,	this	is	clear.	Assume	that	(μn	)n∈N	does	not	converge	weakly	to	μ.	(i)	Show	that	E[Gn	(t)]	=	0	and	Cov[Gn	(s),	Gn	(t)]	=	s	∧	t	−st	for	s,	t	∈	[0,	1].	435	435	439	445	453	19	Markov	Chains
and	Electrical	Networks	.	In	statistical	physics,	one	is	often	interested	in	integrating	with	respect	to	με	(where	1/ε	is	interpreted	as	“size	of	the	system”)	functions	that	attain	their	maximal	values	away	from	the	zeros	of	I	.	Proof	Let	ϕ	:	R	→	[0,	1],	t	→	(t	∨	0)	∧	1.	Hence,	using	the	triangle									f	dμ1	−	f	dμ2		≤	|f	−	g|	dμ1	+	|f	−	g|	dμ2		≤	ε	2f	∞	+	2ε	+	μ1
(Rd	)	+	μ2	(Rd	)	.	5.1	Moments	119	(iii)	Let	μ	∈	R	and	σ	2	>	0,	and	let	X	be	normally	distributed,	X	∼	Nμ,σ	2	.	k=1	Again,	by	the	ergodic	theorem,		1	(20.6)	Rn	≤	P[Am		I]	a.s.	n→∞	n		m→∞	Since	Am	↓	A	and	P[Am		I]	−→	P[A|I]	almost	surely	(by	Theorem	8.14(8.14)),	the	claim	follows	from	(20.5)	and	(20.6).	(v)	Now	let	τ	be	an	arbitrary	stopping	time.	be
i.i.d.	real	random	variables	that	satisfy	the	condition	of	Cramér’s	theorem	(Theorem	23.3);	i.e.,	Λ(t)	=	log(E[et	X1	])	<	∞	596	23	Large	Deviations	for	every	t	∈	R.	♦		(i)	Let	μ	be	a	measure	on	R,	B(R)	with	density	f	with	respect	to	the	3	Lebesgue	measure	λ.	Rd	A	map	f	:	→	R	is	called	partially	continuous	at	x	=	(x1	,	.	Denote	)v	+	N	,	w	+	N	*0	:=	)v,	w*	to
obtain	a	Hilbert	space	(V0	,	)	·	,	·	*0	).	592	23	Large	Deviations	Let	Xˆ	1	,	Xˆ	2	,	.	,	2n	)	are	independent	and	identically	distributed.	The	meaning	of	(P5)	is	explained	by	the	following	calculation.	To	show	continuity	at	t	=	0,	consider	lim	sup	Xt	=	lim	sup	t	→∞	t	↓0	≤	lim	sup	n→∞	1	Bt	t	1	1	Bn	+	lim	sup	sup	Bt	−	Bn	,	t	∈	[n,	n	+	1]	.	The	bounded	harmonic
functions	are	constant,	but	what	are	the	unbounded	harmonic	functions?	A	Markov	process	(Xt	)t	∈I	with	distributions	(Px	,	x	∈	E)	has	the	strong	Markov	property	if,	for	every	a.s.	finite	stopping	time	τ	,	every	bounded	B(E)⊗I	−	B(R)	measurable	function	f	:	E	I	→	R	and	every	x	∈	E,	we	have	Ex	)		*	f	((Xτ	+t	)t	∈I	)		Fτ	=	EXτ	[f	(X)]	:=		EI	κ(Xτ	,	dy)	f	(y).
The	procedure	imitates	the	proof	that	Ω	is	compact.	If	σ	2	≥	0	and	b	∈	R,	then	(σ	2	,	b,	ν)	is	called	a	canonical	triple.	If	all	level	sets	I	−1	([−∞,	a]),	a	∈	[0,	∞),	are	compact,	then	I	is	called	a	good	rate	function.		(iii)		If	A1	,	A2	,	.	On	the	other	hand,	again	by	Theorem	12.17,		*	)	n→∞	An	(ϕk−1	)	−→	E	ϕk−1	(X1	,	.	Now	we	show	that	r	must	equal	0,	which
contradicts	the	assumption	Pp	[N	≥	3]	>	0.	By	computing	the	cases	Xn	=	Xn−1	−	1	and	Xn	=	Xn−1	+	1	separately,	we	see	that	for	all	n	∈	N	f	(Xn−1	+	1)	−	f	(Xn−1	−	1)	(Xn	−	Xn−1	)	2	1	1	+	f	(Xn−1	−	1)	+	f	(Xn−1	+	1)	−	f	(Xn−1	)	2	2	1	=	f		(Xn−1	)(Xn	−	Xn−1	)	+	f		(Xn−1	)	2	1	=	Fn	·	(Xn	−	Xn−1	)	+	Fn	.	For	ν	∈	Mf	(R),	we	can	define	ν	∗n	=	ν(R)n
(ν/ν(R))∗n	(and	ν	∗n	=	0	if	ν	=	0).	In	order	to	simulate	a	chain	X	that	converges	to	π,	we	take	a	reference	chain	with	transition	matrix	q	and	use	the	Metropolis	algorithm:	If	the	chain	with	transition	matrix	q	proposes	a	transition	from	the	present	state	x	to	state	y,	then	we	accept	this	proposal	with	probability	π(y)	q(y,	x)	∧	1.	In	Example	10.19
(Equation	(10.7))	for	the	case	r	=	12	,	and	Example	10.16	for	the	case	r	=	12	,	it	was	shown	that,	for	every	μ	∈	M1	(E),	n→∞	μpn	−→	(1	−	m(μ))δ0	+	m(μ)δN	.	Then	A	∈	T	=	∞		σ	(Xn	,	Xn+1	,	.	Indeed,	by	the	monotonicity	principle,	we	have	(E,K)	Reff	(Z2	,L2	)	(0	↔	∞)	≥	Reff	(0	↔	∞)	=	∞.	Takeaways	An	event	that	is	described	by	a	sequence	X1	,	X2	,	.	We
will	construct	a	binomially	distributed	random	variable	by	throwing	a	Poiλ	-distributed	number	T	of	balls	in	ni	boxes	and	count	the	number	of	nonempty	boxes.	Choose	an	open	set	U	⊃	(A	∩	[−N,	N]n	)c	such	that	λn	(U	\	(A	∩	[−N,	N]n	)c	)	<	ε/2,	and	let	K	:=	[−N,	N]n	\	U	⊂	A.	Try	and	fill	the	details	in	this	argument.	,	n}	≥	#	k	≤	n	:	Sl	=	Sk	for	all	l	>	k
=	n		1A	◦	τ	k	.	The	supplementary	statement	is	simple	and	is	left	as	an	exercise.	Indeed,	for	the	case	where	f	(x)	=	∞	for	all	x	∈	K,	the	statement	is	trivial.	n→∞		n→∞		As	B	is	right	continuous,	we	have	F	(Bτ	n	+t	)t	≥0	−→	F	(Bτ	+t	)t	≥0	almost	surely	and	in	L1	and	thus	'	)		*	)		*(		E	Ex	F	(Bτ	n	+t	)t	≥0		Fτ	n	−	Ex	F	(Bτ	+t	)t	≥0		Fτ	n		'		(	n→∞		≤	Ex	F	(Bτ	n
+t	)t	≥0	−	F	(Bτ	+t	)t	≥0		−→	0.	,	θn	∈	(0,	∞).	For	any	two	points	a,	b	∈	I	with	a	<	b,	we	have	#(Aε	∩	(a,	b))	≤	ε−1	(D	+	ϕ(b)	−	D	+	ϕ(a));	hence	Aε	∩	(a,	b)		is	a	finite	set.	Then	*	)	E	X0	1{Mn	>0}	≥	0	for	every	n	∈	N.	Hence	the	Borel–Cantelli	lemma	yields	P[A	]	=	1.	♠	Remark	6.6	In	general,	convergence	in	measure	does	not	imply	almost	everywhere
convergence.	(ii)	Let	m	∈	N(x,	y).	More	precisely,	let	the	pairwise	distinct	points	e1	,	.	Then	Pnk	−→	Q,	k	→	∞.	Then	B1	⊂	D1	=	U	∈UD	U	.	f	cx+d	cd	For	two	linear	rational	functions	f	and	g,	we	have	Mf	◦g	=	Mf	·	Mg	.	Furthermore,	C˜	:=	{g˜	:	g	∈	C}	⊂	Cb	(E;	C)	is	an	algebra	that	separates	points	and	is	closed	under	complex	conjugation.	,	Nk	be	the
corresponding	absolute	frequencies.	It	is	easy	to	check	that	ε	→	|λε,N/2	|	is	monotone	decreasing	and	that	ε	→	|λε,1	|	is	monotone	increasing.	(ii)	For	almost	all	ω	∈	Ω,	the	map	I	→	R,	x	→	f	(ω,	x)	is	differentiable	with	derivative	f		.	Let	Bn	:=	A\	ni=1	Ai	.	11.2	Snapshot	of	a	voter	model	on	an	800	×	800	torus.	Inductively,	we	get	the	statement	for	F	(n)
since		n		d				≤	(n/ε)n	e−n	<	∞	for	x	≥	0	and	λ	≥	ε.	Now	let	H	be	progressively	measurable	and	bounded.	It	is	easy	to	check	that	Y	is	indeed	a	random	walk	with	transition	matrix	p.	The	product	σ	-algebra	is	the	smallest	σ	-algebra	such	that	all	coordinate	maps	are	measurable.	♦	Theorem	8.4	If	P[B]	>	0,	then	P[	·	|B]	is	a	probability	measure	on	(Ω,	A).
Theorem	8.12	E[X	|F	]	exists	and	is	unique	(up	to	equality	almost	surely).	In	Polish	spaces,	a	partial	converse	is	true.	We	will	come	back	to	this	connection	in	the	framework	of	the	martingale	convergence	theorem	that	will	provide	an	alternative	proof	of	the	Radon–Nikodym	theorem	(Corollary	7.34).	μ	is	called	a	•	•	•	•	content	if	μ	is	additive,
premeasure	if	μ	is	σ	-additive,	measure	if	μ	is	a	premeasure	and	A	is	a	σ	-algebra,	and	probability	measure	if	μ	is	a	measure	and	μ(Ω)	=	1.	That	is,	μn	−	μT	V	−→	0	implies	μn	−→	μ	weakly.	For	any	binary	prefix	code	C	=	(c(e),	e	∈	E),	we	have	Lp	(C)	≥	H2	(p).	,	r}2	/(rdx2	)	is	known;	see,	e.g.,	[45].	♣	Exercise	1.1.2	Give	a	counterexample	that	shows
that,	in	general,	the	union	A	∪	A	of	two	σ	-algebras	need	not	be	a	σ	-algebra.	18.4	Speed	of	Convergence	453	For	a	practical	implementation,	there	are	two	main	problems:	(1)	The	full	map	Fn	has	to	be	generated	and	has	to	be	composed	with	F	.	Proof	(Outer	regularity)	Step	1.	By	the	approximation	theorem	for	measures	(Theorem	1.65),	there	exists
an	N	∈	N	and	mutually	disjoint	sets	F1	,	.	∞			)	*	P	(pi	N)	=	P	{p1	·	·	·	pk	n}	i=1	n=1	=	ζ	(s)	−1	(p1	·	·	·	pk	)	−s	∞		n−s	n=1	=	(p1	·	·	·	pk	)−s	=	k		P[	pi	N	].	For	n	∈	N,	there	exists	a	μn	∈	M1	(R)	such	that	μ∗n	n	=	μ.	♣	Chapter	18	Convergence	of	Markov	Chains	We	consider	a	Markov	chain	X	with	invariant	distribution	π	and	investigate	conditions	under
which	the	distribution	of	Xn	converges	to	π	for	n	→	∞.	Due	to	translation	invariance,	we	have	(#BL	)−1	Ep	[#TL	]	=	r	for	any	L.	♦	Definition	7.6	Let	G	be	a	convex	set.	In	this	case,	we	have	VT	=	(XT	−	K)+	.	♣	2.4	Example:	Percolation	Consider	the	d-dimensional	integer	lattice	Zd	,	where	any	point	is	connected	to	any	of	its	2d	nearest	neighbors	by	an
edge.	A	map	f	:	E	→	C	is	measurable	if	and	only	if	Re(f	)	and	Im(f	)	are	measurable	(see	Theorem	1.90	with	C	∼	=	R2	).	For	b	>	0,	define		Hb	(p)	:=	−	pe	logb	(pe	)	e∈E	with	the	convention	0	logb	(0)	:=	0.	Apart	from	the	inequalities,	the	important	results	for	probability	theory	are	Lebesgue’s	decomposition	theorem	and	the	Radon–Nikodym	theorem	in
Sect.	+	p(i,	j	)	for	i,	j	∈	E,	and	define	Yn	by	Rn	(i)	=	j	⇐⇒	Un	∈	[r(i,	j	−	1),	r(i,	j	)).	In	particular,	every	characteristic	function	is	uniformly	continuous.	The	analogue	of	Theorem	13.34	holds	for	C	⊂	Cb	(E;	C).	273	274	281	290	300	224	Contents	xiii	14	Probability	Measures	on	Product	Spaces	.	P0	XτN	=	−N	=	Rw,eff	(−N	↔	N)	Rw,eff	(0	↔	−N)	+	Rw,eff	(0
↔	N)	Again,	since	X	is	transient,	we	infer	)	*	)	*	n→∞	P0	Xn	−→	−∞	=	P	sup{Xn	:	n	∈	N0	}	<	∞	)	*	=	lim	P	sup{Xn	:	n	∈	N0	}	<	N	N→∞	)	*	≤	lim	sup	P	XτN	=	−N	N→∞	=	+	Rw	−	+.	Then		μ∗	((A	∩	B)	∩	E)	+	μ∗	(A	∩	B)c	∩	E		=	μ∗	(A	∩	B	∩	E)	+	μ∗	(Ac	∩	B	∩	E)	∪	(Ac	∩	B	c	∩	E)	∪	(A	∩	B	c	∩	E)	≤	μ∗	(A	∩	B	∩	E)	+	μ∗	(Ac	∩	B	∩	E)	+	μ∗	(Ac	∩	B	c	∩	E)	+
μ∗	(A	∩	B	c	∩	E)	=	μ∗	(B	∩	E)	+	μ∗	(B	c	∩	E)	=	μ∗	(E).	n→∞	(ii)	ϕ	is	differentiable	at	0	with	ϕ		(0)	=	i	m	if	and	only	if	(X1	+	.	(17.32)	and	Proof	(The	proof	follows	the	exposition	in	[100,	Section	3])	Since	bni	,pi	({0})	=	(1−pi	)ni	,	conditions	(17.31)	and	(17.32)	are	clearly	necessary	for	bn1	,p1	≤st	bn2	,p2	.	21.3.	Indeed,	there	we	needed	only	right
continuity	of	the	paths	and	a	certain	continuity	of	the	distribution	as	a	function	of	the	starting	point,	which	is	exactly	the	Feller	property.	Proof	“(ii)”	This	follows	from	(i)	since	Theorem	17.11	yields	uniqueness	of	X.	Exercise	12.1.1	Let	n	∈	N.	Then	the	relative	entropy	of	ν	∈	M1	(Σ)	is	H	(ν	|μ)	=	1−m	1+m	log(1	+	m)	+	log(1	−	m).	How	does	this	work	in
detail?	♣	Exercise	23.2.7	Let	(Xt	)t	≥0	be	a	random	walk	on	Z	in	continuous	time	that	makes	a	jump	to	the	right	with	rate	12	and	a	jump	to	the	left	also	with	rate	12	.	Alternative	proof	of	Theorem	7.33.	However,	the	sets	F˜n	do	not	generate	2Ω	(but	which	σ	-algebra?).	♦	Takeaways	For	(sub-)	martingales,	Doob’s	upcrossing	lemma	bounds	the	number
of	upcrossings	over	a	given	interval.	How	stable	is	weak	convergence	if	we	pass	to	image	measures	under	some	map	ϕ?	Hence,	let	F	be	continuous	and	linear.	e−λ	(xi)	(Poisson	distribution)	Clearly,	ϕPoiλ	(t)	=	n!	n=0	Corollary	15.14	The	following	convolution	formulas	hold.	17.7	Stochastic	Ordering	and	Coupling	429	Compute	the	invariant	measure
and	show	the	following	using	Theorem	17.52:		(i)	If	r	∈	0,	12	,	then	X	is	positive	recurrent.	If	f	∈	C,	then	also		|f	|	=	f	∞	lim	pn	f	2	/f	2∞	n→∞	is	in	the	closure	C	of	C	in	Cb	(E;	R).		d	Differentiating	the	power	series	termwise	yields	dt	pt	(x,	y)	=	q(x,	y).	Define	the	waiting	time	for	the	first	“success”	in	the	mth	row	of	the	matrix	(Xm,n	)m,n	by	Ym	:=	inf	n	∈
N	:	Xm,n	=	1	−	1.	We	compute	the	Laplace	transform	for	these	kernels.	In	particular,	for	α	>	2,	t	→	e−|t	|	is	not	a	CFP.	By	(20.4),	we	conclude	that,	for	every	x	∈	E,	Pπ	[X	∈	A]	=	Eπ	[Px	[X	∈	A]]	=	Px	[X	∈	A].	∈	A,	•	∪-closed	(closed	under	unions)	if	A	∪	B	∈	A	whenever	A,	B	∈	A,		•	σ	-∪-closed	(closed	under	countable	unions)	if	∞	n=1	An	∈	A	for	any
choice	of	countably	many	sets	A1	,	A2	,	.	By	Wald’s	identity	(Theorem	5.5),	we	have	E[ST	]	=	E[T	]	E[X1	];	hence	'	(		)	*	Var[ST	]	=	E	ST2	−	E[ST	]2	=	E[T	]	Var[X1	]	+	E	T	2	−	E[T	]2	E[X1	]2	,	as	claimed.	Similarly,	we	get	Y	≥	Y		almost	surely.	Lemma	4.6	Let	f,	g,	f1	,	f2	,	.	Manifestly,	all	three	notions	of	infinite	divisibility	are	equivalent,	and	we	will	use
them	synonymously.	Equation	(2.9)	says	that,	for	any	choice	64	2	Independence	of	real	numbers	(xi	)i∈I	,	the	events	(Xi−1	((−∞,	xi	]))i∈I	are	independent.	That	is,	for	any	F	-measurable	Y	with	E[Y	2	]	<	∞,	)	*	)	*	E	(X	−	Y	)2	≥	E	(X	−	E[X	|F	])2	with	equality	if	and	only	if	Y	=	E[X	|F	].	By	Lemma	15.12(iv)	and	(ii),		ϕSn∗	(t)	=	ϕ		Now	1	−	t2	2n	n	n→∞	−→
e−t	2	/2	t	√	nσ	2	n	.	Here	one	needs	assumptions	on	the	regularity	of	the	paths	t	→	Xt	(ω);	for	example,	right	continuity.	Then	the	measure	μ	:=	pn	μn	∈	Mf	(Rd	)	has	n=1	n=1	characteristic	function	ϕμ	=	∞		(15.3)	pn	ϕμn	.	In	this	case,	(Xi	)i∈I	is	independent	if	and	only	if,	for	any	finite	J	⊂	I	and	any	choice	of	xj	∈	E,	j	∈	J	,	)	*		P	Xj	=	xj	for	all	j	∈	J	=	P[Xj
=	xj	].	+	Xn	of	i.i.d.	integrable	random	variables	is	n	·	E[X1	].	,	x	d	)	∈	Rd	and	y	=	1	d	d	(y	,	.	Proof	Let	ε	>	0.	,	WK	∈	R.	Example	18.6	(Independent	coalescence)	The	most	important	coupling	is	Markov	chains	that	run	independently	until	they	coalesce:	Let	X	and	Y	be	independent	chains	with	transition	matrix	p	until	they	first	meet.	If	we	have	d	=	1	for
every	state,	then	the	Markov	chain	is	called	aperiodic.	Definition	9.7	An	E-valued	stochastic	process	X	=	(Xt	)t	∈I	is	called	(i)	real-valued	if	E	=	R,	(ii)	a	process	with	independent	increments	if	X	is	real-valued	and	for	all	n	∈	N	and	all	t0	,	.	It	is	easy	to	check	that	A	is	a	semiring.	(ii)	Let	X	be	a	Markov	chain	with	invariant	distribution	π.	(12.9)	j	∈J	Then
the	family	(Ai	)i∈I	is	called	independent	given	A.	Exercise	21.5.1	Use	the	representation	of	Brownian	motion	(Wt	)t	∈[0,1]	as	a	random	linear	combination	of	the	Schauder	functions	(Bn,k	)	to	show	that	the	Brownian	bridge	Y	=	(Yt	)t	∈[0,1]	=	(Wt	−	tW1	)t	∈[0,1]	is	a	continuous,	Gaussian	process	with	covariance	function	Cov[Yt	,	Ys	]	=	(s	∧	t)	−	st.
Theorem	15.44	(Central	limit	theorem	of	Lindeberg–Feller)	Let	(Xn,l	)	be	an	independent	centered	and	normed	array	of	real	random	variables.	If	x,	y	∈	Zd	are	nearest	neighbors	(that	is,	x	−	y2	=	1),	then	we	denote	by	e	=	)x,	y*	=	)y,	x*	the	edge	that	connects	x	and	y.	Strictly	speaking,	this	gives	the	Poisson	process	only	on	the	time	interval	(0,	1],	but	it
is	clear	how	to	move	on:	We	perform	the	same	procedure	independently	for	each	of	the	intervals	(1,	2],	(2,	3]	and	so	on	and	then	collect	the	jumps	(see	also	Exercise	5.5.1).	Then	E	is	a	π-system	that	generates	2Ω	.	Proof	We	give	the	proof	for	σ	-algebras	only.	|Fn	|	≤	maxx∈{x0	−n,...,x0	+n}	|F		(x)|),	and	A	:=	i=1	2	i	n∈N0	Hence	f	(X)	:=	(f	(Xn	))n∈N0
=	M	+	A	is	the	Doob	decomposition	of	f	(X).	Hence,	there	is	an	ε	>	0	such	that	P[X1	<	−2ε]	>	ε.	(1.11)	1.3	The	Measure	Extension	Theorem	Inductively,	we	get	μ∗	(E	∩	Bn	)	=	implies	that	25	n	i=1	μ	∗	(E	∩	Ai	).	On	the	other	hand,	(XjJ	)−1	(Ej	)	∈	AJ	for	all	j	∈	J	and	Ej	∈	Ej	.	are	independent	Rd	-valued	random	variables	with	distributions	μi	:=	PXi	,	i	=
1,	.	We	define	the	conditional	probability	given	B	for	any	A	∈	A	by	⎧	⎨	P[A	∩	B]	,	P[B]	P[A|B]	=	⎩	0,	if	P[B]	>	0,	(8.1)	otherwise.	On	the	other	hand,	if	r	is	rational,	then	there	exists	some	n	∈	Z	\	{0}	with	e2πin	r	=	e−2πin	r	=	1.	Therefore,	P(x,y)[τ	<	∞]	=	1	for	all	initial	points	(x,	y)	∈	E	×	E	of	Z.	Then	A	→	μ(A)	:=	ω∈A	pω	defines	a	σ	-finite	measure	on
2Ω	.	In	order	for	the	sequence	(fn	)n∈N	of	measurable	maps	Ω	→	E	to	converge	almost	everywhere,	it	is	sufficient	that	one	of	the	following	conditions	holds.	,	N;	hence		lim	sup	n→∞	f	dμn	≤	3	ε	+	N			f	(yi	)	F	(yi	)	−	F	(yi−1	)	≤	4	ε	+		f	dμ.	N→∞	This	completes	the	proof.	We	may	consider	Brownian	motion	as	the	canonical	process	on	the	space	Ω	:=	C([0,
∞))	of	continuous	paths.	The	sets	A	∈	A	are	called	events.	This	property	is	reflected	by	the	assumption	that	the	jump	rate	q(x,	x	+	1)	equals	x.	Takeaways	We	have	adapted	the	convergence	theorems	of	the	last	chapter	to	Lp	convergence.	Proof	See,	e.g.,	[54,	Chapter	XV.7].	226	9	Martingales	Proof	We	show	that	there	exist	FT	−1	-measurable	random
variables	VT	−1	and	HT	such	that	VT	=	VT	−1	+	HT	(XT	−	XT	−1	).	By	the	strong	law	of	large	numbers,	we	infer	Shannon’s	theorem:	1	1	n→∞	−	log	πn	=	Yi	−→	H	(p)	n	n	n	almost	surely.	♣	Exercise	15.4.6	Let	X1	,	X2	,	.	Thus	Y	satisfies	the	condition	of	Theorem	21.6	(Kolmogorov–Chentsov)	with	α	=	4	and	β	=	1.	,	kn	,	n	∈	N)	be	an	array	of	real	random
variables	with	CFPs	ϕn,l	.	For	(iii),	note	that	τ	−	s	peeks	into	the	future	by	s	time	units	(in	fact,	{τ	−	s	≤	t}	∈	Ft	+s	),	while	τ	+	s	looks	back	s	time	units.	Since	E	is	locally	compact,	there	exists	a	compact	set	K	⊂	E	with	K	◦	⊃	L	and	a	ρL,K	∈	Cc	(E)	with	1L	≤	ρL,K	(x)	≤	1K	.	As	F	satisfies	the	usual	exists	and	is	RCLL.	If	Y1	∈	L2+δ	(P)	for	some	δ	>	0,
then	n		*	*	n→∞	)	)	E	|Xn,l	|2+δ	=	n−(δ/2)	E	|Y1	|2+δ	−→	0.	,	ωn	∈	E	that	the	probability	of	the	event	[ω1	,	.	2	For	the	inequality	compute	1	P[B1	>	a]	=	√	2π		∞	a	1	1	≤	√	2π	a		e−x	∞	a	2	/2	dx	x	e−x	2	/2	1	1	−a	2	/2	e	dx	=	√	.	Take	the	integral	with	respect	to	the	other	variable.	,	Ifn	)	:	n	∈	N;	f1	,	.			n	(x1	,	y1	),	(x2	,	y2	)	>	0.	f	∈F	A	A	If	μ(Ω)	<	∞,	then	(ii)
is	equivalent	to	(iii):	(iii)	For	all	ε	>	0,	there	is	a	δ(ε)	>	0	such	that		|f	|	dμ	≤	ε	for	all	A	∈	A	with	μ(A)	<	δ(ε).	If	in	(ii)	the	measure	is	a	probability	measure	for	all	ω1	∈	Ω1	,	then	κ	is	called	a	stochastic	kernel	or	a	Markov	kernel.	P{−n,−n+1,...}	X	*	)	=	P	X0	∈	A−n	,	X1	∈	A−n+1	,	.	∞	(ii)	n=0	|An	|	=	∞	almost	surely.	In	order	to	apply	the	results	on	finite
electrical	networks	from	the	last	section,	we	henceforth	assume	that	A0	⊂	E	is	such	that	E	\	A0	is	finite.		Proof	“(i)	⇒	(ii)”	Let	A,	A1	,	A2	,	.	To	this	end,	we	want	to	apply	Kolmogorov’s	moment	criterion.	Proof	(i)	Let	m	:=	sup	f	(SA	(x0	)).	Hence	there	exist	g	and	h	with	gn	↑	g	and	hn	↓	h.	The	basic	idea	is	that	it	is	energetically	favorable	for	particles	to
be	oriented	in	the	same	direction.	How	can	we	construct	a	probability	space	on	which	all	these	random	variables	are	defined?	For	0	≤	b	<	c	≤	∞	and	t	∈	R,	let	γb,c,t	be	the	linear	path	in	C	from	b	−	ibt	to	c	−	ict,	let	δb,t	be	the	linear	path	from	b	to	b	−	ibt	and	let	#c,t	be	the	linear	path	from	c	−	ict	to	c.	Takeaways	Consider	a	stochastic	process	that
can	take	only	two	values	at	time	t	+	1	given	the	full	history	up	to	time	t.	For	A	⊂	E,	let	τ	:=	τA	:=	inf	τx	x∈A	be	the	stopping	time	of	the	first	entrance	to	A.	X	is	transient	if	and	only	if	r	=	1/2,	in	which	case	we	have	μ1	=	μ2	.	♣	Exercise	5.3.5	Let	b	∈	{2,	3,	4,	.	Now	define		μ	:	σ	(A)	→	[0,	∞],	A	→	μ∗	(A).	Although	this	flaw	might	seem	inevitable	in	the
MCMC	method,	it	is	in	fact,	at	least	theoretically,	possible	to	use	a	very	similar	method	that	allows	perfect	sampling	according	to	the	invariant	distribution	π,	even	if	we	do	not	know	anything	about	the	speed	of	convergence.	n→∞	m≥n	Brownian	Motion	and	White	Noise	The	construction	of	Brownian	motion	via	Haar	functions	has	the	advantage	that
continuity	of	the	paths	is	straightforward.	Thus	(n(1	−	|ϕn	(t)|2	))n∈N	is	bounded	for	t	∈	[−ε,	ε].	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	180	Since	ν	is	finite	and	upper	semicontinuous	(Theorem	1.36),	we	have		∞		ν(A)	=	lim	ν	n→∞		Ak	≥	inf	ν(An	)	≥	ε	>	0.	As	a	direct	application	of	Theorem	16.5,	we	give	a	complete	description	of	the	class	of
infinitely	divisible	probability	measures	on	[0,	∞)	in	terms	of	their	Laplace	transforms.	Definition	24.6	Let	X	be	a	random	measure	on	E.	Proof	(i)	Assume	that	A,	B	∈	A.	We	conclude	that	Ac	∈	AI	.	In	a	similar	way	to	(viii),	we	define	μf	(A)	=	n			i=1	bi	f	(x)	dx.	6.	The	eigenvalue	1	has	the	multiplicity	1.	Let	μ	and	ν	be	arbitrary	(but	nonzero)	3σ	-finite
measures.3Then	there	exist	measurable	functions	g,	h	:	Ω	→	(0,	∞)	with	g	dμ	=	1	and	h	dν	=	1.	Usually	it	is	difficult	to	show	in	a	specific	situation	that	the	extension	to	2Ω	is	impossible.	20.1	Definitions	495	Definition	20.6	(i)	τ	is	called	measure-preserving	if	*	)	P	τ	−1	(A)	=	P[A]	for	all	A	∈	A.	Proof	Clearly,	ft	is	continuous	on	R	\	{0}.	Let	X	=	(Xt	)t	∈I	be
a	real-valued,	adapted	stochastic	process	with	E[|Xt	|]	<	∞	for	all	t	∈	I	.	-..-.	In	fact,	these	sets	form	a	π-system	that	generates	B(Rn	)	(see	Theorem	1.23).	∈	L1	(μ)	be	nonnegative	and	such	that	lim	fn	dμ	n→∞	n→∞	exists.		Clearly,	M	=	M			is	the	trace	σ	-algebra	of	M	Hence	M(E)	∈	M.	Let	p,	p	∈	[0,	1]	with	p	<	p	.	Here	we	used	Fτ	⊃	Fσ	,	the	tower
property	and	the	monotonicity	of	the	conditional	expectation	(see	Theorem	8.14).	,	X(n−1)	−	X(n)	|X(n)	does	not	depend	on	X(n)	and	that	it	equals	the	(unconditional)	distribution	of	the	ordered	values	of	X1	,	.	The	publisher,	the	authors,	and	the	editors	are	safe	to	assume	that	the	advice	and	information	in	this	book	are	believed	to	be	true	and	accurate
at	the	date	of	publication.	Define	Z	:=	lim	sup	n→∞	1	Sn	.	Remark	21.7	The	statement	of	Theorem	21.6	remains	true	if	X	assumes	values	in	some	Polish	space	(E,	)	since	in	the	proof	we	did	not	make	use	of	the	assumption	that	the	range	was	in	R.	If	we	let	f	=	1E	in	(7.8),	then	we	get	μ(E)	=	0.	Let	F	⊂	A	be	a	σ	-algebra	and	let	κX,F	be	a	regular
conditional	distribution	of	X	given	F	.	Proof	(i)	Let	AJ	=	σ		×		Ej	:	Ej	∈	Ej	∪	{Ωj	}	for	every	j	∈	J	.	Also	assume	that	we	follow	a	bounded	trading	strategy	that	cannot	use	future	information.	Theorem	5.5	(Wald’s	identity)	Let	T	,	X1	,	X2	,	.	If	only	(i)	and	(ii)	hold	and	)x,	x*	≥	0	for	all	x,	then	)	·	,	·	*	is	called	a	positive	semidefinite	symmetric	bilinear	form,	or
a	semi-inner	product.	Furthermore,	(An	)n∈N	is	an	independent	family	with	the	property	∞	∞			1	∗	P[An	]	=	6	=	∞.	For	n	∈	N,	define	An	:=	{[ω1	,	.	The	monotonicity	of	μ∗	now	μ∗	(E)	=	μ∗	(E	∩	Bn	)	+	μ∗	(E	∩	Bnc	)	≥	μ∗	(E	∩	Bn	)	+	μ∗	(E	∩	Ac	)	=	n		μ∗	(E	∩	Ai	)	+	μ∗	(E	∩	Ac	).	Then	X	is	the	Markov	chain	with	transition	matrix	⎧	−	⎪	⎨	wi	,	if	j	=	i	−	1,
pw	(i,	j	)	=	wi+	,	if	j	=	i	+	1,	⎪	⎩	0,	else.	Then	there	exists	an	increasing	sequence	K1	⊂	K2	⊂	K3	⊂	.	16	1	Basic	Measure	Theory	Definition	1.34	Let	A,	A1	,	A2	,	.	Define	Yn	(ω)	:=	−	log(pXn	(ω)	).	Thus	it	comes	in	very	handy	that	it	is	sufficient	to	check	measurability	on	a	generator	of	A	by	the	following	theorem.	For	some	applications,	however,	a
decomposition	in	trigonometric	functions	is	preferable.	lim	sup	an		n→∞		k=1	See	[22].	be	real	random	variables	with	Xn	⇒	X.	♦	Example	20.9	(Rotation)	Let	Ω	=	[0,	1),	let	A	=	B(Ω)	and	let	P	=	λ	be	the	Lebesgue	measure.	♦	If	f,	g	:	Ω	→	R	with	f	(ω)	≤	g(ω)	for	any	ω	∈	Ω,	then	we	write	f	≤	g.	Proof	“	⇒	”	Let	ν	be	totally	continuous	with	respect	to	μ.	(i)
(ii)	(iii)	(iv)	E[Xi	]	=	μi	for	all	i	=	1,	.	<	tn	,	the	family	(Nti	−	Nti−1	,	i	=	1,	.	Therefore,	since	pn+k	(x,	x)	≥	pn	(x,	y)	pk	(y,	x),	we	have	G(x,	x)	≥	∞		pn	(x,	y)	pk	(y,	x)	=	pk	(y,	x)	G(x,	y)	=	∞.	k=1	See	Fig.	Show	(using	Theorem	4.15)	that		xf	(x)	λ(dx).	Theorem	8.5	Let	A,	B	∈	A	with	P[A],	P[B]	>	0.	,	Xn	)	and	Sn	:=	X1	+	.	We	give	an	introduction	to	the	basic
concepts	and	then	study	certain	examples	in	more	detail.	1	1	11	18	36	45	2	Independence	.	Taylor’s	theorem	(Lemma	15.31)	yields	eit	x	−	1	−	itx	=	−	t	2x2	+	R(tx)	2	15.5	The	Central	Limit	Theorem	361	with	|R(tx)|	≤	16	|tx|3	.	Further,	let	X1	,	X2	,	.	7	Lp	-Spaces	and	the	Radon–Nikodym	Theorem	176	Theorem	7.29	(Uniqueness	of	the	density)	Let	ν	be
σ	-finite.	(21.33)	fdd	The	aim	of	this	section	is	to	strengthen	this	convergence	statement	to	weak	convergence	of	probability	measures	on	C([0,	∞)).	As	X	assumes	values	in	I	⊂	[0,	∞),	we	have	0	≤	E[X	1A	]	=	E[E[X	|F	]	1A	]	=	0;	hence	X1A	=	0.	=	1[0,t	]	(x)	for	x	∈	(0,	1)	\	{t}.	+	Xn−1	,	Mnε	:=	max{0,	S1ε	,	.	Then	;	;	n→∞	;(δx	−	δy	)pn	;	≤	2	P(x,y)[Xn	=	Yn
]	−→	0.	Let	α	>	0	and	let	L	be	a	Poiα	random	variable.	Klenke,	Probability	Theory,	Universitext,	147	148	6	Convergence	Theorems	fz	(ω)	=	d(f	(ω),	z)	and	gz	(ω)	=	d(g(ω),	z)	are	also	measurable.		Proof	Define	Sn	=	ni=1	Xi	for	n	∈	N.	Then	P[X1	=	x1	]	=	g0	(x1	)/N	and	P[Xk+1	=	xk+1	|X1	=	x1	,	.	Hence	)		*	0	≤	E	f	(X)	−	f	(Y	)	g(X)	−	g(Y	)	=	E[f	(X)g(X)]	−
E[f	(X)]	E[g(Y	)]	+	E[f	(Y	)g(Y	)]	−	E[f	(Y	)]	E[g(X)]	=	2	Cov[f	(X),	g(X)].	lim	i=1	In	particular,	Ap	∩	Aq	=	∅	if	p	=	q	and	thus	(Berp	)⊗N	⊥	(Berq	)⊗N	.	,	m}.	Note	that	E[f	(X)]	=	E[f	(Y	)]	and	E[g(X)]	=	E[g(Y	)].	Let	Y1	,	.	The	corresponding	eigenvalues	are	λn	=	σ	cos	n	π		N	for	n	=	1,	.	Then			(Xn	−			An	)n∈I	is	a	martingale.	Definition	6.16	A	family	F	⊂	L1
(μ)	is	called	uniformly	integrable	if		sup	inf	0≤g∈L1(μ)	f	∈F	|f	|	−	g	+	dμ	=	0.	N∈N	a,b∈Q+	0≤at	Xs	(ω)	t	(ω)	=	0.	To	every	canonical	triple,	by	(16.8)	there	corresponds	an	infinitely	divisible	random	variable.		Defining	Sˆn	=	Xˆ	1	+	.	∩	Aik	),	{i1	,...,ik	}⊂{1,...,n}	k=1	μ(A1	∩	.	We	now	extend	the	result	to	a	larger	class	of	ranges	for	Y	.	(21.28)	n=1	
Theorem	21.30	d	is	a	complete	metric	on	Ω	:=	C	[0,	∞)	that	induces	the	topology	of	uniform	convergence	on	compact	sets.	AN	˜	fn	)	−→	0	if	and	only	if	d˜N	(f,	fn	)	−→	0	for	all	N	∈	N.	Lemma	6.1	Let	f,	g	:	Ω	→	E	be	measurable	with	respect	to	A	–	B(E).	In	particular,	we	have	Ex	[Yt	]	=	x,	Ex	[Yt2	]	=	2x	t	+	x	2	,	Ex	[Yt3	]	=	6x	t	2	+	6x	2	t	+	x	3	,	Ex	[Yt4	]	=
24x	t	3	+	36x	2	t	2	+	12x	3	t	+	x	4	,	Ex	[Yt5	]	=	120x	t	4	+	240x	2	t	3	+	120x	3	t	2	+	20x	4	t	+	x	5	,	Ex	[Yt6	]	=	720x	t	5	+	1800x	2	t	4	+	1200x	3	t	3	+	300x	4	t	2	+	30x	5	t	+	x	6	.	Proof	For	p	=	∞,	the	equivalence	of	(i)	and	(ii)	is	a	simple	consequence	of	the	triangle	inequality.	If	μ	is	an	invariant	measure,	then	the	equations	for	μp	=	μ	read	μ({n})	=
pn−1	μ({n	−	1})	μ({0})	=	∞		for	n	∈	N,	μ({n})(1	−	pn	).	We	infer	;	;	;(f	−	g)1[−K,K]d	;	<	ε	∞	and	;	;	;(f	−	g)1	d	;	˜	∞	≤	f˜∞	+	ε	=	f	∞	+	ε.	By	the	preceding	corollary,	(fF	:	F	∈	I	)	is	uniformly	integrable	with	respect	to	P	and	thus	also	with	respect	to	μ.	Hence	we	get	mβ,h	≈	h	h	=	β	−1	−	1	T	−	Tc	for	T	→	∞,	(23.24)	where	the	Curie	temperature	Tc	=	1	is
the	critical	temperature	for	spontaneous	magnetization.	If	the	latter	were	the	case,	a	ramification	into	more	than	two	values	in	one	time	step	would	be	possible.	n!	Corollary	15.33	(Method	of	moments)	Let	X	be	a	real	random	variable	with	α	:=	lim	sup	n→∞	1	)	n	*1/n	E	|X|	<	∞.	Assume	that	for	any	finite	J	⊂	I	,	any	choice	of	Aj	∈	Aj	and	for	all	j	∈	J	,	P	'		(
	)		*	Aj		A	=	P	Aj		A	j	∈J	almost	surely.	Now	choose	a	finite	subcovering	{U1	,	.	Furthermore,	δ(E)	⊂	σ	(E).	However,	τr	is	not	mixing:	Since	r	is	irrational,	there	exists	a	sequence	kn	↑	∞	such	that		τrkn	(0)	∈	1	3	,	4	4		for	n	∈	N.	As	C	separates	points,	for	any	z	∈	E	\	{x},	there	exists	an	Hz	∈	C	with	Hz	(z)	=	Hz	(x)	=	0.	By	Fatou’s	lemma	(Theorem	4.21)
with	0	as	a	minorant,	we	thus	get			|fnk	|	dμ	<	∞.	When	a	particle	dies,	it	has	two	offspring.	Takeaways	Consider	the	conditional	probability	of	some	event	B	given	a	σ	-algebra.	max	i=1,...,N	ε→0	Proof	The	sum	and	maximum	differ	at	most	by	a	factor	N:	max	i=1,...,N	ε	log(aεi	)	≤	ε	log	N		aεi	≤	ε	log(N)	+	max	i=1,...,N	i=1	ε	log(aεi	).	Let	Ω	=	E	[0,∞)	and
A	=	B(E)⊗[0,∞)	.	♣	594	23	Large	Deviations	23.2	Large	Deviations	Principle	The	basic	idea	of	Cramér’s	theorem	is	to	quantify	the	probabilities	of	rare	events	by	an	exponential	rate	and	a	rate	function.	♦	Reflection	Maybe	it	comes	as	a	surprise	that	in	the	definition	of	stochastic	convergence,	the	set	A	of	finite	measure	pops	up.	The	resulting	measure
is	called	Lebesgue	measure	(or	sometimes	Lebesgue–Borel	measure)	λ	on	n		R	,	B(Rn	)	.	12.1	Exchangeable	Families	of	Random	Variables	..	The	relation	(23.24)	is	called	the	Curie–Weiss	law.	The	following	frequencies	for	letters	in	German	texts	are	taken	from	[11,	p.	If	g	=	1A1	×A2	for	some	A1	∈	A1	and	A2	∈	A2	,	then	clearly	Ig	(ω1	)	=	1A1	(ω1
)κ(ω1	,	A2	)	is	measurable.	This	is	a	materialdependent	constant	(chromium	bromide	(CrBr)	37	Kelvin,	nickel	645	K,	iron	1017	K,	cobalt	1404	K).	If	in	(v)	the	sum	ω∈Ω	pω	equals	one,	then	μ	is	a	probability	measure.	Proof	The	p.g.f.	of	the	Poisson	distribution	is	ψ(z)	=	eλ(z−1)	(see	(3.4)).	Theorem	23.13	(Sanov	[150])	Let	X1	,	X2	,	.	Then	Yn	−→	X.	♣
Exercise	1.5.4	Show	that	F	:	R2	→	[0,	1]	is	the	distribution	function	of	a	(uniquely	determined)	probability	measure	μ	on	(R2	,	B(R2	))	if	and	only	if	(i)	F	is	monotone	increasing	and	right	continuous	(ii)	F	((−x1	,	y2	))	+	F	((y1	,	−x2	))	→	0	and	F	(x)	→	1	for	all	y1	,	y2	∈	R	and	for	x	=	(x1	,	x2	)	→	∞,	(iii)	F	((y1	,	y2	))	−	F	((y1	,	x2	))	−	F	((x1	,	y2	))	+	F	((x1	,
x2	))	≥	0	for	all	x1	≤	y1	and	x2	≤	y2	.	n→∞	n	Remark5.13	The	strong	law	of	large	numbers	implies	the	weak	law.	,	Xtnk	)	⇒	(Xt1	,	.	Examples	for	measure	preserving	dynamical	systems	are	stationary	stochastic	processes,	i.i.d.	random	variables,	rotations	and	so	on.	For	a	proof	of	(ii)	⇒	(i)	see,	e.g.,	[155,	Theorem	III.4.3].	♠♠	Corollary	21.12	(Scaling
property	of	Brownian	motion)	If	B	is	a	Brownian	motion	and	if	K	=	0,	then	(K	−1	BK	2	t	)t	≥0	is	also	a	Brownian	motion.	Hence	C0	is	dense	in	Cb	(E;	R).	Now	if	X	is	not	a	martingale,	then	in	some	cases,	we	can	replace	X	by	a	different	process	X	that	is	a	martingale	and	such	that	the	distributions	PX	and	PX	are	equivalent;	that	is,	have	the	same	null
sets.	On	the	other	hand,	n→∞	in	this	case,	there	is	also	some	kind	of	recurrence	property,	namely	Sn	/n	−→	0	almost	surely	by	the	ergodic	theorem.	Hence	ω	=	(ω1	,	ω2	,	.	Hence	Aω˜	1	=	i	−1	(A)	∈	A2	and	fω˜	1	=	f	◦	i	is	measurable	with	respect	to	A2	.	Now	let	X,	Y,	Z	be	independent	real	random	variables	with	characteristic	functions	ϕX	=	ϕY	=	ϕ	and
D	ϕZ	=	ψ.	We	interpret	[ω1	,	.	1	2	Expanding	the	cosine	function	in	a	Taylor	series,	we	get	cos(ti	)	=	1	−	2	ti	+	O(ti4	);	1	hence	1	−	φ(t)	=	2D	t22	+	O(t42	).	PX	=	P−X	if	and	only	if	ϕ	is	real-valued.	Since	(14.6)	and	(14.7)	hold	for	f	−	and	f	+	,	by	Remark	14.17	and	14.18	this	is	true	for	f	also.	t	∈R	√	Under	the	assumption	that	F	=	F˜	holds,	n/2	Dn
converges	in	distribution	to	M.	Similarly,	(14.7)	holds	for	f	=	1A	.	(β	>	1)	where	so-called	spontaneous	magnetization	occurs	(that	is,	magnetization	without	an	exterior	field).	Hence	X−1	(A	)	∈	σ	(X−1	(E		))	for	any	A	∈	σ	(E		)	and	thus	X−1	(σ	(E		))	⊂	σ	(X−1	(E		)).	It	is	the	price	multiplied	by	the	number	of	stocks	in	the	portfolio.	This	follows	from
Corollary	8.22	and	the	fact	that	X−n	=	E[X0		F−n	]	for	any	n	∈	N0	.	Note	that	Z∞	is	the	only	choice	since	σ	2	>	0.	Then	1{x←→p	y}	is	a	random	variable.	However,	it	is	not	too	hard	to	give	an	estimate	that	shows	that	there	a	c	=	cD	such	that	p2n	(0,	0)	≤	c	n−D/2	,	which	implies	G(0,	0)	≤	∞exists	−D/2	c	n=1	n	<	∞	(see,	e.g.,	[53,	page	361]	or	[59,
Example	6.31]).	2.3).	On	the	other	hand,	if	μ	is	a	Lebesgue–Stieltjes	measure,	this	is	μ	=	μF	for	some	F	,	then	#{n	∈	N	:	xn	∈	(−K,	K]}	=	F	(K)	−	F	(−K)	<	∞	for	all	K	>	0;	hence	(xn	)n∈N	does	not	have	a	limit	point.	Let	X1	,	X2	,	.	Now	let	A	⊂	E.	Let	E	be	the	exchangeable	σ	-algebra	and	let	T	be	the	tail	σ	-algebra.	♦	13.3	Prohorov’s	Theorem	291	Recall
that	a	family	F	of	measures	is	called	weakly	relatively	sequentially	compact	if	every	sequence	in	F	has	a	weak	limit	point	(in	the	closure	of	F	).	Similarly,	for	x	∈	E	N	,	denote	x		=	(x(1),	x(2)	,	.	In	the	case	where	Xn+1	−	Xn	takes	three	values,	the	system	has	three	equations	and	is	thus	overdetermined.	Define	A2L,0	in	a	similarly	way	to	A2L	;	however,
we	now	consider	all	edges	e	∈	EL	p	p	as	closed,	irrespective	of	whether	Xe	=	1	or	Xe	=	0.	Then	the	family	(Pξn	(X)	)n∈N	of	distributions	of	empirical	measures	satisfies	an	LDP	with	rate	n	and	rate	function	Iμ	:=	H	(	·|μ).	19.3	Electrical	network	on	Z2	.	,	Xn	=	kn	]		μ({x})nν({x})	=	#An	(ν)	x∈Σ				=	#An	(ν)	exp	n	ν(dx)	log	μ({x})		=	#An	(ν)	exp	−	n[H	(ν)
+	H	(ν	|μ)]	.	1	Furthermore,	by	Theorem	12.10	(with	k	=	n	and	ϕ(X1	,	.	Let	τ	n	=	inf{t	≥	0	:	Xt	=	n}	=	Sn	for	n	∈	N.	46	1	Basic	Measure	Theory	Theorem	1.104	For	any	distribution	function	F	,	there	exists	a	real	random	variable	X	with	FX	=	F	.	If	c0	,	.	Then	X	and	Y	are	indistinguishable.	Some	results	may	be	free,	while	others	may	require	a	fee	to
unlock	the	information.Reverse	Address	LookupA	reverse	address	lookup	is	another	type	of	search	you	can	do	if	you	only	have	part	of	the	information	about	the	number	you	need	to	find.	n→∞	n→∞	Thus	q	∈	F	.	Let	TN	→	∞	with	E[XTN	]	≥	E[X0	]	for	all	N	∈	N.	n→∞	(13.7)	If	F,	F1	,	F2	,	.	For	s	≥	0,	define	the	Mellin	transform	of	PX	by	mX	(s)	=	E[Xs	]
(with	values	in	[0,	∞]).	,	n},	define		−k	it	x	Yk	(t,	h,	x)	=	k!	h	e	e	ihx	−	k−1		(ihx)l	l=0	l!		.	,	FN	∈	Fn	and	thus	F	:=	F1	∪	.	F	:(x,	y)	>	0	(otherwise	y	would	not	be	visited).	Hence,	ν({x})	=	⎧	⎪	⎪	⎨	⎪	⎪	⎩	1	2,	8	,	π	2x2	0,	if	x	=	0,	if	x	2	∈	Z	is	odd,	else.	Recall	that,	by	Ohm’s	rule,	the	resistance	of	a	wire	is	the	quotient	of	the	potential	difference	and	the
current	flow.	,	N	−	1,	be	the	Nth	roots	of	unity	and	let	the	corresponding	(right)	eigenvectors	be		x	k	:=	θk0	,	θk1	,	.	♣	2.3	Kolmogorov’s	0–1	Law	With	the	Borel–Cantelli	lemma,	we	have	seen	a	first	0–1	law	for	independent	events.	20.6	Entropy	511	Then	the	entropy	of	Pn	is	(using	stationarity	of	π	in	the	third	line)	H	(Pn	)	=	−		p(0,	x)	log(p(0,	x))	x0
,...,xn−1	∈E	=−		p(0,	x)	log(π({x0	}))	+	x0	,...,xn−1	∈E	=	H	(π)	−	n−2		n−2		.	By	the	monotone	convergence	theorem	(applied	to	the	measure	(1−g)(μ+ν);	that	is,	the	measure	with	density	(1−g)	with	respect	to	μ	+	ν),	we	obtain	that	(7.8)	holds	for	all	measurable	f	≥	0.	Example	8.8	In	the	production	of	certain	electronic	devices,	a	fraction	of	2%	of	the
production	is	defective.	(ii).	,	Mn,m	=	km	=	n!	km	pk1	·	·	·	pm	.	By	Taylor’s	formula,	for	every	t	∈	(−ε,	ε),			n−1			|t|2n−1	t	2k			(2k)	u	(0)		≤	u(t)	−		(2k)!		(2n	−	1)!	k=0					sup	u(2n−1)	(θ	t)	.	As	15.4	Characteristic	Functions	and	Moments	351	E[|X|k	]	<	∞	by	assumption,	the	dominated	convergence	theorem	implies	h→0	E[Yk	(t,	h,	X)]	−→	E[(iX)k	eit	X	]	=
ϕ	(k)	(t).	Together	with	(23.19),	this	implies	(23.17).	=	exp	−	λ	+	1/t	However,	the	function	ψtx	is	the	Laplace	transform	of	the	compound	Poisson	distribution	CPoi(x/t	)	exp1/t	(see	Definition	16.3).	(ii)	Show	that	P[{Θ	∈	·	}|Φ	=	φ]	=	U[0,π)	for	almost	all	φ.	2	2	2	2	As	W	is	linear,	we	have	(wm	+	wn	)/2	∈	W	;	hence		12	(wm	+	wn	)	−	x	≥	c.	8.3	Regular
Conditional	Distribution	209	A	separable	topological	space	whose	topology	is	induced	by	a	complete	metric	is	called	a	Polish	space.	,	xk	)	=	(x1	,	x1	+	x2	,	.	A	similar	argument	for	the	right-hand	side	yields	continuity	of	ϕ	at	x.	(i)	The	family	(fZ	:	Z	∈	Z)	is	uniformly	integrable	in	L1	(μ)	and	ν(Ω)	for	any	Z	∈	Z.	♣	Exercise	20.3.2	Let	p	=	2,	3,	5,	6,	7,	10,	.
Exercise	8.2.1	Show	the	assertions	of	Remark	8.16.	F	(x)	=	inf	F		is	monotone	increasing,	F	is	right	continuous	and	monotone	increasing.	Theorem	5.23	(Glivenko–Cantelli)	Let	X1	,	X2	,	.	(i)	μ	=	w-lim	μn	.	n→∞	Then	gn	−→	0	in	measure,	and	(gn	)n∈N	is	uniformly	integrable	since	gn	≤	n→∞	p	2p	(|fn	|p	+	|f	|p	).	For	Z	∈	Z,	define	a	function	fZ	:	Ω	→	R	by
fZ	(ω)	=		C∈Z:	μ(C)>0	ν(C)	1C	(ω).	Lemma	11.18	W	is	a	martingale.	In	fact,	if	for	0	∈	J	⊂	I	finite,	we	define	PJ	as	the	projection	of	PJ	∪{0}	to	E	J	,	then	the	family	(PJ	:	J	⊂	I	finite)	is	projective.	This	is	precisely	what	memory	is	and	is	thus	in	contrast	with	the	Markov	property	of	X.	That	is,		p(e1	,e2	)	=	pe11	and	e2	∈E	2		p(f	1	,f	2	)	=	pf2	2	for	all	e1	∈	E	1
,	f	2	∈	E	2	.	20.5	Mixing	..	Hence	∞	X	=	X	+	n	n	n=1	n=N	Yn	n=1	converges	a.s.		“	⇒	”	Assume	that	∞	n=1	Xn	converges	a.s.	Clearly,	this	implies	(i)	(otherwise,	by	the	Borel–Cantelli	lemma,	|Xn	|	>	K	infinitely	often,	contradicting	the	assumption).	(ii)	For	transient	X,	there	can	be	more	than	one	invariant	measure.	Choose	three	pairwise	distinct	points	x
1	,	x	2	,	x	3	∈	BL	\	BL−1	with	Pp	[Fx	1	,x	2	,x	3	]	>	0.	Now	assume	that	Q	is	absolutely	continuous	with	respect	to	P	.	Let	x,	y	∈	E,	and	let	(X,	Y	)	be	a	successful	coupling.	with	Tn	∼	expn	.	For	every	n	∈	N,	let	an	be	the	leading	digit	of	the	p-adic	expansion	of	q	n	.	Exercise	1.2.1	Let		A	=	{(a,	b]	∩	Q	:	a,	b	∈	R,	a	≤	b}.	Clearly,	E[T∞	]	=	n=0	1/wn	<	∞;	r	<
∞]	=	1.	♣	Exercise	15.2.3	Let	X	be	a	real	random	variable	with	characteristic	function	ϕ.	n→∞	x∈E	N	Now	let	f1	,	.	As	μ	is	regular	(Theorem	13.6),	there	is	a	compact	set	L	⊂	E	with	μ(E	\	L)	<	ε.	μ-almost	280	13	Convergence	of	Measures	(ii)	For	any	ε	>	0,	there	is	a	compact	set	Kε	with	μ(Ω	\	Kε	)	<	ε	such	that	the		restricted	function	f		is	continuous.
(14.4)	J	⊂I	countable	Hint:	Show	that	the	right-hand	side	is	a	σ	-algebra.	2	=	δ/R2	=	27	and	R	R	5	125	Step	8.	Then	the	following	statements	are	equivalent.	For	irreducible	chains,	all	states	have	the	same	period.	Proof	First	assume	that	(Nt	,	t	≥	0)	is	a	Poisson	process	with	intensity	α	≥	0.	Hence,	it	is	enough	to	show	(14.8)	for	sets	of	this	type.	(21.42)
Proof	The	exact	formulas	for	the	first	six	moments	are	obtained	by	tenaciously	computing	the	right-hand	side	of	(21.40).	Later,	with	a	lot	of	additional	effort,	we	will	achieve	a	sharp	bound	in	Theorem	22.11.	We	come	back	to	Polish	spaces	in	the	context	of	convergence	of	measures	in	Chap.	,	σi2n	(see	Example	1.105(ix)).	Hence	also	β(A1	∪	A2	)	=	sup
α(C)	:	C	∈	C	with	C	⊂	A1	∪	A2	≤	β(A1	)	+	β(A2	).	Thus	also	X	=	infn∈N	Xn	is	A	–	B(R)-measurable	and	is	hence	a	random	variable.	In	particular,	if	f	=	g3	almost	then	f	dμ	=	g	dμ.	♣	18.4	Speed	of	Convergence	459	√	Exercise	18.4.3	Let	ν(dx)	=	π2	1	−	x	2	1[−1,1]	(x)	dx.	In	fact,	in	this	case,	the	reflection	principle	can	be	derived	also	in	an	elementary
way	via	a	bijection	that	changes	the	signs	of	those	Yi	with	i	>	τ	.	√	In	the	following,	let	i	=	−1	be	the	imaginary	unit.	♦	#{1,	2,	3}	3	Motivated	by	this	example,	we	make	the	following	definition.	.))	=	ωn	be	the	projection	of	Ω	to	the	nth	coordinate.	,	Xk	)	=	E		(	F	dνn,k	(X)	.	Then	there	exists	a	random	variable	Y	:	Ω	→	[0,	1]	such	that,	for	all	finite	J	⊂	N,	
*	)	P	Xj	=	1	for	all	j	∈	J		Y	=	Y	#J	.	(We	have	done	this	already	for	d	=	1,	see	Exercise	13.3.4	for	d	≥	2.)	In	a	second	step,	the	statement	is	lifted	to	sequence	spaces	RN	.	We	infer	that	X	is	recurrent	if	and	only	if	3	−2	t	2	τy1	.	(ii)	The	series	defining	ha,b	converges	in	L2	([0,	1],	λ).	(ii)	Infer	the	optional	sampling	theorem	for	right	continuous
supermartingales	by	using	the	analogous	statement	for	discrete	time	(Theorem	10.11);	that	is,	Xσ	≥	E[Xτ	|Fσ	].	Define	have	E	U	the	F∞	-measurable	events	1			0			a,b	C	=	lim	inf	Xn	<	a	∩	lim	sup	Xn	>	b	⊂	U	a,b	=	∞	n→∞	n→∞	and	C=		C	a,b	.	We	have	to	show	that	PJ	◦	(XL	L	l	for	some	l	=	1,	.	E	fn	(tX)	X2n	≤	|t|	θ∈(0,1]	θ	|t|	θ∈(0,1]	Now	Fatou’s	lemma
implies	)	)	*	)	*	*	E	X2n	=	E	fn	(0)X2n	≤	lim	inf	E	fn	(tX)X2n	t	→0			≤	lim	inf	gn	(t)	=	2n	u(2n)	(0)	<	∞.	On	the	n	space	(Ω,	A,	P)	:=	×i=1	Ωi	,	ni=1	Ai	,	ni=1	Pi	,	the	coordinate	maps	Xi	:	Ω	→	Ωi	are	independent	with	distribution	PXi	=	Pi	.	(iii)	(Positive	definiteness)	)x,	x*	>	0	for	all	x	∈	V	\	{0}.	π(x−i	)	π(y−i	)	Thus	the	Gibbs	sampler	is	a	reversible	Markov
chain	with	invariant	measure	π.	Corollary	7.22	(L2	(μ),	)	·	,	·	*)	is	a	real	Hilbert	space.		Next	we	show	that	Y	has	a	continuous	version.	n→∞	Proof	Essentially	this	is	a	simple	conclusion	of	the	Borel–Cantelli	lemma.	Check	that	f	is	Hölderγ	-continuous	for	any	γ	∈	(0,	1].	Then	F	◦	X	=	1A	.	Then	X	=	(Xn	)n∈N0	is	a	square	integrable	martingale	with	respect
to	F	=	σ	(X)	(why?)	and			*	)	*	)	2		2	.	The	vector	p	=	(pω	)ω∈Ω	is	called	a	probability	vector.	The	validity	of	(2.2)	follows	as	in	Example	2.1(i).	In	many	cases	of	interest,	these	quotients	are	easy	to	compute	even	though	π(x)	and	π(y)	are	not.	Clearly,	0	∈	G;	hence	G	=	∅.	lim	sup	sup	Fn	(x)	−	F	(x)	≤	N	N	n→∞	x∈R	n→∞	Letting	N	→	∞,	the	claim	follows.	A
stable	distribution	is	characterised	by	its	index	α	and	a	skewness	parameter	(and,	of	course,	a	scale	parameter);	see	Remark	16.23.	17.1	Definitions	and	Construction	..	Then	either	P	=	Q	or	3	P	⊥	Q.	,	Zn	that	are	uniformly	distributed	on	[0,	1]	(see,	e.g.,	Corollary	2.23	for	the	construction).	Reflection	Give	an	example	of	a	current	that	is	not	an
electrical	current.	Rather,	F	β	is	asymmetric	and	has	a	global	minimum	mβ,h	with	the	same	sign	as	h.	νa	has	a	density	with	respect	to	μ,	and	dνa	is	A-measurable	and	finite	μ-a.e.	dμ	Corollary	7.34	(Radon–Nikodym	theorem)	Let	μ	and	ν	be	σ	-finite	measures	on	(Ω,	A).	By	the	Ionescu–Tulcea	theorem	(Theorem	14.35),	the	projective	limit		P	:=	{−n,
−n+1,...}	exists.	On	this	tree,	random	walk	is	transient.	Furthermore,	by	the	n→∞	n	y	0,	we	have	Similarly,	lim	inf	lim	1	1	log	Pn	([−x,	∞))	n	1	1	=	lim	log	Pn	((−∞,	x))	=	lim	log	Pn	((−∞,	x]))	=	0	=	−I	(0).	In	this	section,	we	derive	two	simple	criteria	that	prepare	us	for	important	applications	such	as	the	law	of	large	numbers	(Chap.	♠	Theorem	6.28
(Differentiation	lemma)	Let	I	⊂	R	be	a	nontrivial	open	interval	and	let	f	:	Ω	×	I	→	R	be	a	map	with	the	following	properties.	By	Vd	denote	the	set	of	monotone	increasing,	bounded	right	continuous	functions	on	Rd	.	Again,	by	Theorem	6.19,	it	is	enough	to	show	that	E[f	(Yn	)]	≤	C	for	every	n	∈	N.	In	a	second	step,	this	random	variable	will	be	
transformed	by	applying	the	inverse	map	F	−1	:	Let	Ω	:=	(0,	1),	A	:=	B(R)	Ω	and	let	P	be	the	Lebesgue	measure	on	(Ω,	A)	(see	Example	1.74).	By	Exercise	5.3.4,	the	entropy	is	subadditive:	hm+n	≤	hm	+	hn	for	m,	n	∈	N.	♣	Exercise	17.7.3	Let	n	∈	N,	p	∈	(0,	1)	and	λ	>	0.	,	Xsn	=	in			)	*	)	*	=	E	E[1{Xt	=i}		Fsn	]	1A	=	E	E[1{Xt	=i}		Xsn	]	1A			)	*	)	*	=	E
P[Xt	=	i		Xsn	=	in	]	1A	=	P	Xt	=	i		Xsn	=	in	P[A].	Show	that	νt	=	lims→t	νs	for	all	t	>	0.	Proof	The	proof	is	based	on	a	Taylor	expansion	of	the	logarithm,	|	log(z)	−	(z	−	1)|	≤	|z	−	1|2	for	z	∈	C	with	|z	−	1|	0	with	|ϕ(t)|	>	12	for	all	t	∈	[−ε,	ε].	Then,	by	the	monotone	convergence	theorem,			μ1	(dω1	)	·	·	·	μ(A)	˜	=		≤	μn	(dωn	)	1A	((ω1	,	.	Denote	by	hn	the
entropy	of	Pn	.	That	is,	there	exists	a	square	integrable	martingale	X	that	converges	almost	surely	but	without	lim	)X*n	<	∞	almost	surely.	Thus	gε	=	max{|f1	|,	.	Come	up	with	an	example	that	shows	that	this	condition	cannot	simply	be	dropped.	n∈N	Let	g	∈	E+	with	g	≤	f	.	18.3	Markov	Chain	Monte	Carlo	Method	447	•	Each	atom	i	∈	Λ	has	a	magnetic
spin	x(i)	∈	{−1,	1}	that	either	points	upwards	(x(i)	=	+1)	or	downwards	(x(i)	=	−1).	That	is,	we	have	p(hg,	hf	)	=	p(g,	f	)	for	all	h,	g,	f	∈	G.	Now	let	U	be	an	open	set	that	contains	f	,	but	with	fn	∈	U	for	infinitely	many	n	∈	N.	+	Zn	for	n	∈	N	and	Xn	:=	Xˆ	Sn	+	Xˇ	n−Sn	.	In	Step	2,	we	have	shown	already	that	N	does	not	assume	a	finite	value	larger	than	1.
Takeaways	Let	E	be	countable	and	let	p	be	a	stochastic	matrix	on	E.	Hence	(18.2)	holds	with	ImJ	ImJ	and	Lx,y	:=	m	−	d	.	Hence,	let	p	∈	[1,	∞).	Further,	show	that	)	*	PY	=	lim	P	W	∈	·	|W1	∈	(−ε,	ε)	.	In	addition,	define	hx	:=	f	.	If	n	∈	N	is	not	a	multiple	of	d,	then	pn	(x,	x)	=	0.	The	n-step	transition	probabilities	p(n)	(x,	y)	:=	Px	[Xn	=	y]	can	be	computed
as	the	n-fold	matrix	product	p(n)	(x,	y)	=	pn	(x,	y),	where	pn	(x,	y)	=		z∈E	and	where	p0	=	I	is	the	unit	matrix.	Clearly,	ν(∅)	=	0.	(iv)	The	second	equality	follows	from	(iii)	with	Y	=	E[X	|G]	and	X	=	1.	This	is	indeed	true	since	for	t	>	s,	the	random	variables	Xs	and	Xt	−	Xs	are	independent;	hence	Cov[Xs	,	Xt	]	=	Cov[Xs	,	Xt	−	Xs	]	+	Cov[Xs	,	Xs	]	=	Var[Xs
]	=	s.	Here	the	problem	that	arises	when	(E[X1	],	.	Then	there	exists	a	unique	σ	-finite	measure	μ⊗κ	on	(Ω1	×Ω2	,	A1	⊗A2	)	with		μ	⊗	κ(A1	×	A2	)	=	κ(ω1	,	A2	)	μ(dω1	)	for	all	A1	∈	A1	,	A2	∈	A2	.	♦	ω∈Ω	Definition	4.12	(Lebesgue	integral)	Let	λ	be	the	Lebesgue	measure	on	Rn	and	let	f	:	Rn	→	R	be	measurable	with	respect	to	B	∗	(Rn	)	–	B(R)	(here	B	∗
(Rn	)	is	the	Lebesgue	σ	-algebra;	see	Example	1.71)	and	λ-integrable.	Then	(Xn	)n∈N	is	i.i.d.	BerZ	n→∞	distributed	given	Z.	The	fundamental	question	is:	For	which	values	of	p	is	there	a	connected	infinite	system	of	tubes	along	which	water	can	flow?	In	most	cases,	only	the	distribution	of	a	random	variable	is	of	interest	but	not	the	underlying
probability	space.	Let	Sk	:=	X1	+	.	♣	6.2	Uniform	Integrability	153	Exercise	6.1.4	Let	(Xi	)i∈N	be	independent,	square	integrable	random	variables	with	E[Xi	]	=	0	for	all	i	∈	N.	In	the	second	section,	we	investigate	briefly	which	subclass	of	the	infinitely	divisible	measures	on	R	shares	this	property.	524	21	Brownian	Motion	Recall	that	a	stochastic
process	(Xt	)t	∈I	is	called	a	Gaussian	process	if,	for	every	n	∈	N	and	for	all	t1	,	.	If	x	∈	∂f	−1	(D),	then	there	are	y	∈	f	−1	(D)	∩	Bε(δ)	(x)	and	z	∈	f	−1	(D	c	)	∩	Bε(δ)	(x).	13.2	Weak	and	Vague	Convergence	287	Corollary	13.24	Let	X,	X1	,	X2	,	.	1.1	Classes	of	Sets	3		Remark	1.5	Sometimes	the	disjoint	union	of	sets	is	denoted	by	the	symbol	.	a2	t	2	a2	t	2
Here	we	used	the	fact	that	by	the	addition	theorem	for	trigonometric	functions	1	−	cos(x)	=	sin(x/2)2	+	cos(x/2)2	−	cos(x)	=	2	sin(x/2)2.	Now	assume	that	X	is	a	fair	game	(that	is,	a	martingale)	and		H	is	locally	bounded	(that	is,	each	Hn	is	bounded).	Lemma	15.23	Let	(E,	d)	be	a	metric	space	and	let	f,	f1	,	f2	,	.	Which	part	of	the	theorem	would	still
hold?	Mayer,	Mario	Oeler,	Marcus	Schölpen,	my	colleagues	Ehrhard	Behrends,	Wolfgang	Bühler,	Nina	Gantert,	Rudolf	Grübel,	Wolfgang	König,	Peter	Mörters,	and	Ralph	Neininger,	and	in	particular	my	colleague	from	Munich	Hans-Otto	Georgii.	Then	gx	is	monotone	increasing	and	there	exist	the	left-sided	and	right-sided	derivatives	D	−	ϕ(x)	:=	lim
gx	(y)	=	sup{gx	(y)	:	y	<	x}	y↑x	and	D	+	ϕ(x)	:=	lim	gx	(y)	=	inf{gx	(y)	:	y	>	x}.	Reflection	Where	in	the	previous	proof	did	we	exploit	the	∩-stability?	In	fact,	weak	convergence	can	be	characterized	by	this	property.	−1	−1	:	(Ω,	A)	→	In	particular,		{t	:	F	(t)	≤	x}	=	(0,	F	(x)]	∩	(0,	1);	hence	F	R,	B(R)	is	measurable	and	P[{t	:	F	−1	(t)	≤	x}]	=	F	(x).	Since	f
∈	G,	we	have	νs	(A)	=	ν(A)	−	A	f	dμ	≥	0	for	all	A	∈	A,	and	thus	also	νs	is	a	finite	measure.	The	statement	still	holds	if	Rd	is	replaced	by	a	locally	compact	Abelian	group.	We	say	that	μ	is	(i)	monotone	if	μ(A)	≤	μ(B)	for	any	two	sets	A,	B	∈	A	with	A	⊂	B,	12	1	Basic	Measure	Theory		(ii)	additive	if	μ	n			Ai	i=1	=	n		μ(Ai	)	for	any	choice	of	finitely	many
mutually	i=1	n		Ai	∈	A,	disjoint	sets	A1	,	.	For	example,	consider	d	=	2	and	μ1	=	1	1	δ(0,0)	+	δ(1,1)	2	2	and	μ2	=	1	1	δ(1,0)	+	δ(0,1).	The	situation	is	similar	to	that	of	Wright’s	model;	however,	now	in	each	time	step,	only	(exactly)	one	individual	gets	replaced	by	a	new	one,	whose	type	is	chosen	at	random	from	the	whole	population.	Furthermore,	the
integral	is	a	cornerstone	in	a	systematic	theory	of	probability	that	allows	for	the	definition	and	investigation	of	expected	values	and	higher	moments	of	random	variables.	Dividing	both	sides	by	p−1	f	+	gp	yields	(7.2).	Hint:	Do	not	try	a	direct	computation!	♣	Exercise	15.5.3	Let	X1	,	X2	,	.	♠♠	At	this	point,	we	still	have	to	show	that	there	are	Poisson
processes	at	all.	If	X	is	a	discrete	Markov	chain,	then	(Px	)x∈E	is	determined	by	the	transition	matrix	p	=	(p(x,	y))x,y∈E	:=	(Px	[X1	=	y])x,y∈E	.	7.6	Supplement:	Dual	Spaces.	Joining	parallel	edges.	Hence	n→∞	2n	P[N2−n	≥	2]	≥	λ	−	2−n	λ2	−→	λ.	Hence	(3.9)	holds.	Further,	let	A=	n	Ak	=	max{Sk	:	k	=	1,	.	Then	the	family	(Xt	)t	∈I	is	called	the
canonical	process	on	(Ω,	A).	In	this	case,	the	family	(Xi	)i∈I	is	independent	if	and	only	if,	for	any	finite	J	⊂	I	fJ	(x)	=		fj	(xj	)	for	all	x	∈	RJ	.	If	now	A	∩	E	=	∅	and	μ(A)	=	0,	then	1A	dμ	=	0.	♦	n=1	n=1	Example	2.9	We	roll	a	die	only	once	and	define	An	for	any	n	∈	N	as	the	event	where	in	this	one	roll	the	face	showed	a	six.	Lemma	21.44	For	the	branching
process	with	critical	geometric	offspring	distribution,	the	nth	iterate	of	the	probability	generating	function	is	ψ	(n)	(s)	=	n	−	(n	−	1)s	.	Indeed,	this	follows	by	elementary	combinatorics	since	for	any	choice	x1	,	.	Now	let	x−	<	0	<	x+	.	By	Theorem	13.11(ii),	Cc	(R3d	)	is	a	separating	class	for	Mf	(Rd	).	Note	that	Xn	depends	only	on	X1	,	.	Define	X	:=	2	−2
log(U	)	cos(2πV	)	and	Y	:=	2	−2	log(U	)	sin(2πV	).	Letting	α	:=	α(1),	we	obtain	E[NI	]	=	α	(I	).	Otherwise	it	is	called	transient.	♦	Example	10.8	Let	(Xn	)n∈N0	be	the	one-dimensional	symmetric	simple	random	walk	Xn	=	n		Ri	for	all	n	∈	N0	,	i=1	where	R1	,	R2	,	R3	,	.	17.1.	There	is	a	vast	literature	on	Markov	chains.	dνa	dμ	.	Hence	{Nt	=	k}	=	{Tk	≤	t	<
Tk+1	}.	Hint:	Kolmogorov’s	three-series	theorem	(Theorem	15.51).	We	use	this	idea	to	give	a	different	proof	for	the	fact	that	simple	random	walk	on	Zd	is	recurrent	if	and	only	if	d	≤	2.	Then	Corollary	7.8	holds	with	I	replaced	by	G.	(ii)	(Symmetry)	)x,	y*	=	)y,	x*	for	all	x,	y	∈	V	.	This	completes	the	proof	of	Prohorov’s	theorem.	Proof	The	strategy	of	the
proof	consists	in	constructing	a	measurable	version	of	the	distribution	function	of	the	conditional	distribution	of	Y	by	first	defining	it	for	rational	values	(up	to	a	null	set)	and	then	extending	it	to	the	real	numbers.	−	<	∞	or	R	+	<	∞,	then	(agreeing	on	Theorem	19.33	(i)	If	Rw	w	*	)	n→∞	P0	Xn	−→	−∞	=	+	Rw	−	+	Rw	+	Rw	and	*	)	n→∞	P0	Xn	−→	+∞	=	∞
∞	=	1)	−	Rw	−	+.	Proof	(i)	and	(ii)	are	trivial.	Then	Xτ	is	measurable	with	respect	to	Fτ	.	,	in	),	the	vector	Y	=	(Xi1	,	.	430	17	Markov	Chains	There	are	many	concepts	to	order	probability	measures	on	R	or	Rd	such	that	the	“larger”	one	has	a	greater	preference	for	large	values	than	the	“smaller”	one.	Proof	(We	follow	the	proof	in	[59,	Theorem	3.34])
We	must	show	that	for	any	n	∈	N	and	any	sequence	0	=	t0	<	t1	<	.	(ii)	⇒	(i)	This	is	trivial.	By	the	triangle	inequality	(Theorem	8.14(v))	and	the	monotone	convergence	theorem	(Theorem	4.20),	we	conclude			)	*	)	*	*	)	E	E[X	|F	]2	≤	E	E[|X|		F	]2	=	lim	E	E[|X|	∧	N		F	]2	≤	4E[X2	]	<	∞.	(i)	{ω(0),	ω	∈	A}	⊂	R	is	bounded.	Measure	theory	and	integration	are
necessary	prerequisites	for	a	systematic	probability	theory.	The	latter	property	can	be	achieved	if	the	marginals	are	stochastically	ordered.	♦	Reflection	Consider	the	function	f	(x)	=	1/x,	x	∈	[−1,	1]	\	{0},	f	(0)	=	0.	n∈N	Hence	3	n∈N	f	dμ	=	γ	≤	ν(Ω).	Show	that	A	=	A	⊂	Ω	:	A	is	countable	or	Ac	is	countable	.	By	the	central	limit	theorem,	for	σ	n	)	n	*
n→∞	t	>	s	≥	0,	we	have	L		St	−		Ssn	−→	N0,t	−s	.	By	the	reflection	principle,	*	)	P[ζ	≤	t]	=	P	Bs	=	0	for	all	s	∈	[t,	1]		∞		)	*	P	Bs	=	0	for	all	s	∈	[t,	1]		Bt	=	a	P[Bt	∈	da]	=		−∞	∞		−∞	∞	=	=	−∞	)	*	s	>	0	for	all	s	∈	[0,	1	−	t]	P[Bt	∈	da]	P|a|	B	)	*	1−t	|	≤	|a|	P[Bt	∈	da]	P0	|B	)	*	1−t	|	≤	|Bt	|	.	Then	Xn	−→	0	in	probability	but	the	Borel–Cantelli	lemma	implies	lim
supn→∞	Xn	=	1	almost	surely.	For	p	>	12	,	there	exists	a	unique	infinite	connected	component	of	open	edges	(Theorem	2.47).	A	particular	case	is	that	of	a	graph	(E,	K)	where	all	edges	have	the	same	conductance,	say	1;	that	is,	C(x,	y)	=	1{)x,y*∈K}	.	Show	that	X	is	exponentially	distributed	if	and	only	if	P[X	>	t	+	s	|X	>	s]	=	P[X	>	t]	for	all	s,	t	≥	0.	We
may	assume	that	L	=	J	\	{j	}	finite.	k→∞	It	remains	to	show	that	there	exists	a	measure	μ	on	(E,	E)	that	satisfies	(13.12).	Assume	A	=	{x0	,	x1	}	where	x0	=	x1	,	and	u(x0	)	=	0,	u(x1	)	=	1.	.}	↓	∅	but	μ(An	)	=	∞	for	all	n	∈	N.	,	Xn,n	such	that	X	=	Xn,1	+	.	Clearly,	#Π0,m	≤	2d	·	(2d	−	1)m−1	since	there	are	2d	choices	for	the	first	step	and	at	most	2d	−	1
choices	for	any	further	step.	We	say	that	X	jumps	with	rate	q(x,	y)	from	x	to	y	if	the	following	limit	exists:	q(x,	y)	:=	lim	t	↓0	1	Px	[Xt	=	y].	If	A	∈	E,	then	279	3	f	dμ1	=	μi	(A)	=	sup	μi	(K)	:	K	⊂	A	is	compact	since	the	Radon	measure	μi	is	inner	regular	(i	=	1,	2).	,	Xn	)	given	ΞN	?	This	is	the	cornerstone	for	the	proof	of	de	Finetti’s	theorem.	Formally,	we
define	Bj	=	Aj	and	B˜	j	=	A˜	j	for	j	∈	J	and	Bj	=	Ω	and	B˜	j	=	E	for	j	∈	{1,	.	be	random	variables	with	values	in	E.	Definition	9.24	Let	(Ω,	F	,	P)	be	a	probability	space,	I	⊂	R,	and	let	F	be	a	filtration.	19.1).	,	Xn	)	is	almost	surely	in	one	of	those	flat	pieces.	For	any	C	∈	Zm	,	either	C	∩	B	=	∅	or	C	⊂	B.	19.5	Scheme	of	the	first	three	steps	(two	stages)	of	the
graph	from	Example	19.31.	Lemma	1.51	An	outer	measure	μ∗	is	σ	-additive	on	M(μ∗	).	In	Exercise	2.1.2	it	was	shown	that	the	conclusion	of	the	Borel-Cantelli	lemma	still	holds	under	this	weaker	assumption.	It	remains	to	show	νs	⊥	μ.	,	Xk	=	xk	]	=	gk	(xk+1	)	N	−k	for	k	=	1,	.	The	answer	is	given	by	the	source	coding	theorem	for	which	we	prepare
with	a	definition	and	a	lemma.	Proof	“(ii)	⇒	(i)”	Assume	that	(i)	does	not	hold.	Hence	(H	·Y	)n	≥	(b	−	a)Una,b	for	all	n	∈	N.	12.2.	For	further	reading	on	exchangeable	random	variables,	we	refer	to	[4,	33,	98,	105].	For	K	>	0,	define	YiK	:=	Yi	1{|Yi	|≤K/2}	−	E[Yi	1{|Yi	|≤K/2}	]	ZiK	:=	Yi	−	YiK	and	for	i	∈	N.	(ii)	“	⇒	”	Assume	that	(Ω,	A,	P,	τ	)	is	ergodic.
ε↓0	For	any	n	∈	N	and	ε	>	0,	we	have	P[N2−n	≥	2]	≥	2−n	/ε!	P[Nε	≥	2]	−	2−n	/ε!2	P[Nε	≥	2]2.	Here,	V	is	the	size	of	the	largest	Jordan	block	square	matrix	for	the	eigenvalue	λ2	in	the	454	18	Convergence	of	Markov	Chains	Jordan	canonical	form	of	p.	That	is,	there	exist	x∗	,	x	∗	∈	R	such	that	P[X∗	=	x∗	]	=	1	and	P[X∗	=	x	∗	]	=	1.	∈	A	be	mutually	∞	n	
	disjoint,	and	assume	that	B	=	Bn	∈	A.	,	bk	)}	=		B1	+	.	In	addition,	we	have	more	freedom	if,	as	in	the	last	proof,	we	want	to	express	X	as	a	sum	of	independent	random	variables	Xk	.	By	(23.14),	we	have	H	(x|λ)	=	log(#Σ)	−	H	(x),	where	H	(x)	is	the	entropy	of	x.	First	assume	that	sn!	=	k.	We	thus	obtain	the	following	theorem.	Now	let	Y1	,	Y2	,	.	We
first	show	that	Pp	[N	=	m]	=	1	for	some	m	=	0,	1,	.	The	n-dimensional	volume	of	such	a	rectangle	is	μ((a,	b])	=	n		(bi	−	ai	).	Show	the	following.	Then	E[X	|F	]	is	the	orthogonal	projection	of	X	on	L2	(Ω,	F	,	P).	Denote	by	Dn	:	Ω	→	{−1,	1},	ω	→	ωn	the	result	of	the	nth	game	(for	n	∈	N).	Thus	α(C)	≤	α(C1	∪	C2	)	≤	α(C1	)	+	α(C2	)	≤	β(A1	)	+	β(A2	).	+	Yn	.
Indeed,	for	n	∈	N,	let	Xn	((ω1	,	ω2	,	.	n→∞	Proof	This	is	obvious	since	Ceff	(x1	↔	∞)	=	C(x1	)	inf	pF	(x1	,	A0	)	:	|E	\	A0	|	<	∞,	A0		x1	and	since	pF	(x1	,	A0	)	is	monotone	decreasing	in	A0	.	It	is	assumed	that	the	population	has	a	constant	size	of	N	∈	N	individuals	and	the	generations	change	at	discrete	times	and	do	not	overlap.	In	order	to	compute	the
mean	values	and	to	identify	the	states	that	yield	significant	contributions,	we	have	established	a	so-called	tilted	large	deviations	principle.	If	all	moments	exist	and	do	not	grow	too	quickly,	then	the	moments	determine	the	distribution.	•	Neighboring	atoms	interact.	It	follows	that	A	=	x∈A∩Qn	Br(x)	(x)	is	a	countable	union	of	sets	from	E4	and	is	hence
in	σ	(E4	).	,	Sn	}	−	Mn	◦	τ.	For	example,	characteristic	functions	work	well	with	sums	of	independent	random	variables.	2.2	Independent	Random	Variables	.	Theorem	6.25	Let	{fn	:	n	∈	N}	⊂	L1	(μ).	Thus	we	get	inductively	E	k			.	♦	We	formulate	the	method	used	in	the	foregoing	examples	as	a	theorem.	17.2	Discrete	Markov	Chains:	Examples..	Thus,
by	Corollary	1.82,	the	map	i	is	measurable	with	308	14	Probability	Measures	on	Product	Spaces	respect	to	A2	–	(A1	⊗	A2	).	Definition	24.8	We	say	that	a	random	measure	X	on	E	has	independent	increments	if,	for	any	choice	of	finitely	many	pairwise	disjoint	measurable	sets	A1	,	.	,	fn	∈	Cc+	(E)	(24.1)	or		(IA1	,	.	Hence,	for	N	≥	2c	(k	+	1)γ	,	we	have	w
∈	AN,n,i	,	where	AN,n,i	:=	k−1					w	:	w(i+l+1)/n	−	w(i+l)/n		≤	N	n−γ	.	,	X(d)	of	X	are	independent	random	walks	on	Z	with	(i)	transition	probabilities	P0	[X1	=	xi	]	=	1/3	for	xi	=	−1,	0,	1.	Letting	x	=	f	−	g,	we	get	0	=	)f	−	g,	f	−	g*;	hence	f	=	g.	Klenke,	Probability	Theory,	Universitext,	113	114	5	Moments	and	Laws	of	Large	Numbers	√	is	the	variance	of
X.	Thus	E	⊂	DB	for	any	B	∈	δ(E),	and	hence	(1.3)	follows.	Then		|ϕ(t)	−	ϕ(s)|2	≤	2	1	−	Re(ϕ(t	−	s))	for	all	s,	t	∈	Rd	.	Then	the	family	(PXi	,	i	∈	I	)	=	(L[Xi	],	i	∈	I	)	of	distributions	of	Xi	is	weakly	relatively	compact	in	M1	(C([0,	∞))).	In	particular,	f	(X)	is	a	submartingale	if	f		(x)	≥	0	for	all	x	∈	Z;	that	is,	if	f	is	convex.	As	F	is	weakly	relatively	sequentially
compact,	(μN	)N∈N	has	a	weakly	convergent	subsequence	(μNk	)k∈N	whose	weak	limit	will	be	denoted	by	μ	∈	M≤1	(E).	That	is,	two-dimensional	symmetric	simple	random	walk	is	recurrent.	+	Xn	≤	T	and	compute	E[N].	Hence	a	finite	measure	μ	on	(Ω,	2Ω	)	is	uniquely	determined	by	the	values	μ(En	),	n	∈	Z.	♦	The	construction	in	the	preceding
example	does	not	depend	on	the	details	of	the	normal	distribution	but	only	on	the	validity	of	the	convolution	equation	N0,s+t	=	N0,s	∗	N0,t	.	Hence	(18.1)	holds.	if	I	is	open	to	the	right,	if	I	is	closed	to	the	right,		=	0.	Example	9.20	Let	I	=	N0	(or	let	I	⊂	[0,	∞)	be	right-discrete;	compare	Example	9.17)	and	let	X	be	an	adapted	real-valued	stochastic
process.	,	xn−1	)	=	2n−1	1{x1	=x2	=...=xn−1	=0}	.)	Hence	H	is	predictable.	Indeed,	as	in	the	2.1	Independence	of	Events	55	preceding	example,	there	are	sets	A˜	1	,	A˜	2	,	A˜	3	⊂	{1,	.	Hence	by	the3	dominated	convergence	theorem	(Corollary	6.26),	we	have	μi	(C)	=	limε→0	ρC,ε	dμi	.	In	fact,	if	W	is	unknown,	observing	X	gives	an	increasing	amount
of	information	on	the	true	realization	of	W	.	Clearly,	this	construction	makes	use	of	the	specific	structure	of	the	problem.	,	fn	∈	Cc+	(E),	A	∈	B([0,	∞)n	)	is	a	π-system	and	by	Theorem	24.2	it	generates	M.	,	Xk	)	and	let	An	(ϕ)	:=	1			∈S(n)	ϕ(X	).	Then		P[Xn+1	=	1		X1	=	x1	,	.	,	N	−	1,	λxk	=	(1	−	r)	ρ	k+1	(θ	k	−	θ	k	)(θ	+	θ	)	)	*	=	(1	−	r)	ρ	k+1	(θ	k+1	−	θ
k+1	)	+	θ	θ	(θ	k−1	−	θ	k−1	)	=	r	ρ	k−1	(θ	k−1	−	θ	k−1	)	+	(1	−	r)	ρ	k+1	(θ	k+1	−	θ	k+1	)	=	r	xk−1	+	(1	−	r)	xk+1.	7.2	Inequalities	and	the	Fischer–Riesz	Theorem	167	(iv)	The	maps	x	→	D	−	ϕ(x)	and	x	→	D	+	ϕ(x)	are	monotone	increasing.	Assume	μ1	,	μ2	∈	M(E)	are	measures	with	f	dμ2	for	all	f	∈	Lip1	(E;	[0,	1]).	Example	19.18	(i)	Let	E	=	{0,	1,	2}
with	C(0,	2)	=	0,	and	A0	=	{x0	}	=	{0},	A1	=	{x1	}	=	{2}.	Hint:	First	compute	the	distribution	of	−2	log(U	)	and	then	use	the	transformation	formula	(Theorem	1.101)	as	well	as	polar	coordinates.	be	independent	real	random	variables	in	L2	(P).	Then	f	≤	f	≤	f	and	hence	f	dμ	≤	f		dμ.	Theorem	5.28	(Kolmogorov’s	inequality)	Let	n	∈	N	and	let	X1	,	X2	,	.
♣	Exercise	20.6.4	Consider	a	Markov	chain	on	E	=	{1,	2,	3}	with	transition	matrix	p.	4.1).	We	prepare	for	the	proof	of	Lindeberg’s	theorem	with	a	couple	of	lemmas.	Takeaways	In	order	to	check	weak	convergence	of	a	sequence	of	probability	measures,	it	is	enough	to	show	tightness	and	pointwise	convergence	of	the	characteristic	functions.	♦
Definition	19.5	The	system	of	equations	(p	−	I	)f	(x)	=	0,	f	(x)	=	g(x),	for	x	∈	E	\	A,	for	x	∈	A,	(19.4)	is	called	the	Dirichlet	problem	on	E	\	A	with	respect	to	p	−	I	and	with	boundary	value	g	on	A.	,	N	−	1.	(iv)	The	family	(U[−n,n]	)n∈N	of	uniform	distributions	on	the	intervals	[−n,	n],	regarded	as	measures	on	R,	is	not	tight.	19.4	Effective	network	after
adding	superconductors	to	Z2	.	Hence	sup	L(ϕ)	is	convex	if	L(ϕ)	=	∅.	(ii)	A	linear	subspace	of	a	vector	space	is	convex.	In	particular,	for	i.i.d.	random	variables,	the	exchangeable	σ	-algebra	is	P-trivial.	,	pm	).	The	number	of	summands	of	the	type	E[Xl21	·	·	·	Xl2k	]	(for	different	l1	,	.	We	start	with	a	more	general	treatment	of	classes	of	test	functions
that	are	suitable	to	characterize	weak	convergence	and	then	study	Fourier	transforms	in	greater	detail.	Lemma	1.47	Let	A	⊂	2Ω	be	an	arbitrary	class	of	sets	with	∅	∈	A	and	let	μ	be	a	nonnegative	set	function	on	A	with	μ(∅)	=	0.	,	Xn	=	xn	]		*	)	=	P	un+1	∈	S		(uk	∈	S	⇐⇒	xk	=	1)	for	every	k	≤	n	)	r	=	P	T1s	+	.	For	every	ε	>	0	and	T	<	∞,	there	exists	a
number	K	<	∞	that	depends	only	on	ε,	T	,	α,	β,	C,	γ	such	that	'	(	P	|X˜	t	−	X˜	s	|	≤	K	|t	−	s|γ	,	s,	t	∈	[0,	T	]	≥	1	−	ε.	n→∞	Show	that	n−1/2	Sn	⇒	N0,1	but	that	(Xi	)i∈N	does	not	satisfy	the	Lindeberg	condition.	In	practice,	all	spaces	that	are	of	importance	in	probability	theory	are	Polish	spaces.	It	is	a	matter	of	taste	as	to	which	solution	is	preferable.
Define	Am	∈	{0,	1}E	by	{Y	∈	Am	}	=	{N	=	m}.	6.2	Uniform	Integrability	.	Hint:	Let	E	=	R	and	use	the	fact	that	Cb	(R)	=	Cb	(R;	R)	is	not	separable.	To	stress	this	notion	of	a	connection,	we	use	a	different	symbol	from	the	set	brackets.	-	n	n	(	'			≥E	(Sn	+	c)2	1Ak	=	E	(Sn	+	c)2	1Ak	k=1	=	n		n	k=1	1Ak	=	1A	≤	1.	♦	Theorem	15.35	Let	X	be	a	real	random
variable	and	let	ϕ	be	its	characteristic	function.	That	is,	it	should	hold	that	(Xti	−	Xti−1	)i=1,...,n	is	independent	for	all	0	=:	t0	<	t1	<	.	By	Theorem	1.53,	we	can	extend	μ˜	F	uniquely	to	a	σ	-finite	measure	μF	on	B(R).	Proof	By	Theorem	1.81,	Xi−1	(Ei	)	is	a	π-system	that	generates	the	σ	-algebra	Xi−1	(Ai	)	=	σ	(Xi	).	(iii)	In	the	case	α	∈	(0,	2),	we	have:
PX	is	in	the	domain	of	attraction	of	some	distribution	if	and	only	if	(16.32)	holds	and	the	limit	P[X	≥	x]	x→∞	P[|X|	≥	x]	p	:=	lim	exists.	Then	X	is	called	a	random	walk	on	E	with	weights	C.	Fig.	Therefore,		lim	sup	n→∞	f	dμn	≤	lim	sup	n→∞	N		i=1	μn	(Ei	)	·	yi	=	N		i=1		μ(Ei	)	·	yi	≤	ε	+	f	dμ.	19.4	Recurrence	and	Transience	..	.})	=	2	and	n8	=	5.	The	first
problem	that	has	to	be	resolved	is	to	show	that	F	(X)	is	a	random	variable.	By	Theorem	1.15,	σ	(E)	is	a	σ	-algebra.	π	532	21	Brownian	Motion	Takeaways	Brownian	motion	can	be	constructed	as	a	strong	Markov	process.	Hence	in	each	step	the	voltage	u(x)	at	point	x	does	not	change.	We	consider	first	the	remainder	term.	(i)	If	X	∈	L1	(P),	then	X	is
called	integrable	and	we	call		E[X]	:=	X	dP	the	expectation	or	mean	of	X.	(21.30)	Proof	“	⇒	”	By	Prohorov’s	theorem	(Theorem	13.29),	weak	relative	compactness	of	(Pi	,	i	∈	I	)	implies	tightness	of	this	family.	By	Theorem	8.14(iv),	since	σ	(Sm	)	⊂	Fm	,	we	have		*	)	E[Sn	|Sm	]	=	E	E[Sn	|Fm	]		Sm	=	E[Sm	|Sm	]	=	Sm	.	M>0	(23.20)	x∈E	Let	δ	>	0.	Thus	G(0,
0)	=	∞,	which	shows	that	X	is	recurrent.	By	assumption,	there	is	an	n	∈	N	with	|Ltn	(f	)|	<	∞	and	|Unt	(f	)|	<	∞.	Proof	Let	A1	,	A2	,	.	be	i.i.d.	real	random	variables	with	distribution	function	F	,	and	let	Fn	,	n	∈	N,	be	the	empirical	distribution	functions.	Then		there	exists	a	unique	σ	-finite	measure	μ	on	Rn	,	B(Rn	)	such	that	μ((a,	b])	=	n		μi	((ai	,	bi	])	for
all	a,	b	∈	Rn	with	a	<	b.	A	stochastic	process	X	=	(Xn	,	n	∈	I	)	is	called	predictable	(or	previsible)	with	respect	to	the	filtration	F	=	(Fn	,	n	∈	N0	)	if	X0	is	constant	(if	I	=	N0	)	and	if	for	every	n	∈	N,	Xn	is	Fn−1	-measurable.	,	ωn	])	=	n		pωi	.	,	xn	∈	K	with	K	⊂	V	:=	ni=1	Bεxi	(xi	).	(iii)	Use	the	uniqueness	theorem	for	Laplace	transforms.	l	l=1	l=N+1	By
Theorem	6.12(ii),	(fnkl	)l∈N	converges	to	f	almost	everywhere	on	AN	.	More	specifically,	we	used	compactness	arguments.	Let	Xn	:=	1,	if	the	nth	ball	is	black,	0,	else.	♣	Exercise	11.2.3	Give	an	example	of	a	square	integrable	martingale	that	converges	almost	surely	but	not	in	L2	.	D	(i)	Xn	−→	X.	(ii)	A2	→		κ(ω1	,	A2	)	is	a	(σ	-)finite	measure	on	(Ω2	,	A2	)
for	any	ω1	∈	Ω1	.	The	resulting	triple	(Ω,	A,	UΩ	)	is	called	a	Laplace	space.	,	Yn	describe	precisely	the	random	variables	on	(Ω,	A,	P)	from	the	beginning	of	this	chapter.	Hence	there	is	a	C	<	∞	with	μpεn	−	UE	T	V	≤	C	γεn	for	all	n	∈	N,	μ	∈	M1	(E),	and	the	best	speed	of	convergence	(in	this	class	of	transition	matrices)	can	be	obtained	by	choosing	ε	=
ε0	.	This	statement	is	a	special	case	of	(ii)	since	fi	◦	Xi	is	σ	(Xi	)	–	Ai	-measurable	(see	Theorem	1.80).♦	Theorem	2.16	(Independent	generators)	For	any	i	∈	I	,	let	Ei	⊂	Ai	be	a	π-system	that	generates	Ai	.	In	the	first	step,	we	determine	the	(random)	number	of	jumps	in	(0,	1].	n	This	shows	the	lower	bound	(LDP	1).	∈	M≤1	(E1	)	with	μ(Uϕ	)	=	0	and	μn
−→	μ	weakly,	then	n→∞	μn	◦	ϕ	−1	−→	μ	◦	ϕ	−1	weakly.	Finally,	consider	the	stochastic	kernel	κ	from	Ω1	to	Ω2	,	defined	by	κ(ω1	,	A2	)	=	Pω1	(A2	).	Now	we	show	the	additional	statement.	21.2	Construction	and	Path	Properties	527	If	t	∈	[0,	1)	and	w	∈	Hγ	,t	,	then	for	every	δ	>	0	there	exists	a	c	=	c(δ,	w)	with	the	property	|ws	−	wt	|	≤	c	|s	−	t|γ	for



every	s	∈	[0,	1]	with	|s	−	t|	<	δ.	We	consider		also	as	a	map	N	→	N	by	defining	(k)	=	k	for	k	>	n.	♣	Exercise	1.5.2	Give	an	example	of	two	normally	distributed	random	variables	X	and	Y	such	that	(X,	Y	)	is	not	(two-dimensional)	normally	distributed.	Note,	however,	that	in	(17.11)	we	have	required	neither	independence	of	the	random	variables	(Rn	(x),	x
∈	E)	nor	that	all	Rn	had	the	same	distribution.	By	the	upcrossing	[a,	b]	between	times	−n	and	0.	Theorem	21.42	(Kolmogorov’s	criterion	for	weak	relative	compactness)	Let	(Xi	,	i	∈	I	)	be	a	sequence	of	continuous	stochastic	processes.	∈	G	and	A	:=	A1	∪	A2	∪	.	However,	we	now	want	to	develop	a	systematic	framework	for	the	description	and
construction	of	multi-stage	experiments.	587	588	594	598	603	24	The	Poisson	Point	Process	.	♦	Example	20.28	Let	Ω	=	[0,	1),	A	=	B([0,	1))	and	let	P	=	λ	be	the	Lebesgue	measure	on	([0,	1),	B([0,	1))).	Show	that	A	is	a	continuous	linear	operator	from	L2	(μ1	)	to	L2	(μ2	).	We	show	the	optional	sampling	and	optional	stopping	theorems	in	the	second
section.	(15.4)	k=1	Hint:	(i)	Define	the	characteristic	functions	(see	Theorem	15.13)	ϕ1	(t)	=	ϕ2	(t)	=	(1	−	t/2)+	.	♦	Theorem	13.23	Let	μ,	μ1	,	μ2	,	.	(iii)	E	is	complete	and	there	is	a	summable	sequence	(εn	)n∈N	such	that	∞		n=1	μ(A	∩	{d(fn	,	fn+1	)	>	εn	})	<	∞	for	all	A	∈	A	with	μ(A)	<	∞.	Define	Bn	=	An	\	A	∈	A	for	all	n	∈	N.	Let	A,	A1	,	A2	,	.	(i)	Show
the	validity	of	Helly’s	theorem	with	V	replaced	by	Vd	.	Define	X	:=	AW	+μ.	An	F-martingale	Y	is	thus	determined	uniquely	by	the	terminal	values	YT	(and	vice	versa).	Each	path	of	the	process	X	of	partial	sums	that	ends	above	a	corresponds	to	a	unique	path	that	reaches	a	but	ends	below	a.	Hence,	what	is	the	fair	price	π(VT	)	for	which	a	trader	would
offer	(and	buy)	the	contingent	claim	VT	?	Then			{|f	|>aε	}	|f	|	dμ	≤		{|f	|>	gε/2	}	|f	|	dμ	+	{	gε/2	>aε	}		gε/2	dμ	<	ε.	(ii)	X	is	mixing	if	and	only	if	X	is	aperiodic.	Our	first	task	is	to	give	precise	definitions.	For	general	measurable	f	,	the	statement	follows	by	the	usual	approximation	arguments.	Essentially	it	is	necessary	and	sufficient	that	the	state	space
of	the	chain	cannot	be	decomposed	into	subspaces	•	that	the	chain	does	not	leave	•	or	that	are	visited	by	the	chain	periodically;	e.g.,	only	for	odd	n	or	only	for	even	n.	To	this	end,	we	check	(i)–(iii)	of	Definition	1.2.	(i)	Clearly,	Ω	∈	Ai	for	every	i	∈	I	,	and	hence	Ω	∈	AI	.	Let	X	be	binomially	distributed,	X	∼	bn,p	.	n→∞	Remark	13.32	The	implication	(ii)	in
Theorem	13.29	is	less	useful	but	a	lot	simpler	to	prove.	i=1	A	function	f	:	I	→	R	is	called	Riemann	integrable	if	there	exists	a	t	such	that	the	limits	of	the	lower	sums	and	upper	sums	are	finite	and	coincide.	For	n	∈	N0	,	define	Xn	:=	nm=1	Ym	.	+	Tn−1	and	Xt	=	sup{n	∈	N0	:	Sn	≤	t}.	Definition	1.1	A	class	of	sets	A	is	called	•	∩-closed	(closed	under
intersections)	or	a	π-system	if	A	∩	B	∈	A	whenever	A,	B	∈	A,	∞	•	σ	-∩-closed	(closed	under	countable1	intersections)	if	n=1	An	∈	A	for	any	choice	of	countably	many	sets	A1	,	A2	,	.	The	function	f	is	called	the	density	of	μ	and	plays	a	role	similar	to	the	weight	function	p	in	(v).	Proof	Clearly,	every	dn	is	a	complete	metric	on	(C([0,	n]),		·	∞	).	♦		Remark
12.9	Denote	by	T	=	n∈N	σ	(Xn+1	,	Xn+2	,	.	The	case	μ	=	δ0	is	trivial.	We	show	that	for	any	f	∈	Cb	(E;	R),	any	x	∈	E	and	any	ε	>	0,	there	exists	a	gx	∈	C	with	gx	(x)	=	f	(x)	and	gx	(y)	≤	f	(y)	+	ε	for	all	y	∈	E.	Theorem	2.47	(Uniqueness	of	the	infinite	open	cluster)	For	any	p	∈	[0,	1],	we	have	Pp	[N	≤	1]	=	1.	In	order	to	apply	the	Poisson	approximation
theorem	(Theorem	3.7),	for	fixed	n	∈	N,	we	decompose	the	interval	(0,	t]	into	2n	disjoint	intervals	of	equal	length,	*	I	n	(k)	:=	(k	−	1)2−n	t,	k2−n	t	,	k	=	1,	.	Intuitively,	this	should	be	x	n	.	As	the	minimum	of	x	independent	exp1	-distributed	random	variables	is	expx	-distributed,	the	waiting	time	for	the	next	branching	event	is	expx	-distributed.	We	say
that	a	point	x	∈	Zd	is	a	trifurcation	point	if	•	x	is	in	an	infinite	open	cluster	C	p	(x),	•	there	are	exactly	three	open	edges	with	endpoint	x,	and	•	removing	all	of	these	three	edges	splits	C	p	(x)	into	three	mutually	disjoint	infinite	open	clusters.	n→∞	“(iv)	⇒	(iii)”	(for	finite	μ)	Assume	that	μ(A)	<	∞	for	every	A	∈	A	and	that	μ	is	∅-continuous.	Furthermore,
the	text	has	been	extended	carefully	in	many	places.	♣	Exercise	21.1.4	Let	X	=	(Xt	)t	≥0	be	a	stochastic	process	on	(Ω,	F	,	P)	with	values	in	the	Polish	space	E	and	with	right	continuous	paths.	Then	(aX	+	bY	)	is	a	martingale.	“(ii)	⇒	(iii)”	Assume	(ii).	Show	that	the	Chebyshev	polynomials	of	the	second	kind	are	orthonormal	with	respect	to	ν;	that	is,	
Um	Un	dν	=	1{m=n}	.	k=0	We	get	|f	(Sn	/n)	−	f	(p)|	≤	ε	+	2f	∞	1{|(Sn	/n)−p|≥δ}	and	thus	(by	Theorem	5.14	with	V	=	p(1	−	p)	≤	14	)	|fn	(p)	−	f	(p)|	≤	E[|f	(Sn	/n)	−	f	(p)|]		,	+			Sn			≤	ε	+	2f	∞	P		−	p	≥	δ	n	≤	ε+	f	∞	2	δ2	n	n→∞	for	any	p	∈	[0,	1].	,	τk+1	},	we	have	(H	·Y	)j	=	(H	·Y	)σk	.	In	particular,	a	random	walk	on	Z	with	centered	increments	is
recurrent	(Chung–	Fuchs	theorem,	compare	Theorem	17.41).	Example	20.12	Let	(Xn	)n∈N0	be	i.i.d.	and	let	Xn	(ω)	=	X0	(τ	n	(ω)).	Definition	14.20	Let	n	∈	N.	Denote	by	LI	:=	LC	I	:=	1		I	(x,	y)2	R(x,	y)	2	x,y∈E	the	energy	dissipation	of	I	in	the	network	(E,	C).	The	ith	individual	in	the	nth	generation	has	Xn,i	offspring	(in	the	(n	+	1)th	generation).	Also	one
can	allow	for	different	distributions	in	the	respective	factors.	∈	AI	.	(21.36)	Note	real	random	variables	X,	Y	with	E[X]	=	E[Y	]	=	0	)	that,	*	for	)	independent	*	and	E	X4	,	E	Y	4	<	∞	and	for	a	∈	[−1,	1],	we	have	)	)	*	)	*	)	*	*	)	*	E	(aX	+	Y	)4	=	a	4	E	X4	+	6	a	2	E	X2	E	Y	2	+	E	Y	4	)	*	)	*	)	*	)	*	≤	E	X4	+	6	E	X2	E	Y	2	+	E	Y	4	=	E[(X	+	Y	)4	].	Exercise	1.1.1	Let
A	be	a	semiring.	However,	it	is	not	a	Markov	chain	with	respect	to	the	so-called	annealed	measure	P[X	∈	·	].	,	m	and	distribution	p.	(i)	The	distribution	on	R	with	density	f	(x)	=	⎧	⎪	⎪	⎨	⎪	⎪	⎩	1	α	1+α	|x|	,	1	)	1+β	xβ	,		(1	−	0,	if	x	<	−1,	if	x	>	1,	else.	fdd	Let	Q	be	a	limit	point	for	(Pnk	)k∈N	along	some	subsequence	(nk	).	Define	C	=	D	∩	K.	This	is	the
reason	why	we	studied	independence	of	classes	of	events	in	the	last	section.	♦	Example	15.19	Let	ϕ(t)	=	(1	−	2|t|/π)+	be	the	characteristic	function	of	the	distribution	“N.N.”	from	Theorem	15.13	(with	a	=	π/2)	and	let	ψ	be	the	characteristic	function	from	the	preceding	example.	Theorem	5.17	(Etemadi’s	strong	law	of	large	numbers	(1981))	Let	X1	,
X2	,	.	Show	that	X	is	a	random	measure	if	and	only	if	we	have	P[X(B)	0,	there	exists	a	sequence	(H	n	)n∈N	in	E	such	that	+	T	E	0	Step	1.	15.1	Separating	Classes	of	Functions	335	Assume	there	is	an	ε0	>	0	with	mX	(ε0	)	<	∞	(respectively	mX	(−ε0	)	<	∞).	The	event	B	from	above	can	be	written	as	B	=	Zn+1	<	Zn	only	finitely	often	.	♦	Example	1.63
(Infinite	product	measure,	continuation	of	Example	1.40)	Let	E	be	a	finite	set	and	let	Ω	=	E	N	be	the	space	of	E-valued	sequences.	We	have	extended	this	notion	to	families	of	events	and	even	to	families	of	classes	of	sets.	Then	f	is	harmonic	on	E	\	A.	If	(Xi	)i∈I	is	independent,	then	(fi	◦	Xi	)i∈I	is	independent.	Proof	Clearly,	E[X]	is	finitely	additive.	♣
Exercise	21.5.4	Let	d	∈	N.	(1)	Choose	a	random	coordinate	I	according	to	some	distribution	(qi	)i∈Λ	.	Generating	functions	are	the	ideal	tool	for	the	analysis	of	such	processes.	Assume	that	we	had	νs	⊥	μ.	(ii)	Show	that	E[(Gn	(t)	−	Gn	(s))4	]	≤	C	(t	−	s)2	+	|t	−	s|/n	for	some	C	>	0.	Define	E		:=	∞	n=1	Kn	.	In	general,	the	growth	to	infinity	of	Zn	can	also
be	slower	than	mn	.	In	this	section,	we	develop	a	formal	framework	for	the	quantification	of	probabilities	of	rare	events	in	which	the	complete	theory	of	large	deviations	can	be	developed.	(iii)	First	assume	X	≥	0	and	Y	≥	0.	Assume	that	there	is	an	integrable	dominating	function	0	≤	g	∈	L1	(μ)	n→∞	with	|fn	|	≤	g	almost	everywhere	for	all	n	∈	N.	♠
Definition	21.2	Let	(E,	d)	and	(E		,	d		)	be	metric	spaces	and	γ	∈	(0,	1].	=	1,	let	dn	=	n	an	E[sin(X/an	)]	for	all	n	∈	N.	In	Sect.	F	∈Fn	Then	F	:=	∞	n=1	Fn	μ∗	(A)	≤	∈	U(A)	and		μ(F	)	≤	F	∈F	∞			μ(F	)	≤	n=1	F	∈Fn	∞		μ∗	(An	)	+	ε.	Using	Lemma	23.9,	we	get	lim	sup	n→∞	1	log	Pn	(C)	n	≤	lim	sup	n→∞			1	log	Pn	(−∞,	x−	]	+	Pn	[x+	,	∞)	n				1	1	log	Pn	[x+	,	∞)
=	max	lim	sup	log	Pn	(−∞,	x−	]	,	lim	sup	n→∞	n	n→∞	n	=	max	−	I	(x−	),	−I	(x+	)	=	−	inf	I	(C).	(ii)	This	is	obvious	since	Pϕ(X)	=	PX	◦	ϕ	−1	.	Hence	X	is	ergodic.	Corollary	6.13	Let	(E,	d)	be	a	separable	metric	space.	For	ω0	∈	Ω0	and	n	∈	N,let	Aω0	,n	:=	{ω1	∈	Ω1	:	κ2	((ω0	,	ω1	),	Ω2	)	<	n}.	First	we	consider	the	situation	of	a	simple	shift:	Let	Ω	=	E	N0	,
where	E	is	a	finite	set	equipped	with	the	product	σ	-algebra	A	=	(2E	)⊗N0	.	By	the	monotone	convergence	theorem	(Theorem	4.20),	we	infer	E[|XY	|]	=	lim	E[XN	YN	]	=	lim	E[XN	]	E[YN	]	N→∞		=	lim	E[XN	]	N→∞		N→∞		lim	E[YN	]	=	E[|X|]	E[|Y	|]	<	∞.	,	n,	are	called	the	kth	moments	and	kth	absolute	moments,	respectively,	of	X.	Theorem	19.35
(Solomon	[158])	Assume	that	E[|	log(0	)|]	<	∞.	For	any	measurable	set	A	⊂	E,	define	μ(A)	:=	sup	sup	μ˜	m	(A	∩	Wn	)	=	sup	μ˜	n+1	(A	∩	Wn	).	For	a	formal	proof	along	the	lines	of	this	heuristic,	see	Sect.	Clearly,	P[B	|A]	=	E[1B	|A]	for	all	B	∈	A.	Warning:	One	of	the	implications	is	rather	difficult	to	show.	19.6	whose	effective	resistance	Reff	3	Z	.	At	each
step,	choose	one	of	the	N	balls	uniformly	at	random.	Hence	also	U	:=	V	∩	W	is	open.		Analogously,	define	P[A|X	=	x]	=	E[1A		X	=	x]	for	A	∈	A.	and					n			2	n					t	t	t2		1−	t				−ϕ	√	−ϕ	√	≤	n	1	−				2	2	2n	2n	nσ	nσ	≤n					n→∞	t	2		t		−→	0.	In	short,	every	random	observation	(the	technical	term	is	random	variable)	is	a	measurable	map.	Then	we	call		f	dλ	the
Lebesgue	integral	of	f	.	Proof	Let	Ω	=	Ω	+	Ω	−	be	a	Hahn	decomposition.	The	dashed	vertical	line	indicates	the	critical	inverse	temperature.	(21.16)	It	is	enough	to	consider	continuous	bounded	functions	F	that	depend	on	only	finitely	many	coordinates	t1	,	.	By	we	obtain	n	lim	E[eλZn	/2	]	=	n→∞	1	1	1	1+λ	=	+	=	E[e−λW	],	1	+	2λ	2	2	1	+	2λ	where	in
the	last	step	we	assumed	that	PW	=	12	δ0	+	1	2	exp1/2.	This	implies	(using	the	triangle	inequality;	see	Theorem	5.3(v))	∞	∞	)	*		*	*		)	)	*	)	E	|ST	|	=	E	|Sn	|	1{T	=n}	=	E	|Sn	|	E	1{T	=n}	n=1	≤	∞		n=1	)	*	E	|X1	|	n	P[T	=	n]	=	E[|X1	|]	E[T	].	Owing	to	the	independence	of	increments	and	since	the	density	of	the	standard	normal	distribution	is	bounded	by
1,	we	get	*k	*k	)	)	P[B	∈	AN,n,i	]	=	P	|B1/n	|	≤	N	n−γ	=	P	|B1	|	≤	N	n−γ	+1/2	≤	N	k	nk(−γ	+1/2).	,	n,	)	*	F{i}	(x)	=	P[Xi	≤	x]	=	P	Ri−1	×	(−∞,	x]	×	Rn−i				μj	(R)	=	μi	(−∞,	x]	.	For	simplicity,	assume	that	Σ	is	a	finite	set	and	λ	=	UΣ	is	the	uniform	distribution	on	Σ.	Since	M(μ∗	)	is	a	σ	-algebra	(Lemma	1.52),	it	is	enough	to	show	A	⊂	M(μ∗	).	Moreover,	X
∼	Nμ,C	⇐⇒	(iii)	⇐⇒	(iv).	♦	Takeaways	Consider	a	two-step	random	experiment	where	in	the	first	step	we	choose	a	probability	measure	Ξ∞	on	some	space	E.	n→∞	(iv)	Finally,	show	that	Mn	⇒	M.	Step	7.	∈	A	with	A	⊂	∞	i=1	Ai	.	The	same	is	true	for	(iii)	and	(iv).	Definition	13.12	(Weak	and	vague	convergence)	Let	E	be	a	metric	space.	,	n	since	u	is	even.
(Of	course,	this	is	wishful	thinking.	(19.6)	Equation	(19.6)	is	sometimes	called	the	equation	of	detailed	balance.	In	practice,	for	a	large	space	E,	computing	the	spectral	gap	is	often	extremely	difficult.	For	x	∈	Rd	and	A	⊂	Rd	,	define	Ex	:=	m−1	({x})	=	{ν	∈	E	:	m(ν)	=	x}	and	EA	=	m−1	(A)	=	{ν	∈	E	:	m(ν)	∈	A}.
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